
 

  
Abstract—Optimization theory in finance is developing 

rapidly, especially in forming portfolio optimization by 
including fuzzy elements. However, some fuzzy methods 
encountered problems in their application when obtaining 
optimal portfolio weights. Hence, a multi-objective approach 
was required to solve the fuzzy portfolio. This research focused 
on compiling a fuzzy portfolio using large-scale data without 
considering short-selling. Then, the data consisting of opening, 
closing, highest, and lowest prices were modeled into non-linear 
adaptive fuzzy numbers. The incoming fuzzy number was a 
trapezoidal fuzzy number. The data was obtained from 491 
trading days of the ten most active stocks in LQ45, respectively. 
This research also employed the Treynor ratio (TR) to optimize 
the process. As a control for the Treynor ratio, the Sharpe ratio 
(SR), which had been employed, was also first introduced. Based 
on empirical data, there were differences in the composition of 
the weights resulting from the formed fuzzy portfolio. The 
research results significantly indicated that TR had a more even 
diversification level across all stocks when constructing a fuzzy 
portfolio with a multi-objective approach. It indeed reduced the 
systematic risk in the portfolio formed. 

 
Index Terms—Expected Return, Fuzzy Portfolio, Multi-

objective, Risk. 

I. INTRODUCTION 
N the portfolio risk management process, the more stocks 
or other assets included in a portfolio are directly 

proportional to reduced risk [1]–[3]. A portfolio with 
minimum risk is efficient [1], [4]. Portfolio diversification 
(spread of assets in some types of investment) by an investor 
provides minimal risk because it can remove unsystematic 
risks; thus, systematic risks are only left, which are 
challenging to eliminate. In fact, eliminating unsystematic 
risks is difficult because more stocks are combined to obtain 
a minimum risk. Hence, a statistical method is required to 
calculate the minimum risk in stock diversification to obtain 
an efficient and effective combination. The ultimate goal of 
investors is to get a return according to investor expectations. 
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The portfolio’s risk measurement has been introduced by 

[5] and has been extensively studied in recent years. The 
methods used to calculate the Value at Risk (VaR), which are 
widely employed, consist of semi-absolute deviation [6], [7] 
covariance variance method [8], [9], mean-variance [10], 
mean semi-variance, and mean-variance skewness [11]–[13]. 
Some research revealed that VaR measurement was 
considered a random variable based on stochastic analysis of 
historical data and employed several methods in their 
estimation [8]. 

In fact, besides the expected data not always being 
available, several other factors, such as company stability, 
market demand and supply, geopolitical conditions, natural 
disasters, and disease outbreaks that impact the investment 
world, affect it. For instance, at the end of 2019, the world 
was hit by the COVID-19 pandemic in various countries. 
Indeed, this situation significantly affects the investment 
world. Research [14] stated that foreign direct investment 
(FDI) was affected by pandemic control in a country. In 
addition, the pandemic has significantly affected FDI in the 
service sector compared to FDI in other sectors. Moreover, 
COVID-19 also had an impact on company performance. The 
research results [15] indicated that COVID-19 negatively  
impacted company performance. This negative impact was 
more perceived when the company’s investment scale or 
sales revenue was smaller. Therefore, due to various factors 
and aspects, multi-objective portfolios and fuzzy theories’ 
constructions in the stochastic case were needed to determine 
VaR and future returns [16]. 

The multi-objective portfolio construction is an 
optimization method considering more than one objective 
function [17]. The large number of objective functions 
implies that no one solution can dominate. Thus, multi-
objective optimization is the best solution offered. The 
objective function is the objective to be optimized by an 
investor. The portfolio’s correlation is undoubtedly the 
problem of asset portfolio optimization with the mean-
variance, which can be considered as a multi-objective 
optimization problem [18], [19]. The multi-objective 
optimization process is solved using scalarization to find 
optimal points for each vector optimization problem [20], 
[21].  

Furthermore, the fuzzy portfolio selection model was 
previously developed by [22]–[25] in the fuzzy theory 
development. Risk measurement is generally classified into 
unsystematic and systematic. However, these two approaches 
cannot immediately eliminate VaR because, in principle, VaR 
can be minimized if investors direct them to portfolios with 
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the lowest VaR. Therefore, a solution is offered by applying 
multiple risk measurements that simultaneously evaluate the 
portfolio, i.e., employing multi-objective fuzzy on selected 
portfolios [26]. 

