

ABSTRACT—Software-defined networking (SDN) is a modern

paradigm leveraging software programmability to enhance

communication networks, garnering significant attention and

undergoing substantial development due to its diverse

applications. One key challenge in SDN lies in managing

increasing traffic while avoiding flow table overflow, particularly

due to the limited capacity of Ternary Content Addressable

Memory (TCAM) in OpenFlow switches. This paper presents a

Systematic Literature Review (SLR) that analyzes various

approaches to defending against flow table overflow in SDN.

Employing a structured approach, we sift through a substantial

corpus of research, distilling it into 44 noteworthy articles

published from 2015 to the present. We provide an overview of

strategies to mitigate flow table overflow attacks, including

eviction strategies, dynamic timeout mechanisms, flow rerouting,

and aggregated flow entries. Additionally, we analyze mitigation

approaches based on deployment strategies, testbed environments,

and traffic generation methods. In conclusion, we identify research

gaps and challenges, laying the groundwork for future

investigations in this domain.

Index Terms—data plane, flow table, flow table attacks,

OpenFlow, software-defined network

I INTRODUCTION

he digital age is steering in an era where the demands

for Cloud Computing, Big Data, and the Internet of

Things (IoT) are reshaping the landscape of network

services. This transformation is driven by the increasing

need for large-scale data centers and the exponential growth

of big data processing, catalyzing a shift towards more

efficient and intelligent networking architectures [1].

Among these, SDN emerges as a revolutionary concept that

leverages software programmability to monitor, regulate,

and enhance communication networks [2],[3].

Manuscript received September 11, 2023; revised May 07, 2024.

This work was supported and funded by Universiti Putra Malaysia

(UPM).

Aladesote Olomi Isaiah is a Ph.D. student in the Department of

Computer Communication and Networks, Faculty of Computer Science and

Information Technology, Universiti Putra Malaysia (UPM), Serdang 43400,

Malaysia (e-mail: gs57427@student.upm.edu.my and

isaaladesote@fedpolel.edu,ng)

Azizol Abdullah is an Associate Professor in the Department of

Computer Communication and Networks, Faculty of Computer Science and

Information Technology, Universiti Putra Malaysia (UPM), Serdang 43400,

Malaysia (e-mail: azizol@upm.edu.my)

Normalia Samian is a Senior Lecturer in the Department of Computer

Communication and Networks, Faculty of Computer Science and

Information Technology, Universiti Putra Malaysia (UPM), Serdang 43400,

Malaysia (e-mail: normalia@upm.edu.my)

Zurina Mohd. Hanapi is an Associate Professor in the Department of

Computer Communication and Networks, Faculty of Computer Science and

Information Technology, Universiti Putra Malaysia (UPM), Serdang 43400,

Malaysia (e-mail: zurinamh@upm.edu.my)

Furthermore, the flexibility of SDN simplifies the

integration of new functionalities into the network,

facilitating rapid technological advancements and significant

growth [4]–[8]. DN achieves this by dividing networks into

layers or planes, including the data plane (forwarding

elements) and the control plane (controller), thereby

introducing innovation, flexibility, centralization,

virtualization, and programmability into networks [9], [10].

However, the implementation of SDN is not without

challenges. For instance, OpenFlow-enabled switches,

pivotal to SDN architecture, rely on Ternary Content

Addressable Memory (TCAM) [11] and TCAM's high cost

and exceptionally high power consumption inherently limit

its capacity [12]. While commercial SDN switches have

made strides in storing hundreds of thousands of flow

entries, managing the escalating traffic presents a significant

challenge. The necessity to install a substantial number of

flow entries to accommodate this growth can lead to flow

table overflow. Proactive mechanisms that install flow

entries before the arrival of flows offer a potential solution

to this issue. Nevertheless, implementing such mechanisms

requires a deep understanding of traffic distribution and

properties to ensure satisfactory network performance [13].

However, for dynamic applications where flow prediction is

impractical, a reactive approach to flow entry installation

proves more suitable. The hard timeout approach, tailored

for short-lived flows which frequently populate networks,

effectively manages such flows. Meanwhile, an idle timeout

strategy accommodates other types of flow entries. Many

researchers have embraced the flow entry eviction approach

based on idle timeout, leading to enhanced flow table

utilization and reduced controller involvement in entry

removal. Nonetheless, this method may not effectively

handle elephant flows [14], [15].

Moreover, flow delegation, a novel approach for

addressing flow table capacity constraints, involves

dynamically redistributing flow rules from a fully utilized

switch to nearby switches with available capacity, a strategy

explored by researchers [16]. Flow table overflow occurs

when attackers consume the flow tables housing the

controller's rules for managing packet flows, resulting in a

Denial of Service (DoS) scenario that severely impacts

network performance. Several surveys in the literature have

addressed various flow table challenges and aspects, such as

flow table management, challenges, and solutions [17],

enhancing the limited flow table [18],[19].

To this end, earlier SDN review efforts have neglected to

delve into approaches for mitigating flow table overflow, as

no single survey has comprehensively tackled this issue. As

Flow Table Overflow Attacks in a Software-

Defined Network (SDN): A Systematic Review

Aladesote Olomi Isaiah, Member, IAENG, Azizol Abdullah, Normalia Samian and Zurina Mohd.

Hanapi

T

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1219-1239

__

mailto:gs57427@student.upm.edu.my
mailto:isaaladesote@fedpolel.edu,ng
mailto:azizol@upm.edu.my)
mailto:norma-lia@upm.edu.my
mailto:norma-lia@upm.edu.my
mailto:zurinamh@upm.edu.my
mailto:zurinamh@upm.edu.my

a result, this survey presents a comprehensive examination

of flow table overflow, detailing various mitigation

approaches.

