
 

  

Abstract—A CNN-BIGRU-AT model for power load 

forecasting is constructed by introducing Attention Mechanism 

(AT) into a model combining Convolutional Neural Network 

(CNN) and Bidirectional Gated Recurrent Unit (BIGRU), 

which has high prediction accuracy. In this model, CNN is first 

used to extract relevant features from power load data, and 

then BIGRU is applied to capture the inherent complex 

nonlinear dynamic patterns of power load. Additionally, 

Attention Mechanism (AT) is incorporated to further refine the 

feature extraction of power load data. The North Grey Wolf 

Optimizer Algorithm (NGO) is used to optimize parameters 

such as the number of hidden layer nodes, initial learning rate, 

and regularization coefficient in BIGRU, thus obtaining the 

modeling method of NGO-CNN-BIGRU-AT. Finally, the 

validity and feasibility of the model are substantiated using 

actual power load data from a certain region in China. The 

results demonstrate that the model has better performance than 

conventional models, including BP, BIGRU, CNN-BIGRU, and 

CNN-BIGRU-AT. 

Index Terms—Power load forecasting, convolutional neural 

network, bidirectional gated recurrent unit, attention 

mechanism, north grey wolf optimization algorithm. 

 

I. INTRODUCTION 

ITH the gradual development of the next generation 

smart grid, the exploration of power load forecasting is 

also strengthening. The increasing prevalence of 

consumer-side decentralized power sources has brought 

significant obstacles due to the unpredictability and 

fluctuation of load. Without accurate load forecasting, the 

power grid will face the risk of low supply-demand matching 

rate. Consequently, power providers face challenges in 
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accurately anticipating and fulfilling future energy 

requirements, leading to insufficient supply, power outages, 

or unstable power grids. Thus, it is necessary to find a power 

load forecasting model to reduce operating expenses and 

avoid inconvenience or losses to power enterprises. 

The methods of power load forecasting include 

conventional technologies and Artificial Intelligence (AI) 

methodologies. Conventional technologies, such as time 

series analysis [1], regression analysis [2], and grey 

prediction [3], are adept at managing relatively stable time 

series and less volatile load data. However, the accuracy of 

nonlinear power load time series prediction is limited. 

Emerging AI forecasting methodologies, including Artificial 

Neural Networks (ANN) [4], Support Vector Machines 

(SVM) [5], and deep learning [6], have been widely used in 

load forecasting and have demonstrated commendable 

performance in addressing nonlinear problems. However, 

these methodologies encounter persistent challenges, such as 

the complexity of data sequences, the daunting process of 

identifying optimal local parameters, and insufficient feature 

extraction capabilities. Faced with these challenges, domestic 

and foreign scholars have been committed to neural network 

models for power load forecasting. For instance, one study 

enhanced the Gated Recurrent Unit (GRU) neural network 

model for short-term load forecasting by using the grey wolf 

algorithm known for its high consistency and fast 

convergence [7]. Another study presented an enhanced 

neural network load forecasting model based on multi-layer 

clustering, which addressed the issue of traditional BP neural 

networks easily falling into local optima [8]. However, the 

use of neural network requires a large number of training data, 

which inevitably brings challenges to data feature mining and 

leads to a decrease in prediction accuracy [9]. Another study 

[10] integrated attention mechanism with Bidirectional GRU 

(BIGRU) to extract multiple features from power load data, 

resulting in commendable prediction performance. To 

enhance the extraction of feature information, the 

convolutional neural network (CNN) is incorporated into 

relevant models. Wang Huan et al. proposed a 

CNN-BILSTM model for power load forecasting, which had 

good fitting performance [11]. On this basis, an 

ultra-short-term power load forecasting model with high 

accuracy was developed by combining CNN-BILSTM with 

attention mechanism [12]. 

In summary, the hybrid model for power load forecasting 

with data feature extraction demonstrates high prediction 

accuracy. Therefore, based on CNN-BIGRU hybrid model 

and attention mechanism, a CNN-BIGRU-AT model for 

power load forecasting is constructed in this paper. 

