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Abstract—The identification and classification of pests in rice
field are the prerequisites of early warning systems for pest dis-
asters. Among these pests, the rice planthoppers cause the most
serious damage. However, the existing deep learning models for
rice planthopper recognition are characterized by large size and
numerous parameters, which makes them unsuitable for the
deployment on embedded devices with limited computational
resources. To address this issue, a lightweight rice planthopper
recognition model based on YOLOv5 is proposed in this paper.
In the model, a lightweight convolutional network named
GhostNet is employed as the backbone to reduce the operational
parameters. Additionally, a convolutional attention module
(CBAM) is integrated into the backbone network to effectively
enhance the transmission of deep information, so as to improve
the model’s ability of recognizing rice planthopper images.
The original CIoU loss function is replaced by the SIoU loss
function to expedite model convergence. Experimental results
demonstrate that the modified model achieves the mAP@0.5 as
82.8%, with the parameter count of 3.12×106 and the model
size of 7.2MB. Compared to the original model, it is a reduction
of 46.7% in size and 43.3% in parameters, with a minor
accuracy loss of 0.1%. Clearly, the improved model can achieve
lightweight characteristics and robust performance, and thus
it provides a theoretical and practical foundation for early
warning systems against rice planthopper infestations in rice
fields.

Index Terms—rice planthopper, identification, YOLOv5,
lightweight.

I. INTRODUCTION

R ICE, as one of the most crucial global food crops, holds
a significant position in worldwide food production.
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However, rice faces threats from various pests during its
growth. In there pests, the rice planthopper is a particularly
significant menace due to its widespread distribution and
formidable reproductive capabilities [1]. Traditional methods
of monitoring rice planthoppers heavily rely on manual
inspection, which causes challenges of low efficiency, insuf-
ficient coverage, and the tendency to overlook localized pest
damage. As a result, these existing methods cannot meet the
demands of modern agriculture for efficient and precise mon-
itoring [2]. Thus, accurate identification of rice planthoppers
is of paramount importance for precise prediction of rice pest
situations, timely implementation of pest control measures,
and the assurance of secure rice production.

In recent years, with the advancement and maturity of
image recognition and deep learning algorithms, the pest
detection methods based on image recognition and deep
learning have wide applications in such field [3]. Ref. [4]
proposed an improved method for rice pest image recognition
based on the ResNet 34 model, which achieved an F1 score
of 0.98. Ref. [5] introduced a method by utilizing a stacked
CNN architecture to significantly reduce model size, with an
accuracy of 95% in rice pest recognition. Ref. [6] developed
a new rice disease and pest recognition model based on
the improved YOLOv7 algorithm, with the accuracy rates
of 92.3% and mAP@0.5 of 93.7%.

Regarding the detection of rice planthoppers, Ref. [7]
achieved a correct recognition rate of 91.7% based on
four invariant moments and BP neural network. Ref. [8]
proposed a dual-layer detection algorithm based on Faster
R-CNN, with an average recall rate of 87.67% and an
average accuracy of 97.36%. Ref. [9] suggested a support
vector machine classification method by training on color and
grayscale co-occurrence matrix image features, and obtained
an accuracy of 87% in the classification of rice planthopper
growth stages. It should be mentioned that these algorithms
suffer the flaw of computationally intensive which results
in bulky models and hinders their deployment on mobile
devices. Therefore, on the foundation of ensuring accuracy
in rice pest recognition, it is of significant importance to
research into lightweight improvements for the existing deep
learning algorithms.

Motivated by the aforementioned studies, this paper pro-
poses a lightweight rice planthopper recognition method
based on YOLOv5. In the method, on the basis of YOLOv5,
we incorporates GhostNet into the backbone network, inte-
grates the CBAM attention mechanism module, and replaces
the YOLOv5 model’s CIoU activation function with SIoU.
This method ensures recognition accuracy while reducing
model parameters and computational load, thereby it en-
hances the model’s robustness and generalization capabili-
ties.
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Fig. 1. Improved model architecture.