A. Contributions

 Unlike traditional review methodologies, this study

adopts a distinctly defined approach by employing a SLR

methodology. This rigorous method ensures the inclusion of

all high-quality publications and mitigates selection bias. To

enhance the identification of relevant research studies, the

SLR initiates with a meticulous search technique. Selected

articles are scrutinized for solutions pertaining to the study's

queries, while unsuitable papers are excluded based on

abstract, title, full text, and publication year criteria. The

main contributions of this paper are:

1. Identify high-quality research publications on flow table

overflow in SDN.

2. Present detailed approaches to combat flow table

overflow in SDN, including experimental details.

3. Present future perspective.

The rest of this paper is organized as follows: Section 2

outlines the stages of the SLR. Section 3 presents the

overview of SDN, with a focus on the data plane and its

forwarding components. Section 4 analyzes various

approaches to prevent flow table overflow. Section 5

identifies research gaps. Finally, section 6 concludes the

study.

II SURVEY PROTOCOL

A SLR serves to find and appropriately evaluate

published articles related to a given research domain,

utilizing a well-defined and structured approach. SLR helps

in this work to reduce a large volume of papers into a

manageable number for informed decision-making on flow

table overflow, causes of flow table overflow, flow entry

eviction approaches, and the results. Additionally, this

review seeks to identify new and future research directions

by pinpointing existing gaps in the literature.

B. Research Questions Formulation

A crucial aspect of this study is the design of research

questions. Hence, the study addresses the following research

questions through a comprehensive assessment and

thorough critique of the selected articles:

RQ1: What is the overview of SDN? (Section 3).

RQ2: What constitutes the flow table, and what are the

causes and effects of flow table overflow? (Section 4).

RQ3: What are the existing solutions to flow table overflow

attacks? (Section 5).

RQ4: What issues have been addressed regarding overflow

attacks in a flow table? (Section 6).

RQ5: What are the research gaps in the existing approaches,

including their challenges and limitations? (Section 7).

This review focuses on developing and responding to the

listed research questions and critically analyzing the various

approaches to flow table overflow defense used in SDN. In

the first question, RQ1, we briefly provide an overview of

SDN. In RQ2, we categorize approaches to detecting,

preventing, and mitigating attacks based on the proposed

method, testing platform, and proposed technique. In RQ3,

we present literature gaps identified in the existing articles

and list issues related to flow table overflow, as addressed in

RQ4. Additionally, we outline the main research issues that

would motivate researchers to conduct this type of study in

RQ5.

C. The Search Strategy

The search strategy includes a set of databases to ensure

the inclusion of all relevant articles. The search strategy

initially consults four digital libraries: ACM, IEEE Xplore,

ScienceDirect, and Springer, and concludes with the

academic search engine Google Scholar. Including Google

Scholar ensures coverage all relevant scientific studies. The

keywords used for the search are related to SDN only:

“Flow Table Overflow” OR “Flow entries eviction” OR

“Prevention of Flow Table Overflow” OR “Mechanism to

Prevent Flow Table Overflow” OR “Flow Table Overload”.

Fig 1. The overall process of the systematic review

Pilot

Experiment

Search 1

Search 1

Google

Scholar

ACM

IEEE Xplore

ACM

Science

Direct

ACM
Springer

Phase 1

Phase 2

703 91
 794

730

273

86

44

Search string

Phase 3

Phase 4

Phase 5

Phase 6

Duplicate records

Removed (64)

Removal based on

Full Text (37)

Removal of Articles

Published by 2015

44 Articles

Selected

49

Removal based on

Title (457)

Removal based on

Abstract (187)

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1219-1239

__

D. The Quality Assessment

 The purpose of the quality evaluation is to identify high-

quality research articles. The evaluation process entailed

thorough examination of each article, resulting in the

selection of 44 research papers. Evaluation criteria

encompassed the following: Is the problem statement

sufficiently specific? Does the study offer guidance on

implementing the research? Is the methodology clearly

articulated? Are the results presented in a lucid manner? Can

the research effectively address the research questions?

E. Extraction of Data

 Each academic paper underwent meticulous scrutiny to

extract essential information. The research extracted and

utilized details including the title, authors, problem

addressed, proposed solutions, simulation platform, utilized

topology (if applicable), metric employed, motivation, and

benefits. Table 1 illustrates the number of research

publications at each stage of the evaluation process.

TABLE I

NUMBER OF RESEARCH PAPERS AT EACH PHASE OF THE REVIEW ACTIVITY

Search

String

Phase

1

Phase

2

Phase

3

Phase

4

Phase

5

Phase

6

ACM 114 113 53 13 6 6

Google

Scholar
91 89 60 36 16 14

IEEE

Xplore
389 350 107 31 22 20

Science

Direct
123 111 30 3 2 2

Springer 77 67 23 3 3 2

Total 794 730 273 86 49 44

III AN OVERVIEW OF SDN

This section presents the SDN architecture and its layers.

A. SDN Architecture

 SDN represents a network technology that facilitates the

efficient and effective management of heterogeneous

networks. It addresses the limitations of traditional network

design, which struggles to accommodate the growing

demand for deploying diverse applications with real-time

communication requirements. This innovative networking

paradigm involves relocating control modules from switches

and routers to a centralized entity known as the controller

[20],allowing for better resource utilization. This separation

allows network administrators and operators to make better

use of network resources and deploy resources more easily.

Key characteristics of SDN include centralized control

management, network automation, virtualization, ease of

programmability, openness, and simplified devices [21].

Designers created SDN architecture (Figure 2) to enable the

rapid development and deployment of network services and

applications. SDN developers write computer network

programs or code at the controller to manage the network in

an OpenFlow-based SDN deployment. The controller is the

brain of the network, which communicates with the

Switches’ OpenFlow agents to direct how to set up the data

plane. Achieving this involves issuing flow modification

instructions to insert rules in the forwarding tables [22]. In

SDN, there are northbound and southbound application

program interfaces (APIs) in addition to the layers [23],[24].