Furthermore, to enhance the prediction accuracy of the 

CNN-BIGRU-AT model, an intelligent optimization 
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algorithm called Northern Goshawk Optimizer (NGO) is 

adopted to find the optimal values for the number of hidden 

layer nodes, initial learning rate, and regularization 

coefficient in BIGRU. Subsequently, the 

NGO-CNN-BIGRU-AT model is constructed for power load 

forecasting. Finally, the model is validated using actual 

power load data from a certain region in China. The results 

demonstrate that the model is superior to traditional BP, 

BIGRU, CNN-BIGRU, and CNN-BIGRU-AT models. 

II. ANALYSIS OF FACTORS AFFECTING POWER LOAD  

There are numerous factors that influence power 

consumption, such as meteorological conditions, temperature 

fluctuations, holidays, and weekdays. However, utilizing all 

these variables as modeling inputs may lead to convergence 

challenges or prolong iteration time during training. 

Therefore, Pearson correlation analysis [13] is used to 

examine the factors that affect power consumption. This 

study utilized actual data from August 2018 as a reference for 

correlation examination. The factors that affect power 

consumption include the maximum temperature, minimum 

temperature, average temperature, relative humidity, rainfall 

volume, and historical load. 
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Fig.1 Heat map of factors related to power load 

 

Pearson correlation coefficient between them and power 

consumption is shown in Fig. 1. 
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Fig.2 Hyperbolic chart of influencing factors  
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It can be seen from Fig1 that the statistical analysis unveils 

a notable correlation between them. The correlation between 

maximum temperature and power load is 0.3112. while the 

correlation between minimum temperature and power load is 

0.4387. The correlation coefficient between average 

temperature and power load is 0.49575. 

The correlation coefficient between relative humidity and 

power load is -0.3086. Additionally, the correlation 

coefficient between historical load and power load is 0.4322, 

exceeding the threshold of 0.2, indicating that it has a 

significant impact on power load. Analysis shows that these 

variables are indispensable inputs for predictive models. On 

the other hand, the correlation between rainfall volume and 

power load is -0.1857, which is weak and therefore not used 

as an input variable. 

The corresponding changes of power load with each factor 

are shown in Fig.2, elucidating their dynamic impact on 

power load. 

From Fig. 2, it can be seen that there is a moderate positive 

correlation between historical load, average temperature, 

minimum temperature, and maximum temperature. 

Conversely, relative humidity demonstrates a strong negative 

correlation. The correlation with rainfall seems relatively 

weak. Consequently, the final input variables of the model 

include maximum temperature, minimum temperature, 

average temperature, relative humidity, and historical load. 

III. ESTABLISHMENT OF NGO-OPTIMIZED CNN-BIGRU-AT 

LOAD FORECASTING MODEL 

 In the field of power load forecasting, the utilization of 

Convolutional Neural Network (CNN) serves to distill salient 

features that influence the process, while the integration of 

attention mechanism focuses more on pivotal data points, 

thereby adapting to a broader spectrum of information and 

yielding superior predictive outcomes [14]. Nonetheless, a 

single prediction model invariably grapples with constrained 

accuracy and inherent deficiencies. To address these 

limitations, the present study proposes combining multiple 

models to create a predictive framework. The model detailed 

in this article is the Bidirectional Gated Recurrent Unit 

(BIGRU), which amalgamates the distinguishing features of 

bidirectional networks and gated recurrent units [15]. 

However, although the BIGRU model faces challenges in 

parameter selection and demonstrates significant randomness. 

Consequently, an integration of the Northern Goshawk 

Optimization (NGO) algorithm is proposed to fine-tune 

model hyperparameters, including the optimal number of 

hidden layer nodes, initial learning rate parameter, and 

regularization coefficients, thereby enhancing the 

convergence speed of algorithm. Furthermore, an NGO 

optimized CNN-BIGRU-AT model is developed for load 

forecasting, improving prediction accuracy.  