II. NETWORK MODEL AND IMPROVEMENTS

A. Image acquisition and dataset creation

Due to the lack of an available rice planthoppers dataset,
this study opted to capture images of rice planthoppers using
a pest lure platform at the Nanjing Taihe Rice Planting
Cooperative. To minimize the interference of repetitive and
substandard images with model training, the captured images
underwent a screening process post-capture.

In this study, the open-source software LabelImg was
employed for the annotation of rice planthopper images by
utilizing a bounding box annotation method, and the labeled
tags were designated as ”Rich PH.” Following the completion
of annotations, the annotated dataset was divided into the
training, testing, and validation sets in an ratio of 8:1:1.

B. Construction of rice planthoppers detection model

YOLO (You Only Look Once) is an object detection
algorithm known for achieving real-time object detection
[10]. Currently, YOLO has multiple versions, and YOLOv5
is the fifth version released in May 2020 which consists of
four main components: input, backbone, neck, and head [11],
[12]. The input handles image input, the Backbone extracts
features from the input image, the neck integrates multi-
scale feature maps more effectively, and the head outputs
the position and category information of the target.

YOLOv5 is divided into five versions based on model
size and complexity. YOLOv5m (Medium) [13], YOLOv5l
(Large) [14], and YOLOv5x (Extra Large) [15] are relatively
large models, unsuitable for embedded devices and scenarios
demanding high real-time performance. YOLOv5n (Nano)
[16] is too small, suitable only for some edge computing
devices, with precision difficult to achieve at a significant

level. Therefore, this paper selects YOLOv5s (Small) [17],
which has relatively fewer parameters and faster speed, as
the base algorithm for improvement.

As shown in Fig. 1, the overall framework of the improved
model utilizes GhostNet to lightweight YOLOv5s. It com-
bines the structurally complex and parameter-heavy C3 mod-
ule with the Ghost Bottleneck module, forming the C3Ghost
module. This module replaces all Bottleneck modules in the
original model. Additionally, the Conv module in the original
model is replaced with the Ghost module. To enhance the
feature extraction capability of the model for small target
sizes, the CBAM attention mechanism is integrated into the
model, specifically in the last layer of the Backbone.

C. GhostNet architecture
The GhostNet architecture was introduced by the research

team of the MIT Computer Science and Artificial Intelligence
Laboratory in 2020 [18]. This architecture is a lightweight
neural network designed specifically for mobile and edge
devices with constrained computational resources. Its design
philosophy aims to enhance efficiency by reducing model
parameters and computational costs while maintaining high
performance.

Compared to traditional structures, the advantage of the
GhostNet network lies in the two-step generation of feature
maps. Initially, GhostNet employs conventional convolu-
tional operations to generate a portion of the feature map
from input data. Subsequently, based on the generated feature
map, GhostNet utilizes cheap operations (inexpensive linear
transformations) to produce another portion of the feature
map known as the Ghost feature map. Finally, GhostNet
combines these two generated feature maps through concate-
nation and forms the ultimately required feature map. The
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Fig. 2. GhostNet network structure.

structure diagram of the GhostNet network is illustrated in
Fig. 2.

D. C3Ghost module

The Ghost Bottleneck module is a crucial structure within
the GhostNet network. As illustrated in Fig. 3, it is compris-
ing two distinct Ghost convolutions.

In the left diagram, the main section is composed of two
Ghost modules (GM) connected in series. The first GM
expands the channel count, and the second GM reduces the
channel count to match the input channel count. Its function
is to increase the depth of the network. In the right diagram,
a deepwise convolution with a stride of 2 is introduced
between the two GMs in the main section. This convolution
compresses the height and width of the feature map, reducing
it to half the size of the input. Its role is to decrease the
matching channel count and connect the input and output of
the two modules.