Fig 2. The Architecture of SDN (Adapted from [25] with copyright

permission).

1). Data Layer: The data layer, also called the infrastructural

layer, consists of network nodes that forward traffic and

data. It consists of OpenFlow-enabled switches that manage

traffic in line with the controller’s instructions.

2). Control Layer : The control plane, also known as the

controller, acts as a bridge between the applications and the

data plane. Prominent SDN controllers include Ryu [26],

POX [27], OpenDayLight [28], Floodlight [29], NOX [30],

etc. The northbound interface in SDN links the controller to

the application. It also communicates with the switches

through the southbound interface [31]. One of the

controllers’ tasks is to produce flow rules, and the switches

route traffic based on the flow rules [32].

3). Application Layer: The application layer contains

network applications that help the control plane configure

the network to meet these application needs, including

network control, quality of network service, monitoring, etc.

The layer utilizes the global view provided by the control

layer to make recommendations [28] in designing various

application-based rules and policies.

4). Southbound API: The Southbound API refers to the

interface that allows the control plane and the data plane to

communicate with each other. Most SDN implementations use

OpenFlow and Network Configuration Protocol (NetConf), of

which OpenFlow is the most popular [33].

5). Northbound API: The Northbound API refers to the

interface that enables communication between the control

plane and the application layer. It facilitates information

exchange between the control layer and the applications,

with features depending largely on individual network

applications.

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1219-1239

__

B. Use Cases of SDN Systems

 This section discusses the application and virtualization

of SDN, as well as Named Data Network (NDN).

1). Virtualization of SDN: Network Virtualization (NV)

enables multiple virtual networks to operate on a single

physical network substrate, with each virtual network

designed to meet the requirements of specific network

services or end-user applications. The goal of network

virtualization, an SDN use case, is to address several

networking issues, including flexibility, resource usage, and

on-demand deployments [34]. Network hypervisors (NH)

for SDN provide the necessary features for virtualizing

SDNs. These hypervisors logically segregate various virtual

SDN networks and their associated tenant controllers [35].

Solutions to SDN-based virtualization are categorized into

control plane virtualization, data plane virtualization, and

heterogeneous virtualization.

Fig. 3. SDN-NV architecture (Adapted from [36] with copyright

permission).

Network virtualization development addresses

ossification issues and resolves constraints in

communication networks. Its key drivers include rapid

service deployment, cost reduction, and quicker network

operations. Numerous researchers have introduced Network

Virtualization solutions using SDN, such as hypervisor

architecture in VeRTIGO [37], Carrier-grade Virtualization

Scheme [38], ADVisor [39], FlowVisor [40], AutoSlice

[41], and OpenVirteX [42]. However, these approaches

encounter challenges with dynamic network changes.

HyperFlex, however, enhances resource utilization by

virtualizing the hypervisor into separate functions. It

implements control plane virtualization using SDN network

element software on commodity hardware or software,

facilitating variable function virtualization allocation.

Hyperflex regulates the receiving rate by discarding the

control channel packets [43]. Researchers have

implemented NV in cloud settings, representing an

advanced application for SDN. They observed that NH

contributes to SDN-NV overhead by adding more

processing to the control plane. The study measured

computational overhead and found that, despite the

increasing number of switches, VN, and flows, the overhead

from network hypervisors (NH) remains constant [44]. The

study in [45] addresses fairness in control channels in SDN-

NV scenarios using throughput and setup time as

performance metrics. Comparative results show that Sincon

reduces interference across control channels in throughput

cases and achieves greater improvement in control channels

measured by setup time.

2). NDN: NDN emerged to develop an effective Internet

alternative, enabling content-centric communication to adapt

to the rapidly changing content distribution paradigm [46].

It enhances network communication through data security,

in-network caching, and multipath forwarding. CCFS, a

controller-based forwarding and caching strategy proposed

in [47], addresses inefficiencies in NDN's modules. This

architecture focuses on how controllers maintain cache

cooperation and how forwarding mechanisms function,

outperforming existing algorithms. NDN uses routable

content names instead of IP addresses, increasing

complexity for applications requiring advanced content

delivery. The authors in [48] introduced an Enhanced NDN

(ENDN) architecture, which provides content delivery

services encoded in the data plane using customized P4

applications.

IV OVERVIEW OF OPENFLOW

This section deals with OpenFlow, flow table,

background to flow table attacks, and their causes.

Additionally, it introduces a Programmable SBI.

A. Introduction to OpenFlow

OpenFlow is the most widely used Application

Programming Interface (API) in SDN technology, owing to

its low implementation costs and potential for novel

solutions [49]–[51]. It is also the first SDN-specific standard

interface, allowing high-performance, granular traffic

management across various networking devices [52]. It aims

to standardize the communication between a controller

(control plane) and the switches (data layer). Moreover, its

specification describes how to move control logic from a

switch to a controller. The OpenFlow architecture, as

depicted in Figure 4, includes features that enable

researchers (both in academia and industry) to explore new

ideas and test new applications, such as traffic analysis, flow

abstraction, and real-world network experiments. These

applications were proposed to ease the network in areas like

configuration, management, security, virtualization, etc. An

OpenFlow switch, also known as a forwarding device,

comprises (i) at least a flow table and a group table, which

handle packet lookups and forwarding; (ii) at least an

OpenFlow channel to an external controller, ensuring secure

communication through the OpenFlow protocol with the

controller. There are two ways in which the controller can

add, update, and delete flow entries in the flow table in an

OpenFlow-enabled switch: reactive and proactive [53]. The

flow table comprises flow entries, with each entry dictating

how packets in a flow are processed and routed. Match

fields (rules for matching), counters, and actions make up

the flow entries. The match fields’ role is to match incoming

packets, counters help collect the flow’s statistics, and

actions reveal how to process a matching packet. Packet

header fields are collected and matched against the matching

fields section of the flow table entries when the packet

arrives at the OpenFlow switch, undergoing a match test. If

a matching entry occurs, the switch executes the instructions

associated with it (or actions). If not, a table-miss flow

occurs. The table-miss entry handles this by discarding the

packet, continuing the matching process to the next flow

table, or forwarding packet to the controller for further

action(s). Pantou/OpenWRT [54], OpenvSwitch (OVS),

BOFUSS [55], Indigo, and ofsoftswitch13 are examples of

OpenFlow switches. The most popular among them is OVS.