A. Constructing CNN-BIGRU-AT Model  

The modeling flowchart of CNN-BIGRU-AT is shown in 

Fig 3.  

In Fig. 3, the specific steps for establishing the model are 

as follows: 

Step1: Incorporate variables that affect power load 

fluctuations as model inputs, expressed as follows: 
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Fig. 3 Structure diagram of CNN-BIGRU-AT 
 

  1 2 3 4 5 6, , , , ,
T

X x x x x x x=                    (1) 

where 1x is the maximum temperature, 2x  is the minimum 

temperature, 3x  is the average temperature, 4x  is the relative 

humidity, 5x  represents the historical load, 6x  is the actual 

load value, and X is the input vector. 

Step 2: Utilize Convolutional Neural Network (CNN) 

layer [16] to extract features from the power load sequence. 

This layer primarily consists of one-dimensional 

convolutional layer, pooling layer, and fully connected layer. 

The one-dimensional convolutional layer (Conv1D) is 

responsible for extracting features from input data related to 

power load. Additionally, maximum pooling is employed to 

remove redundant information and mitigate overfitting. 

Finally, the output values of the CNN layer are obtained by 

applying the Sigmoid activation function, represented as 

follows:  

 ( )1iC f X W b=  +                      (2) 

  
0, . 0

( ) ( )
, . 0

if z
f z Relu z

z if z


= = 


                (3) 

where iC  represents the output of the convolutional layer, 

( )f z  symbolizes the ReLU activation function, 1W  

symbolizes the weight value, and   represents the 

convolution operation.  

From Equation (3), it can be seen that when z is less than 0, 

the convolutional layer function produces 0, and when z is 

greater than 0, it produces z.  
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During the maximum pooling operation, the pooling 

kernel traverses the input feature map to identify the 

maximum value in each region, which becomes the output 

value of the pooling layer and can be represented as follows: 

( ) 2 2max -j j iP C C C poolh poolw=  +，           (4) 

( )2 1SigmoidcH P W b=  +                    (5) 

where P  denotes the output of the pooling layer, poolh and 

poolw represent the strides of the pooling window’s height 

and width, respectively. cH  denotes the final output of that 

layer, the dimensionality of the output is i, and 

1 1, , ,−=   
T

c c ci cihhhH . 2W symbolizes the weight value, 

and 1b  signifies the bias. 

Step 3: The BIGRU Layer [17] comprises a forward GRU 

layer and a backward GRU layer, facilitating bi-directional 

information flow. The output of the BIGRU layer is 

determined by both the forward and backward GRU. 

Utilizing newly extracted features from CNN for training, the 

BIGRU layer captures internal sequence patterns. 

Subsequently, the output of the BIGRU layer at time t can be 

represented as follows: 

 ( )1,t t cn BIGRU n H−=                        (6) 

where  1tn −  indicates output at the previous time. 

The input of the attention mechanism includes the 

amalgamated subsequence load data from the BIGRU layer 

[18]. By iteratively updating the weights of input features 

during training, the significance of crucial input information 

has been heightened. The weight of the attention mechanism 

is calculated as follows: 

 ( )3 1tanhT
t te V W U n= +                 (7) 

The normalization of weights follows this procedure: 

    ( )
( )

1

exp
soft max

t
t t t

i

i

e
a e

e
=

= =


              (8) 

The sum of weights is expressed as follows: 

 

1

t

N

t t

j

s a h
=

=                              (9) 

where V , 3W and 1U represent weight parameters, te  

represents the probability distribution value of attention 

mechanism at time t, ta  represents the weight of attention 

mechanism corresponding to the output value of the BIGRU 

hidden layer at time t, th  represents the output of the BIGRU 

layer, and ts  represents the output value of the attention 

mechanism at time t. 