The C3Ghost module [19] follows the construction ap-
proach of the CSP module, consisting of two CBS modules
and one Ghost Bottleneck module, as shown in Fig. 4.
With this combination, the feature information of input is
transformed into new feature maps through the CBS modules
and Ghost Bottleneck module. This method not only reduces
the overall model parameters but also maximally preserves
the feature information.

E. CBAM Attention Mechanism

For the extraction of features from small targets, mod-
els often face interference from a significant amount of
redundant background information. CBAM is a lightweight
convolutional attention module that combines channel and
spatial attention mechanisms, directing the model’s focus
more on the target object [20]. The structure of the CBAM
attention module is illustrated in Fig. 5. It can be see that
CBAM comprises two sub-modules: the channel attention
mechanism (CAM) and the spatial attention mechanism
(SAM) [21]. The channel attention mechanism is employed
to focus on meaningful information in the rice planthopper
images, while the spatial attention mechanism enables the
model to concentrate attention on regions of interest. The
structural diagrams of the CAM and SAM are presented in
the Fig. 6 and Fig. 7.

CBAM sequentially applies channel attention and spatial
attention to the input feature map, thereby it achieves atten-
tion adjustment in both the channel and spatial dimensions.
This effectively emphasizes feature channels with high dis-
criminative power for rice brown planthoppers, suppresses
redundant and irrelevant features, and accurately extracts key
features such as color, shape, and texture in rice planthopper
images.

F. Improvement of loss function

The loss function is a tool for measuring the difference
or error between the predicted values and the ground truth
during the model training process [22]. Its objective is
to minimize this difference, enabling the model to learn
better and enhance performance [23]. Therefore, selecting an
appropriate loss function plays a crucial role in the model’s
effectiveness.

The loss function employed by YOLOv5 is as follows:

loss = losscls + lossreg + lossobj (1)

In the equation, loss represents the total loss,
losscls,lossreg and lossobj represent the losses for category
prediction, localization loss, and object presence probability
loss. Both category prediction loss and object presence
probability loss are calculated using binary cross-entropy
loss, while the localization loss is computed using the CIoU
loss function.

However, the CIoU loss function does not consider the
mismatched orientation between the required and predicted
bounding boxes, leading to slow convergence and ineffi-
ciency. Therefore, to address these issues, this paper adopts
the SIoU loss function for calculating the localization loss.
This loss function takes into account the angle of the vector
between the required and predicted regressions, redefining
the penalty metric, as illustrated in Fig. 8.

The formula for the SIoU loss function is as follows:

lossSIoU = 1− IoU +
∆+Ω

2
(2)

In the formula, ∆ represents the distance cost, and Ω
represents the shape cost. This loss function consists of three
components: angle loss, distance loss, and shape loss. By
considering the angle factor, during the regression process
of the predicted box, it allows the predicted box to quickly
regress to the same horizontal or vertical line as the ground
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Fig. 3. Ghost Bottleneck network structure.

Fig. 4. C3Ghost network structure.

truth box, thereby accelerating the convergence speed of the
loss function.

The specific calculation methods for the angle loss, dis-
tance loss, and shape loss in the SIoU loss function are as
follows:

1) Angle loss: During the convergence process, it is first
determined whether the angle is less than 45°. If it satisfies
the condition, it is directly substituted into the following
formula for calculation. Otherwise, its complementary angle
is used instead. The formula for angle cost calculation is as
follows:

Λ = 1− 2 sin2(arcsinx− π

4
) (3)

x =
ch
σ

= sin(α) (4)

In the formula, Λ represents the angle loss, x represents
the sine value of α, σ represents the distance between the
center points of the true box and the predicted box, and ch
represents the difference in the y-coordinate of the center
points.

2) Distance loss: The calculation formula for the distance
loss is as follows:

∆ =
∑
t=x,y

(1− eγρt) (5)

In the formula, ∆ represents the distance loss, γ = 2−Λ
and ρt represents the squared difference between the center
point coordinates of the two boxes.