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1219-1239

__

B. Flow Table

 A flow table is a part of the SDN switch that store flow

rules. An OpenFlow-enabled flow table can be divided into

three components: Datapath (hardware layer), Control path

(software path), and the OpenFlow protocol. The Datapath,

responsible for packet forwarding and lookups, includes at

least one flow table or a group table.

Fig 4. OpenFlow (Adapted from [56] with copyright permission).

The flow table contains flow entries, while the group

table holds a collection of group entries. The control path

acts as a channel, enabling the switch and the controller to

exchange packets and commands via the OpenFlow

protocol. An OpenFlow Switch (OF-Switch) stores flow

entries in its flow table, which has a limited capacity ranging

from a few hundred to thousands of entries, insufficient to

handle the millions of flows typical in data center networks.

Consequently, the required rules significantly exceed the

flow table's capacity. TCAM, a highly efficient associative

memory, hosts the flow table. Each flow table within the

OpenFlow switch contains flow entries [57], with three

fields: Packet Header, Action, and Statistic. Flow entries,

used for matching and processing packets, are limited in size

[58],[59]. This limitation often results in flow table

overflow, making the reinstallation of flow entries

challenging and degrading network performance.

1). Background of Flow Table Overflow Attacks: The first

flow table attack appeared after the launch of the internet in

1969. In a conventional network, flow table overflow

attacks occur in the Media Access Control (MAC) address

and routing tables. The former attack happens when an

attacker bombards the switch with many MAC addresses

from spoofing sources. In contrast, the latter attack happens

when a malicious router alerts trustworthy routers to routes

to fictitious (imaginary) destinations. Researchers in

[60],[61] have raised security concerns about flow table

overflow threats interfering with SDN. In [62], the authors

grouped the flow table attacks into Brute force, Slow, and

Sophisticated. Updating or removing flow table entries

involves flow mod messages with additional parameters,

hard timeouts, and idle timeouts, the latter being an

automatic yet inefficient method for flow table management.

Security challenges, such as rule insertion & manipulation

and overflow, characterize the flow table. Rule insertion, for

example, results in violations of the three security triads.

The former violates the three triads (CIA) of security, while

the latter compromises the network's availability. In this

scenario, the switches become unable to hold additional

flow entries, and the controller becomes overwhelmed due

to an influx of illegitimate requests from the attackers.

2). The Causes of Flow Table Overflow: Switches equipped

with OpenFlow-based technology leverage TCAM for swift

flow entry lookup and mask matching. However, the

constraints of TCAM, both in terms of capacity and cost,

restrict OpenFlow switches to accommodating only a

limited number of flow entries, typically in the range of tens

of thousands. Consequently, this limitation presents a

significant challenge, leading to potential flow table

overflows, particularly under scenarios of burst traffic or

deliberate overflow attacks, thereby severely impacting

network performance. In practice, this means that most flow

tables tend to reach their capacity threshold, exacerbating

the issue and posing a considerable risk to network

functionality. To manage packet handling, the controller, as

a pivotal component in the SDN architecture, issues

instructions to switches. However, this architecture becomes

susceptible to exploitation by malicious actors who leverage

its inherent functionality. These bad actors inundate

switches with numerous packets, characterized by altered

header fields that do not conform to existing flow rules.

Consequently, these packets necessitate forwarding to the

controller for processing. The controller, being the central

decision-maker in the SDN, handles these packets and

instructs the switch accordingly, thereby adding instructions

to the switch's flow table. However, this influx of

illegitimate traffic not only overwhelms the switch's flow

table but also hampers its ability to process genuine packets

effectively. As a result, the network experiences degradation

in performance and efficiency, highlighting the critical need

for robust solutions to mitigate the impact of flow table

overflows on network operations. [63]. Consequently,

legitimate users cannot access the flow table [64]. The

limited size of flow entries in a flow table results in flow

table overflow and reinstallation of flow entry challenges,

degrading network performance. Earlier versions of the

OpenFlow specification (1.0–1.3.2) prevented adding new

flow entries when a table reached capacity and sent an error

message to the controller [65]. Versions 1.4 and higher

introduce two solutions for this issue: eviction and vacancy

events. Eviction enables the switch to automatically discard

less important entries, making space for new ones. It

employs techniques like Least Recently Used (LRU), First

In First Out (FIFO), or Random selection for this purpose

[66]. The choice of which flow entry to remove depends on

either the switch's decision or factors like flow entry

parameters, the switch's resource allocations, and internal

limitations. Vacancy events allow the controller to get an

early warning based on a set capacity threshold, enabling

proactive measures to prevent table overload.

3). A Programmable SBI: P4 is a domain-specific

programming language designed for defining the handling

and forwarding of data plane network traffic in P4-enabled

forwarding devices, such as network appliances, switches,

routers, and network interface cards [67]. The workflow of

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1219-1239

__

the P4 programming model includes three main

components: P4 architecture, P4 program, and target [68].