Fuzzy methods were still complex to be applied in some 
cases because an efficient and robust approach was needed to 
obtain optimal weights from fuzzy models for accurate data 
[27], [28]. Findings of [10] [29] reported that pattern search 
(PS) and particle swarm optimization (PSO) algorithms 
outperformed other algorithms in terms of robustness and 
sparsity to build a portfolio with optimal minimum fuzzy 
variance (tangency). Indeed, it became a trigger for 
combining the preparation of a multi-objective portfolio with 
a fuzzy approach that maintained robustness. The robustness 
model could produce a portfolio that maintained minimum 
variance and achieved the lowest portfolio variance. 

The multi-objective portfolio selection based on fuzzy 
VaR using the Sharpe Ratio has been developed by [24]. The 
Sharpe Ratio selection has a disadvantage, i.e., it is only 
appropriate to employ if an investor intends to place all (or 
almost all) of his or her wealth in one security [30]. 
Conversely, if an investor considers adding investments to a 
well-diversified portfolio, the Treynor ratio is considered 
more appropriate because it is only based on systematic risk. 
Implementing the asset return model as a non-linear adaptive 
fuzzy number includes trapezoidal fuzzy numbers [27]. 
Meanwhile, selecting a multi-objective fuzzy portfolio that 
maximizes portfolio returns and minimizes portfolio risk 
employs an interactive fuzzy approach [31]. However, this 
model has not been able to eliminate and remove systematic 
risks.  

This research filled a gap in the literature by examining the 
development of the optimization model construction for 
selected portfolios, especially in a fuzzy approach. A 
complete description of the fuzzy methods development 
employed for data analysis and simulation was also provided. 
It helped determine themes and research direction topics that 
could be further developed. Assumedly by the author, 
Treynor’s ratio studies to measure and improve the 
performance of multi-objective fuzzy portfolios in the 
Indonesian stock market had not been studied. The main 
contributions of this research consisted of (1) developing and 
applying the effective Treynor ratio index in the fuzzy 
portfolio construction; and (2) analyzing the characteristics of 
using the Treynor ratio index with the Sharpe ratio. The 
effective index of the critical Treynor ratio was employed to 
construct portfolio modeling that facilitated the division of 
assets into several securities. In addition, the Treynor ratio 
could solve the problem of systematic risk in the assets 
owned. 

II. FUZZY PORTFOLIO 
𝑅 is the set of real numbers. Non-linear adaptive fuzzy 

number 𝐴(𝑥), 𝑥 ∈ 𝑅 has a membership function [27], [32]–
[35]: 

𝐴

⎩
⎨

⎧
𝑓(𝑥)		, 𝑖𝑓		𝑥 ∈ [𝑝, 𝑞]
1	, 𝑖𝑓	𝑥 ∈ [𝑞, 𝑟]

𝑔(𝑥)		, 𝑖𝑓		𝑥 ∈ [𝑟, 𝑠]	
0	, 𝑖𝑓		𝑥	other

 (1) 

The characteristic of 𝑓(𝑥) has a real value function, 

increases, and continues to the right. Meanwhile, the 𝑔(𝑥) 
function has real value, decreases, and continues to the left. 
The p, q, r, s values are real numbers with the 𝑝 < 𝑞 < 𝑟 < 𝑠 
characteristics. The fuzzy number 𝐴(𝑥) which contains the 
𝑓(𝑥) and 𝑔(𝑥) functions, is defined as: 

𝑓(𝑥) = >
𝑥 − 𝑝
𝑞 − 𝑝@

!
 (2) 

𝑔(𝑥) = A
𝑠 − 𝑥
𝑠 − 𝑟B

!
 (3) 

 
In which 𝑛 > 0, then denoted by 𝐴 = (𝑝, 𝑞, 𝑟, 𝑠)! as a class 

of adaptive non-linear fuzzy number. If 𝑛 = 1, the special 
form is the generalized trapezoidal fuzzy number with 𝐴 =
(𝑝, 𝑞, 𝑟, 𝑠) as illustrated in Fig. . 