The connected layer [19] uses the Rectified Linear Unit 

(ReLU) activation function to compute prediction values, 

thereby enhancing the model’s capability to extract power 

load related features. Assuming that the prediction value at 

time t is denoted by ty , it can be expressed as follows: 

( )0 0t ty w sRe u bl= +                  (10) 

where ty represents the predicted value at t, w0 denotes the 

weight matrix, and 0b  represents the bias term. 

Step 4: The output layer [20] is the data calculated by the 

model mentioned in the paper, as well as the prediction value, 

it is represented as follows: 

 predict 1 2, , ,
T

mY y y y=              (11) 

where m  denotes the dimensionality of forecasting, 
predict Y   

represents the predicted power load value. 

Utilizing Convolutional Neural Networks (CNN) to 

extract features from the raw power load data. These features 

serve as inputs to the BIGRU model, which comprises 

forward and backward GRU layers to capture the nonlinear 

dynamic patterns of power load. Furthermore, an Attention 

Mechanism (AT) has been incorporated to enhance the 

efficiency of feature extraction from power load data by 

filtering out irrelevant information and emphasizing 

significant features.  

B. Building an NGO-optimized CNN-BIGRU-AT Model  

 

The paper proposes a NGO-optimized CNN-BIGRU-AT 

power load prediction model, and the establishment process 

of the model is shown in Fig4.  
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Fig.4 Structure diagram of NGO-CNN-BIGRU-AT 
 

In Fig.4, NGO [21] is employed to optimize the optimal 

number of hidden layer nodes, initial learning rate, and 

regularization coefficient of BIGRU to establish a more 

optimal power load forecasting model. The main steps for 

NGO to optimize BIGRU model parameters are outlined as 

follows: 

Step 1: Set the fundamental parameters of the NGO 

algorithm, including the population size and maximum 

number of iterations. 

Step 2: Initialize the population of the algorithm. 

Step 3: Define the fitness function F = F(X). Select Root 

Mean Square Error (RMSE) as the fitness function, and 

define the optimal number of hidden layer nodes, initial 

learning rate, and regularization coefficient in BIGRU as the 

position of the NGO. The algorithm calculates the root mean 

square error between the actual value and the predicted load. 

Step 4: In the exploration stage [22], determine the prey 

location of the i-th Northern Harrier by Equation (12), 
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calculate the fitness function value 
iPF  at the prey location, 

and the fitness function value Fi corresponding to the i-th 

Northern Harrier’s position. Compare these two values to 

form a new position new, Pi

iX  for the i-th Northern Harrier, as 

shown in Equation (13). Then calculate the fitness function 

value  at the new position new, Pi
iX  and compare it with 

new, iP

iF  to determine the final position of the i-th Northern 

Harrier, as shown in Equation (14). This process is repeated 

to obtain the optimal position for the entire Northern Harrier 

population and determine the optimal region for parameter 

estimation. 

            
1,2, ,

,
1, , 1, 1, ,

i k

i N
P = X

k i i N

=


= − +
       (12) 

( )

( )
new, 

,

,

i

i

ii i i PPi

i

i i i P i

X r P I X F F
X

X r X P F F

 + −  
= 

+ − 

   (13) 

new, new,

new,

,

,       

i i

i

P P

i i i

i P

i i i

X F F
X

X F F

 
= 



                       (14) 

In this scenario, iX  denotes the position of the i-th 

northern eagle, where N signifies the population size of the 

northern eagle. iP  represents the position of the prey of the 

i-th Northern Harrier, and 
iPF denotes the corresponding 

fitness function value. Additionally, iF  represents the fitness 

function value of the i-th Northern Harrier. The variable k 

represents a random integer within the range of [1, N]. 

During the exploration stage, the new position of the i-th 

Northern Falcon in the j-th dimensional space is denoted as 
new, 
,

iP
i jX .The fitness function value for the i-th prey position 

of the Northern Harrier is 1new,P

iF . 

The new position of the i-th Northern Harrier during the 

exploration stage is 
new, iP

iX  and its corresponding fitness 

function value is new, iP

iF , and r is a random number within 

the range of [0,1]. 