The architecture delineates the blocks and interfaces within

the data plane. Developers craft the program, typically

utilizing the P4 language, tailored for either a target

software device or a hardware design. This target could be a

software-based switch or a hardware component [69]. This

target demonstrates the advantages of programmable data

plane devices over traditional networks and SDN. These

advantages include allowing user code to control message

forwarding, ensuring the same P4 program runs on multiple

targets without changing runtime applications, using

protocol-independent primitives for packet processing, and

employing a robust computing model where match-action

stages can function both serially and in parallel. However,

despite these benefits, the programmable data plane is

limited by its finite memory capacity and inability to

perform complex computations like division, exponential, or

logarithmic calculations [70].

V REDUCING TCAM ENTRIES IN SDN

SDN uses a unique memory type called TCAM to

maximize its programmability benefits. The capacity of

TCAM in available SDN switches ranges from 1 to 2 Mbits.

Each 1 Mbit chip costs about 350 USD and consumes an

average of 15 Watts [71]. Due to TCAM’s limitations, SDN

switches can only hold a few rules. To manage the flow

table in SDN switches more efficiently and reduce TCAM

entries, experts have proposed several approaches. One

approach is a compression method for the flow table, known

as a two-level tagging strategy. This strategy replaces flow

entries with two simpler, smaller tags – a path tag (PT) and a

flow tag (FT). These tags help reduce the bits needed for

TCAM entries to represent flow rules. For example, tagged

flows require only 24 bits, significantly less than the 356

bits needed for standard flow entries, thus increasing

TCAM’s storage capacity [72]. Another proposal is bit

weaving, a compression algorithm applied to TCAM. This

method lowers the number of rules needed to implement

policies on a single switch. Bit weaving involves finding bit

swaps that allow related rules to be written as an LPM table,

followed by LPM table compression and merging

compatible rules into a ternary string [73].

The iSTAMP approach, as proposed in [74] , introduces a

method for measuring incoming flows at either fine-grained

or coarse levels. This technique dynamically divides flow

inputs and utilizes optimization algorithms to enhance the

accuracy of network flow predictions. It dynamically splits

flow inputs and uses optimization algorithms for accurate

network flow predictions. Additionally, to reduce the

number of flow rules in network devices and address the

rule placement issue, the approach uses wildcard

expressions and logic reduction, resulting in minimal

compression time [75]. Furthermore, the MINNIE

compression technique has two phases: routing and

compression. In the routing phase, flows are distributed

across the network using a shortest-path method to prevent

link overloading. The compression phase employs an

effective table compression heuristic to generate three

compressed routing tables, selecting the smallest one for use

[76].

Researchers in [77] investigated two types of slow DdoS

attacks that exploit the limited capacity of switches to store

forwarding rules. They recommended combining SIFT with

other mitigation techniques and Moving Target Defense-

based strategies to counter these attacks. They also proposed

the TCAM Razor, which uses multi-dimensional topological

transformation and decision trees to minimize TCAM rules

[78]. To address NV’s scalability issues, which consume

significant switch memory, control channel, and CPU

cycles, the Flow Virt approach was introduced for flow

merging with low overhead [79].

VI FLOW TABLE OVERFLOW PROPOSED

SOLUTIONS IN SDN

 In this section, we delve into proposed solutions for

addressing flow table overflow in SDN. Our analysis

encompassed a thorough review of 44 selected articles, as

illustrated in Figure 1. Figure 5 provides a taxonomy of flow

table attacks, categorizing solutions based on the methods

proposed, testing platforms employed, techniques utilized,

and specific issues targeted in mitigating these attacks.

Among the 44 articles surveyed, 19 identified optimal

strategies for eliminating flows when the flow table reaches

saturation. Additionally, seven articles outlined strategies

for establishing suitable values for flow entry timeouts,

thereby reducing overall flow table space. Moreover, eight

articles proposed rerouting flows from switches that

consume excessive flow table space to nearby switches with

available capacity, effectively optimizing resource

utilization. Furthermore, six articles concentrated on the

aggregation of flow entries as a means of conserving flow

table space. Lastly, four articles introduced various methods

aimed at preventing flow table overflow attacks, bolstering

the security and resilience of SDN infrastructures against

such threats.

A). Mitigating Flow Table Overflow Attacks Using Eviction

Strategy

 In addressing flow table overflow, eviction emerges as a

pivotal strategy, facilitating the removal of existing flow

entries to accommodate new rules. This process is

particularly vital for popular switch systems like OVS,

Pica8, and Cisco Nexus, which commonly rely on the LRU

eviction technique. Table 2 offers a comprehensive

overview of various eviction mechanisms employed to

combat flow table overflow. Noteworthy among these

strategies is FTGuard, proposed by the authors of [80].

FTGuard introduces a defense mechanism grounded in

prioritization to safeguard switches against saturation and

overflow attacks. This innovative approach underscores the

proactive measures necessary to mitigate the risks associated

with flow table overflow in SDN environments. This

mechanism analyzes and categorizes network traffic into

high, medium, and low priority. It starts the flow eviction

process with lower-priority entries, making room for

incoming flows. When the switch’s flow table fills up, it

uses values stored in the Flow-Mod message’s field to

remove entries. This strategy employs a statistical approach

to assign values to flows. Similarly, authors in [81]

introduced the Short Flow First (SFF) replacement

algorithm. This algorithm classifies flows into short and

long survival periods based on each flow entry’s matching

period. Deleting short flows first increases matching entries

and reduces controller overhead. The SFF al’orithm

outperforms FIFO, LFU, and LRU, especially with varying

flow table sizes. In another related work, the authors of [82]

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1219-1239

__

proposed a two-stage timeout cache management scheme to

preserve significant flow entries. The primary table stores

entries based on timeout durations set by the controller.

When a flow becomes inactive, it moves to the Inactive

Flow Queue instead of being removed. This scheme

prioritizes evicting short-lived flows to conserve resources

while keeping active flows.