α-cut operation on A given by: 

[𝐴]" = [𝐴#(𝛼), 𝐴$(𝛼)] = F𝑝 + 𝛼
#
!(𝑞 − 𝑝), 𝑠 − 𝛼

#
!(𝑞 − 𝑟)H 

 

 
Fig. 1.  Membership Functions of Adaptive Fuzzy Numbers 

 
Notably,  𝑛 = 1, 𝑛 case, the expected value and variance 

of the trapezoidal fuzzy number 𝐴 = (𝑝, 𝑞, 𝑟, 𝑠) are as follow: 

𝐸(𝐴) =
𝑝 + 2𝑞 + 2𝑟 + 𝑠

6 	, (4) 

 
and 
 

𝑉𝑎𝑟(𝐴) =
(𝑝 + 2𝑞 − 2𝑟 − 𝑠)$

36 +
(𝑝 − 𝑞 + 𝑟 − 𝑠)

72 	 (5) 

 
The evidence can be seen in [27]. 

The arithmetic operation of trapezoidal fuzzy numbers is 
based on the interval of its α-cut, which is described as 
follows [27]: 
Addition operation: 
𝐴# + 𝐴$  = (𝑝#, 𝑞#, 𝑟#, 𝑠#) + (𝑝$, 𝑞$, 𝑟$, 𝑠$)  (6)  = (𝑝# + 𝑝$, 𝑞# + 𝑞$, 𝑟# + 𝑟$, 𝑠# + 𝑠$).  

Subtraction operation: 
𝐴# − 𝐴$  = (𝑝#, 𝑞#, 𝑟#, 𝑠#) − (𝑝$, 𝑞$, 𝑟$, 𝑠$)  (7)  = (𝑝# − 𝑠$, 𝑞# − 𝑟$, 𝑟# − 𝑞$, 𝑠# − 𝑝$).  

Multiplication operation with a 𝑘-constant: 
𝑘 ∙ 𝐴# = 𝑘 ∙ (𝑝, 𝑞, 𝑟, 𝑠) = (𝑘𝑝, 𝑘𝑞, 𝑘𝑟, 𝑘𝑠). (8) 

Multiplication operation: 
𝐴# ∙ 𝐴$ = (𝑝#, 𝑞#, 𝑟#, 𝑠#) ∙ (𝑝$, 𝑞$, 𝑟$, 𝑠$)  (9)  = (𝑝%, 𝑞%,𝑟%,𝑠%).  

Where: 
• 𝑝% = min(𝑝#𝑝$	, 𝑝#𝑠$, 𝑠#𝑝$, 𝑠#𝑠$), 
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• 𝑞% = min(𝑞#𝑞$, 𝑞#𝑟$, 𝑟#𝑞$, 𝑟#𝑟$), 
• 𝑟%= max(𝑞#𝑞$, 𝑞#𝑟$, 𝑟#𝑞$, 𝑟#𝑟$), 
• 𝑠%	= max(𝑝#𝑝$, 𝑝#𝑠$, 𝑠#𝑝$, 𝑠#𝑠$), 

The arithmetic operation of the trapezoidal fuzzy numbers 
still maintains the non-linear adaptive fuzzy number class. 
 

A. Fuzzy Numbers Construction on Stocks 
Fuzzy numbers are compiled and constructed using the 

opening, closing, highest, and lowest prices on the assets 
traded daily. The formations are consisted of: 
Opening Price S𝑃'(

)*+!, 𝑡 = 1,2,3, … , 𝑇, 𝑖 = 1,2, … , 𝑛. X, 
Closing Price S𝑃'(,-).+ , 𝑡 = 1,2,3, … , 𝑇, 𝑖 = 1,2, … , 𝑛. X, 
Highest Price S𝑃'(

/'0/, 𝑡 = 1,2,3, … , 𝑇, 𝑖 = 1,2, … , 𝑛. X, 
Lowest Price S𝑃'(-)1 , 𝑡 = 1,2,3, … , 𝑇, 𝑖 = 1,2, … , 𝑛. X. 
 