3) Shape loss: The formula for shape loss is as follows:

Ω =
∑

t=w,h

(1− e−ωt)θ (6)

In the formula, Ω represents the shape loss, θ represents
the weight of the shape loss in the localization loss, and in
this study, the parameter θ is set to the default value of 1. ωw

represents the ratio between the difference in width between
the ground truth box and the predicted box and the maximum
value, while ωh represents the ratio between the difference
in height between the ground truth box and the predicted box
and the maximum value.

III. RESULTS AND ANALYSIS

A. Experimental platform setup and hyperparameter config-
uration

The training platform utilized in this study is a computer
equipped with the Windows 11 operating system. The CPU
is an AMD Ryzen 7 6800H with Radeon Graphics, operating
at a frequency of 3.20 GHz, with 64GB RAM. The GPU is
an NVIDIA GeForce RTX3070Ti Laptop GPU. The training
and testing environments are identical.

For the configuration of training parameters, the input
image size is set to 640×640×3, the number of epochs is
set to 200, the base learning rate is set to the default value
of 1, the batch size is set to 8, the optimizer type is set
to Stochastic Gradient Descent (SGD), the weight decay
parameter is set to 5×10−4. The deep learning framework
used is PyTorch 1.10.0, and the Python version is 3.8.5.

B. Data enhancement

To enhance the model’s generalization performance, Mo-
saic augmentation [24] and Mixup data augmentation are
employed during the training. The Mosaic augmentation in-
volves concatenating four small images that have undergone
random cropping, scaling, and arrangement into one large
image. This large image is then used as input for training,
expanding the targets of small samples, enhancing the net-
work’s robustness, and improving its generalization ability.
On the other hand, Mixup augmentation creates new training
samples by linearly interpolating (mixing) the features and
labels of two or more different samples during training. This
process involves a weighted average of the pixel values and
labels of two images, generating a new image and label. This
method helps the model better handle boundaries between
categories during training, thereby improving generalization
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Fig. 5. CBAM attention module structure.

Fig. 6. Channel attention module structure.

Fig. 7. Spatial attention module structure.

Fig. 8. Calculation of SIoU loss function

performance. Mixup also has the effect of reducing the
model’s overfitting to training samples.

The Mixup calculation formula is:

x̃ = λxi + (1− λ)xj (7)

ỹ = λyi + (1− λ)yj (8)

In the formula, (xi, yi) and (xj , yj) are random sample
pairs from the original data, and λ is a parameter following
a beta distribution with λ ∈ [0, 1].

To assess the impact of data augmentation on the
YOLOv5s base model used in this experiment, a compar-
ison was made between the results with and without data

augmentation. The comparative results are presented in Table
I.

TABLE I
COMPARATIVE RESULTS BEFORE AND AFTER DATA AUGMENTATION

Model mAP/% F1 Model Size/MB

Original Model 82.4 0.8 15.4
Data Augmented 82.9 0.8 15.4

From this table, it can be observed that the mAP value
of the YOLOv5 model has improved with the use of data
augmentation, which indicates that data augmentation can
effectively enhance the model’s average precision.

C. Evaluation metrics

Following the completion of training, the performance of
the model needs to be evaluated. The performance evaluation
metrics selected in this study primarily include Precision,
Recall, F1 Score, and mean Average Precision (mAP).

Prediction boxes with confidence scores greater than a
threshold are defined as positive samples, otherwise, they are
considered negative samples. The formulas for calculating
Precision (P) and Recall (R) are as follows:

P =
TP

TP + FP
(9)

R =
TP

TP + FN
(10)
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Here, P represents precision, R represents recall, TP is
the number of examples the classifier correctly identifies as
positive samples, FP is the number of examples the classifier
incorrectly identifies as positive samples, and FN is the
number of examples the classifier incorrectly identifies as
negative samples.