The study in [83] suggested the WLRU algorithm for

flow table management. This algorithm assigns initial

weights to each flow, increasing the weight for existing

flows or saving new flow information before forwarding.

Enhancing their previous work, CAB, the authors

implemented CAB-ACME [84], a reactive caching

approach. This approach improves CAB’s flow table usage

by dynamically adjusting bucket shapes and sizes to fit

traffic patterns and preloads large rules for quick response to

traffic and policy changes.

To address scalability issues caused by limited flow table

capacity, the authors of [85]. Proposed a strategy based on

transmission layer disconnection. This approach employs

TCP and SCTP control signals to determine flow

completion, adding an Active Connection Counter to each

entry. The flow entry is automatically ejected when the

counter hits zero. The authors in [86] presented the SRL

framework with two modules: flow aggregator and hashing.

The controller computes hash values for every packet, using

the source IP address and maximum segment size. During

overflow, the controller replaces the entry with the lower

hash value with a new entry. In [87], the authors developed

a technique using a D-ITG traffic generator to initiate flow

rule eviction before overflow. This approach identifies table

capacities and the appropriate eviction threshold. Once the

threshold is known, the switch starts the eviction process

using Random, LRU, or FIFO techniques.

The study in [88] found that existing works didn’t address

eviction techniques for UDP flows. They proposed a

dynamic monitoring solution using RL and Q-Learning.

This model, comprising states, actions, and rewards, uses

adaptive sampling of UDP flow statistics to determine when

to evict a flow entry. Reference [89] introduced the concept

of multiple bloom filters (MBF) to reduce controller-switch

communication due to table misses. MBF encodes flows

based on locality and recentness, automatically removing

less relevant rules during overflow. This increased the

overall hit ratio by about 63.2% compared to LRU. The

authors of [90] proposed setting a threshold for early

eviction of flow entries, inversely related to the number of

hosts and packet arrival speed, to reduce packet loss and

latency. In [91], a unique flow rule eviction algorithm,

Dynamic In/Out Balancing, was proposed. Instead of a fixed

threshold, it dynamically modifies flow timeout based on

time.

The study in [92] developed a dynamic in/out balancing

method with the least frequently used (DIOB/LFU) criteria.

This method evicts rules with a zero idle timeout and

counter value when the flow table is full, significantly

reducing table overflow. FireGuard [93] designed to prevent

complex crossfire attacks, consists of three elements: a

traffic locator, an attack detector, and a traffic monitor. The

strategy uses switch information to identify attacks and their

paths. However, its effectiveness in physical environments

remains untested. The work in [94] proposed using the

hidden Markov model (HMM) for a proactive approach to

overcome TCAM memory size limitations. This technique

uses a utilization table for eviction and categorizes traffic

based on setup flow rules, showing superior performance in

various environments. The study in [95], introduced a

method to mitigate flow table overflow by replacing

forwarding flows from attackers with drop flows, monitored

by their timeouts. This method restricts the controller’s

mitigation technique when traffic increases.

 The work in [96] presented a model to counter SDN-

based table-overflow attacks using a mathematical technique

based on SDN topology. This model includes a token bucket

algorithm to ensure consistent transmission for legitimate

clients while limiting attacker data rates. The authors in [97]

introduced a rate-limiting approach, incorporating a flow-

checking module into the controller to regulate traffic and

blacklist flows exceeding thresholds. Researchers in [98]

introduced a machine learning-based system to select the

appropriate flow for removal, using historical data to predict

flow entry durations. The study in [99], presented the

STAR adaptive routing approach, using limited flow-table

resources for efficient network operation. STAR

intelligently deletes expired flow inputs and determines

routes for new entries based on real-time switch usage. The

study in [100] introduced the TF-IdleTimeout technique,

dynamically modifying flow entry idle timeout based on real

network activity to optimize TCAM capacity usage.

In [101] researchers proposed STEREOS, a machine

learning-based intelligent eviction technique, classifies flow

inputs into active and inactive categories, significantly

reducing control overhead and improving network speed and

packet loss rates. Another mechanism named DTER has

been proposed in [102], uses a decision tree to select the

best flow entries, temporarily storing others using the CBF

until their idle timeout expires. Entries, temporarily storing

others using the CBF until their idle timeout expires. To

detect and prevent low-rate DoS (LdoS) attacks, in [103]

authors proposed a mechanism using statistical analysis and

LRU replacement for mitigation. This approach includes

data collection, overflow prediction, attack detection, and

mitigation modules.

F. Mitigating Flow Table Overflow Attacks Using Flow

Entry Timeout or Dynamic Timeout
This section delves into the mitigation of flow table

overflow attacks through the implementation of flow entry

timeout or dynamic timeout mechanisms. Table 3

summarizes the various flow entry timeout or dynamic

timeout mechanisms against flow table overflow. In [104],

the authors combined a dynamic hybrid timeout strategy

with a peer support strategy to prevent flow table overload,

which can lead to DDoS attacks and assist in acquiring

necessary flow data for attack detection. When the flow

table usage nears its maximum, the strategy allocates longer

durations with larger idle timeout numbers, while flows with

shorter durations receive smaller timeout values. The results

demonstrate its effectiveness in preventing flow table

overflow. The authors in [105] established a hard timeout

for long-lived flows based on short inter-arrival periods and

set a specific value for short-lived flows. This method

removes a flow entry from the table if no packet matches it

within a certain time. It has successfully reduced controller

overhead and experimental results show a 64.8% decrease in

the number of packets in messages. However, it struggles to

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1219-1239

__

erase invalid and completed flows from the table, which is

crucial for active network operations. Isyaku et al. expanded

on IHTA and introduced AH-IHTA (AH-IHTA) [106]. In

this approach, flows receive timeouts based on their

characteristics. The controller frequently collects data on all

active entries from the switch and stores them in a module.