The daily return of the 𝑖 − 𝑡ℎ asset and 𝑡 − 𝑡ℎ time is 
formed using 𝑃'(

)*+!, 𝑃'(,-).+, 𝑃'(
/'0/, 𝑃'(-)1. Each asset 𝑖, 𝑖 =

1,… , 𝑛 and time 𝑡, 𝑡 = 1,2,3, … , 𝑇 maximum return, 
minimum return, and the average return on assets calculated 
by the formula:  

𝑟'(234 =
𝑃'(
/'0/ − 𝑃'(-)1

𝑃'(-)1
, (10) 

𝑟'(2'! =
𝑃'(-)1 − 𝑃'(

/'0/

𝑃'(
/'0/ , (11) 

𝑟'(35# =
𝑃'(-)1 − 𝑃'(

)*+!

𝑃'(
)*+! , (12) 

𝑟'(35$ =
𝑃'(,-).+ − 𝑃'(-)1

𝑃'(-)1
, (13) 

The daily return of the 𝑖 − 𝑡ℎ asset and 𝑡 − 𝑡ℎ time is 
expressed as a trapezoidal fuzzy number as follows: 

 
𝑟'( = Z𝑟'(2'!, 𝑟'(35#, 𝑟'(35$, 𝑟'(234[	, (14) 

 
The suitable 𝛼-cut 𝑟'( can be described as follows: 
 
[𝑟'(]" = \𝑟'(2'! + 𝛼Z𝑟'(35# − 𝑟'(2'![, 𝑟'(234 − 𝛼(𝑟'(234 − 𝑟'(35$)]  
 (15) 

The daily return dimension corresponds to the number of 
stocks observed and the observation time. The average fuzzy 
return from asset 𝑖 is calculated as a trapezoidal fuzzy number 
as follows: 

𝑟' =
1
𝑇^𝑟'(

6

(7'

. (16) 

 
Portfolio weight is expressed by the set 𝑤# =	 (𝑤#	, . . , 𝑤!), 

and portfolio return is presented with trapezoidal fuzzy 
numbers as follows: 

𝑟8(𝑤) =^𝑤'𝑟'

!

(7'

 (17) 

 
The fuzzy covariance of asset 𝑖	and asset 𝑗 is calculated as 

a trapezoidal fuzzy number as follows: 

𝑠'9 =
1
𝑇^(𝑟'( − 𝑟')(𝑟9( − 𝑟'),

6

(7'

 (18) 

 

and portfolio variance is expressed by trapezoidal fuzzy 
numbers as follows: 

𝑟8(𝑤) =^𝑤'𝑟'

!

(7'

 (19) 

 
The arithmetic operation of trapezoidal fuzzy numbers 

calculates 𝑟' , 𝑟8(𝑤), 𝑠'9 and 𝑠8(𝑤) in equations 17 - 19. The 
expected portfolio return and portfolio variance are defined 
as mean 𝑟8(𝑤) and mean 𝑠8(𝑤), respectively, and are 
presented as follows: 

 
𝜇8(𝑤) = 𝐸[𝑟8(𝑤)], 𝜎8$(𝑤) = 𝐸[𝑠8(𝑤)]. (20) 

 
Portfolio construction with this minimum variance and 

tangency portfolio is without any short sales. Data simulation 
on a set of stocks is carried out without considering short 
sales. Short-selling often requires a substantial credit 
qualification. The minimum fuzzy variance portfolio is 
defined as follows: 

 
min{𝜎8$(𝑤)|𝑙:𝑤 = 1,𝑤 ≥ 0}, (21) 

 
A fuzzy tangency portfolio with a Sharpe ratio is defined 

by: 
 

maximizing { ;!(1)

>?!
"(1)

}, namely, 

with the constraint function: 
𝑙:𝑤 = 1, 
𝑤 ≥ 0.  

 
A fuzzy tangency portfolio with a Treynor ratio is defined 

by: 
 

maximizing {
;!(1)@A#

B!
}, namely, 

with the constraint function: 
𝑙:𝑤 = 1, 
𝑤 ≥ 0.  

 
In this case, the problem-solving employs multi-

objectives; first, solving Sharpe and Treynor ratios; second, 
determining the established portfolio characteristics from 
these two ratios. This fuzzy portfolio is compiled to minimize 
𝜎8$(𝑤) and maximize ;!(1)

>?!
"(1)

 and 
;!(1)@A#

B!
. It is equivalent to 

minimizing the Fuzzy portfolio tangency of both portfolio 
ratios and portfolio risk 𝜎8$(𝑤), namely: 

 

min(−
𝜇8(𝑤)
k𝜎8$(𝑤)

, 𝜎8$(𝑤)) (22) 

and 

min(−
𝜇8(𝑤) − 𝑅C

𝛽8
, 𝜎8$(𝑤)) (23) 

 
with the constraint function 𝑙′𝑤 = 1 and 𝑤 ≥ 0. Then, the 
optimum 𝑤#, 𝑤$, 𝑤%, … , 𝑤! values can be obtained by 
employing the Lingo 20 software. 