Step 5: During the development stage [23], once the 

Northern Harrier attacks its prey, the prey will attempt to 

escape. T according to Equation (15), the new position of the 

Northern Harrier 2new,P

iX is determined, it can be calculated 

as follows: 

( )2new, 2 1P

i i iX X R r X= +  −              (15 ) 

where R = 0.02(1-t/T), t and T represent the current number of 

iterations and the maximum number of iterations, 

respectively [24].  

By using Equation (16), the final position of the i-th 

Northern Eagle is determined by comparing the fitness 

function values of the new position new, 2P
iF  and the original 

position iF . Following this process, the optimal position for 

the entire northern eagle population can be obtained [25]. 

 

2 2

2

new,P new,P

i i i

i new,P

i i i

X ,F < F
X =

X ,F F





           (16) 

Step 6: Determine whether the termination conditions of 

the iteration are met. If they are met, the obtained position 

represents the optimal parameters. Otherwise, return to Step 

3 and continue the iteration process. 

Step 7: Use the optimal parameters to train the BIGRU 

prediction model. 

IV. EXAMPLE VALIDATION AND RESULT ANALYSIS 

The data is the historical load data of a specific region in 

southern China from July 10, 2018, to October 10, 2018. Data 

is collected every 15 minutes and 96 samples is collected per 

day. After data processing, the obtained dataset is partitioned 

into a training set and a testing set in an 8:2 ratio. The 

fluctuation of power load is influenced by various factors, 

including historical load, temperature, humidity, etc., which 

exert a significant impact on power load. This study utilizes 

the previously sampled load, as well as the maximum 

temperature, minimum temperature, average temperature, 

and average humidity as input variables. To highlight the 

distinctions between the model and other models, models 

including BP, BIGRU, CNN-BIGRU and CNN-BIGRU-AT 

are used for load forecasting under the same conditions. Fig. 

5 shows a comparison of load forecasting curves for various 

models over three consecutive days. In order to further 

compare the differences between various models, error 

evaluation metrics are used to compare the prediction 

performance of each model, and the corresponding results are 

shown in Table 1. 

 

 
Fig.5 Comparison of model predictions 

TABLE Ⅰ 

 PERFORMANCE EVALUATION INDEXES OF EACH FORECASTING MODEL 

 MAE RMSE R2 MAPE/% 

BP 825.15 911.44 0.52 18.55 

BIGRU 352.20 366.86 0.75 7.75 

CNN-BIGRU 222.96 262.93 0.87 5.09 

CNN-BIGRU-AT 127.46 180.50 0.94 2.94 

NGO-CNN-BIGRU-AT 110.58 160.19 0.95 2.53 

 

In Table 1, the Root Mean Square Error (RMSE), Mean 

Absolute Error (MAE), Mean Absolute Percentage Error 

(MAPE), and Coefficient of Determination (R2) can be 

calculated as follows: 
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From Fig. 5 and Table 1, it is evident that the load 

prediction curve of the proposed hybrid model, 

NGO-CNN-BIGRU-AT, is very close to the actual load 

curve, exhibiting the highest degree of fitting. Compared 

with the BIGRU model, CNN-BIGRU-AT and CNN-BIGRU 

have significant improvements in MAE, RMSE, MAPE, and 

R2. This indicates that compared with the direct prediction 

using a single model, the hybrid model can effectively 

improve the prediction performance of the model. 

Furthermore, compared with CNN-BIGRU, the MAE, 

RMSE, and MAPE of CNN-BIGRU-AT decrease by 42%, 

31%, and 42.2%, respectively, while R2 increases by 0.07. 

This is because using CNN networks to extract features of 

influencing factors and applying attention mechanisms to 

prioritize key information can comprehensively consider 

information, and further enhance the prediction performance 

of the model. 

Compared with BIGRU, CNN-BIGRU demonstrates a 

reduction in MAE, RMSE, and MAPE by 36%, 28% and 

34%, respectively, while an increase in R2 by 0.13. This 

indicates that integrating attention mechanisms into historical 

load time series can enhance prediction accuracy. 