When a table miss-entry occurs or a new flow arrives, the

module's active flow entries are examined and compared

with the flow table usage. If the table shows high usage, the

scheme removes the data flow with the fewest packets.

Otherwise, new flow entries are installed. In [107], the

authors implemented an Adaptive Flow Table Management

(AFTM) scheme. AFTM employs dynamic timeout

assignment based on flow characteristics and proactive

eviction to monitor flow table utilization at set intervals. The

cache within this scheme holds flow information and related

entries, identifying entries with a long lifespan in the flow

table to be removed when the usage ratio exceeds the

predetermined threshold. In addition, the authors in [108]

presented HQTimer to address the impact on the data plane

performance arising from attackers’ exploitation of the flow

table and apply Q-learning to set values for flow expiry

timeout to enhance the flow table performance. The

approach is efficient in a small-scale network and does not

require switch modifications. The authors in [109] presented

a dynamic timeout approach utilizing idle and hard timeouts,

which depends on the per-flow packet count. The three

components that make up the suggested scheme are the

statistics module, the timeout calculation module, and the

2D counting Bloom Filter. The first module updates the

bloom filter by extracting specific data (features) from flow

entries. The second modules determine the values for the

hard and soft timeouts, while the third assigns timeout to

every flow. The authors [110] proposed an approach where

all extraneous entries that cause bloat are recognized using

HyperLogLog, aggregated, and organized into clusters using

Hierarchical Agglomerative Clustering in this entry

reduction approach. Furthermore, the redundant entries in

each cluster are optimized using a Pareto optimizer and a

multi-objective optimization technique.

C. Mitigating Flow Table Overflow Attacks by Rerouting

Flows

 In this section, we explore strategies aimed at mitigating

flow table overflow attacks. Table 4 provides a

comprehensive summary of studies focusing on rerouting

flows from switches with excessive flow table usage to

neighboring switches with available capacity. The study in

[111] proposes NFV-Guard, a method to mitigate table

overflow attacks in SDNs using Network Function

Virtualization to filter attackers dynamically. This approach

filters traffic through an NFVI, enabling precise

management of table overflow attacks. The method operates

in three phases: virtual honeypot, NFV-GUARD Controller,

and Dynamic Traffic Filtering and Distribution. The virtual

honeypot dynamically resizes devices and assigns flow

entries. The NFV-GUARD Controller oversees networking

tasks. The final phase involves computing the THD,

merging IP, and processing TLS packet-in. This method

excels when handling a massive influx of new traffic.

However, for attacks with complex, covert patterns, existing

approaches that prevent overload in a single switch prove

ineffective; they only prevent flow table overflow attacks.

Authors in [112] introduces a QoS-aware mitigation

technique that identifies non-overloaded switches to defend

against flow table overflow attacks. This technique involves

a traffic monitoring module to observe switch status and a

traffic guiding module to check for available flow table

space. Standard forwarding rules are inserted if space

permits; otherwise, directional rules reroute packets to

nearby switches, preventing buildup on the victim switch. A

stochastic differential equation-based defense [113]

addresses the shortcomings of centralized detection methods

in SDN networks. This method consolidates unused space in

the network's flow tables, redistributing new entries during

attacks. In [114], the authors propose a flow table mitigation

technique for managing the flow table and preventing

overflow by collecting the state of the switches (data

collection) regularly using a sampling approach and

applying flow-table space usage strategies. The technique

brings about a reduction in table miss rate. However, it is

ineffective with dynamic traffic. In [115], the authors

introduced the discrete-time finite-state Markov chain

(DTMC) model and unsupervised hashing to defend against

flow table overload and link spoofing attacks, respectively.

More specifically, DMTC determines the status of every

switch and forwards the same to the controller. To mitigate

the flow table overflow, it uses the switch information to

redirect the flows from busy and overflow switches to idle

switches. The authors proposed DIFF [116], a dynamic

routing technique, to classify traffic based on its impact on

resources on the network and adjust the routing pattern. The

scheme makes distinctions based on how they affect the

resources on the network and modifies routing patterns to

lessen flow-table overflow issues and wasteful bandwidth

distribution. It creates a set of paths for each pair on the

source-destination link edge switches. New flow paths are

dynamically selected from pre-generated path sets to

balance flow-table usage. The scheme adaptively reroutes

elephant flows, utilizing the law of providing max-min equal

bandwidth to achieve maximum throughput. The

experimental results show that DIFF can simultaneously

manage connection utilization and flow tables. It also

reduces the controller’s workload, and packet latency, thus

enhancing throughput compared to other methods (OSPF,

Hedera, and FE). Authors in [117] proposed a flow table

sharing method that allows a switch in the network unable to

process a flow transfer to another switch with a spare flow

table. The approach reroutes traffic from overloaded

switches to idle or neighbor switches with free flow table

resources. It yields a reduction in the number of control

messages and RTT time. Nevertheless, the victim switch

may flood the nearby switches in the event of a significant

attack, leading to a DoS attack.

F. Mitigating Flow Table Overflow Attacks through

Aggregated Flow Entries Mechanisms

 This section delves into solutions aimed at resolving flow

table overflow attacks by aggregating flow entries. Table 5

presents the summary of the various studies through

aggregate flow entries to resolving flow table overflow

attacks. In [118], the authors proposed IDFA to prevent flow

table overflow by creating duplicate entries, which are then

combined to form a single entry. The processing logic

resides in the switches instead of the controller. Three

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1219-1239

__

modules make up IDFA. The first module is responsible for

adding and verifying flow entries. The second effectively

aggregates flows using a dynamic threshold, and the third

handles flow aggregation using degradation and

repermutation techniques. It brings about a reduction in flow

entry size. However, it uses up the limited TCAM memory.