B. Algorithm 
In this section, an algorithm for solving optimization 

problems in fuzzy portfolios is presented. 
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Algorithm Fuzzy Portfolio Optimization 
Require: The data daily return of the 𝑖 − 𝑡ℎ asset and 𝑡 − 𝑡ℎ of n stocks: 
𝑟!" = '𝑟!"#!$, 𝑟!"%&', 𝑟!"%&(, 𝑟!"#%)), 𝑖 = 1, … , 𝑛 and 𝑡 = 1, 2, 3, … , 𝑇. 
1. Calculate fuzzy portfolio returns 𝑟*(𝑤) with formula 17, 
2. Calculate the fuzzy covariance of asset 𝑠!+ based on equation 

18, 
3. Calculate 𝑠*(𝑤), 𝜇*(𝑤), 𝜎*((𝑤) based on formula 19, 20. 
4. for 𝑗 ← 1,… , 𝑛 do 
5. Determine the initial set of weights 𝑤 = (𝑤', 𝑤(, … , 𝑤$) with 

∑ 𝑤' = 1$
!,!  

6. Determine the objective function of the fuzzy minimum 
variance portfolio and the fuzzy tangency portfolio referring to 
21, 22, and 23. 

7. Run ”solve” based on the constraint function used to get the 
”solutionreport” to find the best weights. 

8. end for 
9. return Get the optimal weight 𝑤 = (𝑤', 𝑤(, … , 𝑤$) of each 

portfolio. 

III. RESULTS 

A. Data  
The research data consisted of the opening (𝑃)*+!), 

closing (𝑃,-).+), highest (𝑃/'0/), and lowest (𝑃-)1) stock 
prices. The data was taken from the ten most active stocks on 
IDX LQ45 in 461 trading days. LQ45 represented the stock 
prices of 45 issuers on the Indonesia Stock Exchange (IDX), 
which were selected based on the highest liquidity and largest 
market capitalization considerations with other 
predetermined criteria. Stock selection was also based on the 

diversity of types of companies, including Construction 
Services, Banking, Telecommunications, Health, Tobacco 
Manufacturers, and Food Production. The data was 
downloaded via Yahoo.com, then employed to calculate 
fuzzy numbers. The data used was 𝑇 = 461 trading days and 
𝑛 = 10 stocks.  

Based on the data of the opening price (𝑃)*+!), closing 
price (𝑃,-).+), highest price (𝑃/'0/), and lowest price (𝑃-)1) 
for each observed stock, an adaptive non-linear fuzzy class 
was formed 𝑟'( = (𝑟'(2'!, 𝑟'(35#, 𝑟'(35$, 𝑟'(234). Each 𝑖 − 𝑡ℎ stock 
asset and 𝑡 − 𝑡ℎ time with 𝑖 = 1,… , 𝑛, 𝑡 = 1,… , 𝑇 the value 
of the maximum return, minimum return, and average return 
on assets calculated using formula 10-13. 

B. Fuzzy Average Return of the Asset 
The 𝑟'(234 value is defined as the difference between the 

highest and the lowest prices with the lowest price on the 𝑖 −
𝑡ℎ stock. Conversely, 𝑟'(2'! is interpreted as a comparison 
between the lowest and the highest prices with the highest 
price on the 𝑖 − 𝑡ℎ stock. Meanwhile, 𝑟'(35# compares the 
difference between the lowest price and the price-to-book 
with the price-to-book of the 𝑖 − 𝑡ℎ stock. Then, 𝑟'(35$ is 
formulated as a comparison between the closing and the 
lowest prices with the lowest price on the 𝑖 − 𝑡ℎ stock. The 
value components from the observed stocks are presented in 
Fig. 2. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The 𝑟!"#%), 𝑟!"#!$, 𝑟!"%&', 𝑟!"%&( values of the observed stock samples 
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Fig. 2 illustrates the 𝑟'( value display of stocks representing 