Furthermore, compared with CNN-BIGRU, 

CNN-BIGRU-AT and CNN-BIGRU exhibit excellent 

performance on MAE, RMSE, MAPE, and R2. In comparison 

to other models, the proposed model NGO-CNN-BIGRU-AT 

demonstrates superior performance, with MAE of 110.58, 

RMSE of 160.19, MAPE of 2.53%, and R2 of 0.95. 

Compared to CNN-BIGRU-AT, NGO-CNN-BIGRU-AT 

exhibits decrease in MAE, RMSE, and MAPE by 13%, 

11.2%, and 13.9%, respectively, while R2 increases by 0.01. 

Thus, it is verified that utilizing optimization algorithms to 

determine the optimal number of hidden layer nodes, initial 

learning rate parameters, and regularization coefficients of 

CNN-BIGRU-AT model effectively enhances prediction 

accuracy. Consequently, the proposed hybrid model 

accurately forecasts the changes in actual load data and 

surpasses other models, rendering it more suitable for 

short-term load forecasting. 

The proposed NGO-CNN-BIGRU-AT model, as well as 

the BP, BIGRU, CNN-BIGRU, and CNN-BIGRU-AT, are 

simulated and applied for power load forecasting on 

weekends (September 29, 2018, Saturday), weekdays 

(September 28, 2018, Friday), and holidays (October 1, 2018, 

National Day). The comparison curves between predicted 

values and actual values are depicted in Figs. 6-8. 

According to Fig. 6, the power load begins to rise at 7 

o’clock, which is attributed to people waking up and the 

activation of electrical devices. 

Around 12 o’clock, the power load begins to decline as 

people usually leave home or office for lunch, leading to a 

decrease in electricity demand. Subsequently, at 1 o’clock, 

when people finish their lunch break and commence 

returning to their homes or offices, the power load resumes to 

rise, leading to a surge in electricity demand.  

 

 

Fig.6 Comparison of load forecast results on rest days 

 

By 7 o’clock, the power load diminishes again, coinciding 

with dinner time, people may leave home or workplace to eat 

dinner, thus reducing electricity demand. There are two peaks 

in the morning and afternoon, corresponding to people 

waking up and returning home, while there are two valleys in 

the afternoon and evening, consistent with lunch and dinner 

times. Compared with weekdays, this pattern shows a more 

noticeable trend on weekends, possibly attributed to the 

increased electricity demand for equipment in office 

buildings and factories during weekdays. Moreover, external 

factors such as seasons and weather conditions may also 

influence changes in power load. 

TABLE II 

PERFORMANCE EVALUATION INDEXES OF EACH MODEL ON REST DAY 

 MAE RMSE R2 MAPE/% 

BP 353.95 420.85 0.951 4.34 

BIGRU 295.46 371.84 0.960 3.50 

CNN-BIGRU 185.54 299.24 0.978 2.05 

CNN-BIGRU-AT 181.83 297.03 0.982 2.00 

NGO-CNN-BIGRU-AT 175.26 295.69 0.990 1.90 

 

According to Table 2, compared with CNN-BIGRU-AT 

and CNN-BIGRU, the MAPE of NGO-CNN-BIGRU-AT has 

decreased by 0.1% and 0.15%, respectively. RMSE has 

decreased by 1.34 and 3.55, and MAE has been reduced by 

6.25 and 10.54. Whereas R2 has improved by 0.008 and 0.012, 

respectively. These results indicate an enhancement in the 

accuracy of the predictive model, thereby confirming its 

effectiveness. 

On weekdays, the trend of power load is slightly different 

from that on weekends. Due to work or school obligations, 

the load rises earlier and steeper in the morning on weekdays. 

At noon, the load decreases significantly as many people dine 

out and leave workplaces. In the afternoon, as people 

continue to use electricity at home or in the office, the load 

rises again. At 7 pm, as most people have returned home, the 
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load decreases again, which may reduce the demand for 

electricity. 