F1 is a metric for classification, calculated as the average
of precision and recall. The formula is as follows:

F1 =
P +R

2
(11)

mAP@0.5 refers to the value of mAP when the threshold
(score threshold) is set to 0.5. It is calculated through the
computation of precision (P) and pecall (R). The formula
for calculating mAP is as follows:

mAP =
1

C

n∑
k=i

P (k)∆R(k) (12)

After training, the curves for Precision (P), Recall (R), F1

Score (F1), and mAP of the improved YOLOv5s model are
shown in Figure 9.

Fig. 9(a). Precision curve.

Fig. 9(b). Recall curve.

From the figures, it can be observed that with a threshold
set at 0.5, the mAP@0.5 is 82.8%.

D. Ablation experiment results and analysis

To validate the performance of the improved YOLOv5s
model, ablation experiments were conducted on the rice
brown planthopper dataset. The experiments involved in-
corporating lightweight GhostNet modifications, CBAM at-
tention mechanism enhancements, and SIoU loss function
improvements onto the original YOLOv5s model. The results
are presented in Table II.

Fig. 9(c). F1 score curve.

Fig. 9(d). mAP curve.

The experimental results demonstrate that the original
YOLOv5s model achieves an mAP of 82.9% with a model
size of 15.4MB. After lightweighting the model with the
Ghost module, the model size is reduced to 7.1MB, rep-
resenting a 46.7% reduction compared to the original size.
Although the mAP value decreases by 1.5%, this reduction
can be compensated for by adding the CBAM module and
modifying the SIoU loss function. This indicates that the
improved YOLOv5s model has a clear advantage and is
effective for rice brown planthopper image recognition tasks.
It can assist agricultural producers in rapidly and accurately
detecting the quantity and distribution of rice brown plan-
thoppers, enabling the implementation of effective control
measures.

E. Cross-comparison experiment

In order to objectively evaluate the performance of our
model, this study trained other models under the same
conditions and compared them with our model. The results
are shown in Table III. It can be observed that compared to
the popular lightweight network models YOLOv3-tiny and
YOLOv4-tiny, our model achieves an improvement in mAP
by 8.2% and 5.5%, respectively, with a significant reduction
in parameters and model size. Compared to the mainstream
detection model SSD, our model shows a substantial increase
in accuracy and a considerable reduction in parameters and
model size. In comparison to the original YOLOv5s model,
although there is a slight 0.1% mAP loss, the parameters and
model size are significantly reduced by 46.7% and 43.3%,
respectively.

IV. CONCLUSION

To deal with the limitations of traditional deep learning
classification methods in rice planthopper recognition, this
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TABLE II
COMPARATIVE RESULTS BEFORE AND AFTER DATA AUGMENTATION

Ghost Module CBAM Module SIoU loss mAP/% Model Size/MB

82.9 15.4
✓ 81.4 7.1
✓ ✓ 82.5 7.2
✓ ✓ ✓ 82.8 7.2

TABLE III
COMPARATIVE RESULTS OF DIFFERENT MODELS

Model mAP/% Parameters/106 Model Size/MB

SSD 61.2 24.5 87.4
YOLOv3-tiny 74.6 9.11 17.0
YOLOv4-tiny 77.3 5.91 21.7

YOLOv5s 82.9 7.2 15.4
improved algorithm 82.8 3.12 7.2

study has proposed a lightweight rice planthopper recogni-
tion model based on YOLOv5. The model has developed
by integration of the GhostNet network structure, CBAM
attention mechanism, and replacement of the SIoU loss
function in the YOLOv5s network. The experiment results
show that the proposed model with pest images yields an
mAP@0.5 value of 82.8%. Compared to the original model,
the accuracy loss is only 0.1%, while the parameters and
model size are significantly streamlined, which makes it
more suitable for deployment on embedded devices. As a
result, the achievements of this study not only hold positive
implications for the sustainable development of rice produc-
tion but also bear significant value in advancing the level
of agricultural intelligence. And thus it reduces agricultural
production costs, and enhances agricultural productivity.
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