the construction services sector (ADHI.JK), property 
(ASRI.JK and PPRO.JK), banking (BBCA.JK and 
BMRI.JK), food and tobacco manufacture (GGRM.JK and 
ICBP.JK), health (KLBF.JK), and telecommunications 
(MNCN.JK and TLKM.JK). It indicates that stocks in the 
construction, property, and telecommunications services 
sectors relatively tend to have the same 𝑟'( distribution. 
Meanwhile, the banking and health sectors tend to have a 
narrower data of 𝑟'( on the distribution of fuzzy numbers. This 
condition is interpreted as the range of fuzzy number data 
between 𝑟'(2'! to 𝑟'(234 has a competitive distance.  

The average fuzzy return of the 𝑖 − 𝑡ℎ asset (𝑟𝑖) is 
calculated as a trapezoidal fuzzy number. The formula for 
calculating the average fuzzy return from the 𝑖 − 𝑡ℎ asset 
employs the formula 16. The calculation process refers to 
trapezoidal fuzzy numbers 6 and 8 arithmetic operations. The 
𝑟' 	value for each observed stock is in the form of an adaptive 
non-linear fuzzy number class written in Table I. 

 

TABLE I 
CLASS COMPOSITION OF ADAPTIVE NON-LINEAR FUZZY NUMBERS IN THE 

OBSERVED STOCKS 
Composition 𝑟' 

Stocks 𝑝 𝑞 𝑟 𝑠 
ADHI.JK -0.0424 -0.0223 0.0196 0.0449 
ASRI.JK -0.0382 -0.0192 0.0165 0.0402 
BBCA.JK -0.0188 -0.0096 0.0095 0.0192 
BMRI.JK -0.0242 -0.0134 0.0122 0.0249 
GGRM.JK -0.0203 -0.0106 0.0084 0.0209 
ICBP.JK -0.0207 -0.0114 0.0112 0.0213 
KLBF.JK -0.0272 -0.0148 0.0146 0.0283 
MNCM.JK -0.0320 -0.0172 0.0145 0.0333 
PPRO.JK -0.0362 -0.0207 0.0136 0.0384 
TLKM.JK -0.0229 -0.0118 0.0118 0.0235 
 
Each stock’s 𝑟' value of 𝑝, 𝑞, 𝑟, 𝑠 illustrates 𝑝 < 𝑞 < 𝑟 < 𝑠. 

It fulfills the characteristic of adaptive non-linear fuzzy 
numbers. The 𝑟' value is the average fuzzy return from asset 
𝑖. A clear illustration indicating 𝑟' as a trapezoidal fuzzy 
number of the observed stocks is presented in Fig. 3. 

 
Fig. 3. The average return value of the observed stocks 

  
The 𝑟' value is unique if the lowest 𝑝-value results in the 

highest 𝑠-value among other stocks and vice versa. Fig. 3 
illustrates each observed stock’s 𝑝, 𝑞, 𝑟 and 𝑠 values.  

A. Fuzzy Portfolio Return 
Portfolios with weights 𝑤 = (𝑤#, … , 𝑤!), have portfolio 

returns presented using trapezoidal fuzzy numbers based on 
formula 17 by considering the nature of the arithmetic 
operations of trapezoidal fuzzy numbers at 6 and 8. 

 

Based on formula 17, it obtains: 
 
𝑟8(𝑤) = 

^𝑤'𝑟'

!

(7'

 

 = 𝑤#(−0.0424,−0.0223,0.0196,0.0449)  
 + 𝑤$(−0.0382,−0.0192,0.0165,0.0402)  
 + 𝑤%(−0.0188,−0.0096,0.0095,0.0192)  
 + 𝑤D(−0.024,−0.0134,0.0122,0.0249)  
 + 𝑤E(−0.0203,−0.0106,0.0084,0.0209)  
 + 𝑤F(−0.0207,−0.0114,0.0111,0.0213)  
 + 𝑤G(−0.0272,−0.0148,0.0146,0.0283)  
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 + 𝑤H(−0.0320,−0.0172,0.0145,0.0333)  
 + 𝑤I(−0.0362,−0.0206,0.0136,0.0384)  
 + 𝑤#J(−0.0228,−0.0118,0.0118,0.0235).  