Fig.7 Comparison of load forecast results on working days 
 

According to the observation results in Fig. 7, compared 

with other curves, the fitting curve of BP significantly 

deviates from the actual load, whereas the predictive values 

of NGO-CNN-BIGRU-AT are close to the actual load values 

and demonstrate better alignment. 

The results in Table 3 indicate that compared with BP 

model, the MAE, RMSE and MAPE of 

NGO-CNN-BIGRU-AT model decreased by 62.1%, 42.3%, 

and 2.97%, respectively, while R2 increased by 0.08. 

In conclusion, compared with the single model, the hybrid 

model has higher accuracy. 

Fig. 8 illustrates a notable disparity in power load 

fluctuations between National Day holidays and working 

days/rest days. Throughout the entire holiday period, the load 

gradually decreases at night and begins to rise around 7 am. 

TABLE Ⅲ  

PERFORMANCE EVALUATION INDEXES OF EACH MODEL IN WORKING DAY 

 MAE RMSE R2 MAPE/% 

BP 373.16 415.19 0.902 4.59 

BIGRU 291.75 343.29 0.931 3.59 

CNN-BIGRU 151.19 242.19 0.971 1.82 

CNN-BIGRU-AT 144.35 242.03 0.978 1.71 

NGO-CNN-BIGRU-AT 141.19 239.45 0.982 1.62 

Fig.8 Comparison of load forecast results of holidays 

In contrast to working days and rest days, the load 

variation during lunch breaks and evenings is relatively small, 

which may be caused by people engaging in leisure activities 

and socializing with friends. Consequently, the power load 

remains relatively stable. 

TABLE Ⅳ  

PERFORMANCE EVALUATION INDEX OF EACH MODEL DURING HOLIDAYS 

 MAE RMSE R2 MAPE/% 

BP 1181.13 1220.4 0.365 25.68 

BIGRU 376.75 380.38 0.604 8.25 

CNN-BIGRU 256.33 263.83 0.812 5.49 

CNN-BIGRU-AT 96.95 112.8 0.963 2.113 

NGO-CNN-BIGRU-AT 90.52 110.86 0.978 1.982 

 

The results in Fig. 8 and Table 4 reveal that there is a 

significant deviation between the predicted value of BP 

model and the actual load values during holidays. Traditional 

BP model faces challenges in accurately forecasting the load 

of special holidays. In contrast, the BIGRU model shows 

relatively stable performance in predicting load during 

holidays. Compared with BP model, MAE, RMSE and 

MAPE reduced by 68%, 68.8% and 17.43%, respectively, 

and R2 increased by 0.239. The accuracy of the hybrid model 

has been improved in load forecasting during holidays, such 

as the MAE of CNN-BIGRU model is 256.33, RMSE is 

263.83, MAPE is 5.490 and R2 is 0.812. Compared with 

CNN-BIGRU, MAE, RMSE and MAPE of 

NGO-CNN-BIGRU-AT model decreased by 64.6%, 57.9% 

and 3.508%, respectively, and R2 decreased by 0.166. The 

performance of CNN-BIGRU-AT model on MAE, RMSE, 

MAPE and R2 are improved by 6.6%, 1.7%, 0.131% and 

0.015, respectively. In summary, the NGO-CNN-BIGRU-AT 

hybrid model outperforms other models in power load 

forecasting. 

V. CONCLUSION 

To enhance the accuracy of short-term power load 

forecasting, this paper proposes a short-term power load 

forecasting model based on NGO-CNN-BIGRU-AT. And 

using R2, RMSE, MAE and MAPE as performance 

evaluation indicators, the model is verified using actual 

power load data. Compared with the prediction results of BP, 

GRU, BIGRU, CNN-BIGRU and CNN-BIGRU-AT model, 

the proposed NGO-CNN-BIGRU-AT model provides a 

feasible method for accurately predicting power load. 
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