 
The expected value of 𝑟8(𝑤) is maximized as one of the 

objective functions in 𝑤. The composition of the function 
𝑟8(𝑤) is still in the form of a trapezoidal fuzzy number. 

 

B. The Fuzzy Covariance of Asset 
The fuzzy covariances of assets 𝑖 and 𝑗 are trapezoidal 

fuzzy numbers. The arrangement refers to equation 18 and 
considers the nature of the arithmetic operations of 
trapezoidal fuzzy numbers in 6-9. Based on equation 18, it 
obtains: 

 
𝑠'9 = 1

𝑇^(𝑟'( − 𝑟')(𝑟9( − 𝑟')
6

(7'

 

𝑠## = (−0.0082,−0.0010,0.0020,0.0048)  
𝑠#$ = s$# = (−0.0072,−0.0011,0.0014,0.0042)  
𝑠#% = s%# 	= (−0.0034,−0.0006,0.0006,0.0018)  
𝑠#D = sD# 	= (−0.0044,−0.0008,0.0009,0.0024)  

 ⋮  
𝑠#J#J = (−0.0023,−0.0003,0.0005,0.0012).  
 

C. Fuzzy Portfolio Variance 
Portfolio variances are represented by trapezoidal fuzzy 

numbers following 19 by considering the nature of the 
arithmetic operations of trapezoidal fuzzy numbers on 6, 8, 
and 9. Based on formula 19, the portfolio variance is obtained 
as follows:  

 
𝑆8(𝑤)  =  

^𝑤'𝑤9𝑠'9

!

(7'

 

 =  𝑤#𝑤#𝑠## +𝑤#𝑤$𝑠#$ +𝑤#𝑤%𝑠#% 	+ 𝑤#𝑤D𝑠#D  
 +  . . . +𝑤#J𝑤#J𝑠#J#J  
 =  𝑤#$(−0.0082,−0.0010,0.0020,0.0048)  
 +  𝑤#𝑤$(−0.0072,−0.0011,0.0014,0.0042)  
 +  𝑤#𝑤%(−0.0034,−0.0006,0.0006,0.0018)  
 +  𝑤#𝑤D(−0.0044,−0.0008,0.0009,0.0024)  
 ⋮   
 +  𝑤#J$ (−0.0023,−0.0003,0.0005,0.0012)  
 
Portfolio return expectations and daily portfolio variance 

are respectively defined according to equation 20, namely: 
 
𝜇8(𝑤)  =  𝐸[𝑟8(𝑤)] 
 =  

𝐸 u^𝑤'𝑟'

!

(7'

v 

 =  𝐸[𝑤#(−0.0424,−0.0223,0.0196,0.0449)  
 +  𝑤$(−0.0382,−0.0192,0.0165,0.0402)  
 +  𝑤%(−0.0188,−0.0096,0.0095,0.0192)  
 +  𝑤D(−0.0242,−0.0134,0.0122,0.0249)  
 ⋮   
 +  𝑤#J(−0.0228,−0.0118,0.0118,0.0235)].  
 

Furthermore, the µ8(𝑤) value is solved using formula 4. On 
the other side, the daily portfolio variance is described on 20 
as follows: 
 

𝜎8$(𝑤)  =  𝐸[𝑠8(𝑤)] 
 =  

𝐸 x^ 𝑤'𝑤9𝑠'9

!

',97'

y 

 =  𝐸[𝑤#𝑤#𝑠## +𝑤#𝑤$𝑠#$ +𝑤#𝑤%𝑠#%  
 +  𝑤#𝑤D𝑠#D+. . . +𝑤#J𝑤#J𝑠#J#J]  
 =  𝐸[𝑤#$(−0.0082,−0.0010,0.0020,0.0048)  
  +𝑤#𝑤$(−0.0072,−0.0011,0.0014,0.0042)  
  +𝑤#𝑤%(−0.0034,−0.0006,0.0006,0.0018) 
  +𝑤#𝑤D(−0.0044,−0.0008,0.0009,0.0024)  
 ⋮   
   +𝑤#J$ (−0.0023,−0.0003,0.0005,0.0012)]. 

 
The process of obtaining 𝜎8$(𝑤) can be solved with 

equations 4 and 5. 
 

D. Optimization of Fuzzy Portfolio 
1) Beta Portfolio: In this case, the risk-free interest rate 

employed is 7.5%. Then, the 𝛽-value of each stock is used to 
determine the Treynor ratio as follows: 
 
 

TABLE II 
BETA VALUE OF STOCK 
Stock Beta 

ADHI.JK 1.1125 
ASRI.JK 1.0555 
BBCA.JK 0.9211 
BMRI.JK 1.1753 
GGRM.JK 0.3768 
ICBP.JK 0.4654 
KLBF.JK 0.6258 
MNCM.JK 0.7427 
PPRO.JK 0.5235 
TLKM.JK 0.8895 

 
The calculation outcomes can be seen in Table II. It reveals 
that the beta value of ADHI.JK, ASRI.JK, BMRI.JK stocks 
have a beta value of > 1, denoting a volatility price above the 
Capital Asset Pricing Model (CAPM). Meanwhile, the beta 
value of other stocks is < 1. It indicates that the change in 
stock returns is smaller than in the market. Stocks have less 
volatile returns. Portfolio beta is calculated using 𝛽-stocks 
presented in Table II. The beta portfolio is obtained from the 
sum of each beta multiplied by the proportion of the share 
weight.  

2) Portfolio Weight: An essential part of the research 
results was the determination of the weighting of each 
observed stock. Stock weighting was performed based on two 
ratios, i.e., the Sharpe and Treynor ratios. The optimum 
weight with the multi-objective method can be obtained using 
equations 22 and 23. Table III displays the constructed 
portfolio’s weight, expected return, and risk. 
 

TABLE III 
WEIGHT, EXPECTED RETURN, AND RISK PORTFOLIO 

Stock Weight with SR Weight with TR 
ADHI.JK 0.0400 0.1200 
ASRI.JKT 0.0000 0.0800 
BBCA.JK 0.0400 0.1400 
BMRI.JK 0.3200 0.1800 
GGRM.JK 0.0200 0.1000 
ICBP.JK 0.4200 0.1900 
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Stock Weight with SR Weight with TR 
KLBF.JK 0.1600 0.1100 
MNCM.JK 0.0000 0.0400 
PPRO.JK 0.0000 0.0200 
TLKM.JK 0.0000 0.0200 
Expected Return 0.0723 0.0681 
Risk 0.0234 0.0172 

 
Based on Table III, the fuzzy portfolio construction involved 
the Treynor ratio, which tended to be more diversified. It was 
considered from the distribution of weights on each observed 
stock. In comparison, the fuzzy portfolio employed the 
Sharpe ratio. Several stocks did not get an allocation in the 
portfolio construction process. Minimally, four out of ten 
stocks weighed 0.0000. This condition is interpreted by the 
absence of investment funds for these shares. The SR tended 
to allocate investment funds in a cluster of specific stocks. 
This information is presented graphically in Fig. 4. 

 
Fig. 4.  Weighting Graphic with SR and TR Methods 

There are also differences in the involvement of SR and TR 
in calculating expected return and risk. The application of SR 
tends to have a higher expected return than TR. Based on the 
risk outcomes, it indicates that the involvement of SR is 
higher than TR. This condition is under the basic principle of 
high risk and high return. Find it more clearly in Fig. 5. 

 

 
Fig. 5.  Comparison of Expected Return and Risk with SR and TR Methods 

Furthermore, when examined in more detail, the difference 
in expected return between SR and TR is at an interval of 

0.42%. Meanwhile, the risk difference between SR and TR is 
at a 0.62% interval. These results expand investors’ 
preferences in spreading investment to several options. In 
fact, the TR method is more adaptable in the distribution of 
investment weights.   

IV. CONCLUSION 
In short, SR and TR ratios applied in preparing a multi-

objective fuzzy portfolio gave the weighted observed stocks 
color. These results were an extension of the research results 
of [24], [27]. The SR and TR ratios included in the objective 
function provided different results in the weight portion. The 
results indicated that TR provided better diversification. It 
could be seen from the weights distributed throughout the 
observed stocks. These results confirmed [36]–[38], but 
previous research has not included fuzzy concepts. This 
situation certainly could provide a more flexible choice for an 
investor in determining investment steps. An open problem 
that might be worked on as a follow-up to this research was 
to apply Annealing simulation algorithms and genetic 
algorithms in the optimization process and expand the 
proposed method to accommodate short selling. 
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