In terms of compression ratio, average flow convergence

time, and the likelihood that a flow table overflow will

occur, the method outperforms FTRS. The authors of

[119] presented a flow rule aggregation method for reducing

the number of flow rules in an SDN switch while limiting

the impact on individual traffic flow QoS (such as packet

loss, delay, etc.). It determines the optimum network path

using a heuristic called Best fit. The proposed method

performs better than previous benchmark methods (Greedy,

Random, Exact-Match, and Agg-Delay) with some metrics.

To resolve the flow table overflow occasioned by the

management of each flow in SDN and enable effective

cluster-based flow management, a similarity-based

hierarchical clustering framework [120] is proposed, which

uses both similarity-based initial clustering and hierarchical

cluster merging. The framework allows flows to be grouped

into cluster for routing and processing. The experimental

results show that the approach can reduce forwarding rules

to 32% and 27% for data center networks and campus

networks, respectively, compared to per-flow management.

In [121], the authors offer a quick and efficient bit and

subset weaving-based flow aggregation technique to reduce

the flow table size, offer realistically quick updates and

mitigate the problem of flow table overflow such that it

takes a short time to update the table. The flow rules are

split into different partitions based on their instructions. This

results in a reduction in the flow table capacity and suitable

update time. It performs better than the FFTA scheme in

terms of the average compression ratio. The authors in [122]

presented a flow table overbooking isolation guarantees

problem (FOLA) approach to route flows through multiple

paths. It routes a flow via a path to prevent overflow and

enhances the network throughput of the system. To address

the diverse behavioral patterns, they were displayed by

flows with different properties, and the use of timeouts (idle

and hard) results in inefficient management of flows when

set higher than the flow durations.

 Authors in [123] developed an approach employing a

hidden Markov model (HMM) in which entries that are

often accessed are placed in the Agg-ExTable to alleviate

the issue of a bloated single table and improve flow table

management. The method lessens flow processing time.

However, it consumes a lot of memory and solely addresses

TCAM constraints.

VII DETAILED ANALYSIS OF THE LITERATURE

AND RESEARCH GAPS

After conducting a comprehensive analysis of flow table

overflow attacks, the authors have categorized the examined

articles according to various attack approaches. The

classification of reviewed publications is outlined in Tables

6–9, which categorize the studies based on eviction

strategies, entry and dynamic timeouts, rerouting of flows,

aggregated flows, and other methods. Based on the

summarized findings from these tables, several research

gaps have been identified. These include but are not limited

to:

1). After a thorough analysis of flow table overflow

attacks, it is evident that 54.54% of researchers primarily

relied on the eviction strategy to mitigate these attacks.

Conversely, a smaller percentage of researchers, comprising

15.91%, explored the entry and dynamic timeout approach,

along with the rerouting flows technique, while 13.64%

opted for an aggregated flows approach (Table 6). However,

there's a notable gap in research concerning aggregate flows,

rerouting flows, and dynamic timeout approaches for

addressing flow table overflow attacks. Specifically, the

rerouting flow strategy assumes that some flow tables

remain unburdened, redirecting incoming flows to these

neighboring tables. Nevertheless, none of the researchers

have considered the possibility of overwhelming all flow

tables simultaneously, which could be a significant

vulnerability considering the number of switches. Given

these observations, further investigation into dynamic

timeout, rerouting traffic, and aggregated flow techniques is

warranted to develop more comprehensive solutions for

mitigating flow table overflow attacks effectively. These

strategies hold promise but require deeper exploration and

analysis to ensure their practical applicability and efficacy in

real-world scenarios.

2). In total, 63.64% of the researchers applied their

approaches to the controller module because of the

unintelligent nature of the switch (Table 7). This method’s

deployment on the controller necessitates the controller’s

acquisition of information on each flow entry in the switch,

necessitating interaction and communication between the

controller and the switches. The controller’s memory,

processing power, overhead, and bandwidth are all used in

their interaction. Except for [73], which requires a switch

modification, 36.36% of authors deployed their solutions on

the switch without altering it to address the issues caused by

approaches on the controller module. Deploying flow table

overflow attack solutions in SDN switches is a crucial area

for research.

3). Table 8 provides clear insights into the methodologies

employed by researchers in evaluating their studies. It

indicates that a majority (68.19%) utilized simulation or

emulation tools, while 15.91% developed self-made

simulators using diverse programming languages.

Furthermore, among the studies leveraging SDN controllers

(63.64% of the total), only a fraction (9.09%) opted for

logically distributed controllers. Notably, the use of a

logically centralized controller, as highlighted by [124],

introduces a single point of failure. Given these findings, a

critical area of research involves implementing solutions

tailored to address flow table overflow threats within the

framework of a logically distributed controller architecture.

This approach seeks to mitigate the risks associated with

single points of failure, thereby enhancing the robustness

and reliability of SDN infrastructures.

4). In the experimental evaluation, software switches were

predominantly utilized in most studies (84.09%), while

hardware switches were employed in only 6.81% of cases

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1219-1239

__

(Table 9). It's well understood that the distinct processing

capabilities of hardware and software switches can

significantly impact switch performance across various

parameters [125]. Hence, there arises a necessity to conduct

evaluations using both types of switches with the same

approaches to ascertain their effectiveness in providing

solutions to table overflow attacks in SDN. Furthermore, it's

noteworthy that all studies evaluated their work within a

linear topology, except for [80, 91, 95, 99, 105, 115, 116].

Therefore, there exists a clear need for further investigation

utilizing alternative topologies such as tree and fat networks.

Such exploration can provide valuable insights into the

performance and scalability of proposed solutions in diverse

network configurations, thus enhancing the applicability and

generalizability of research findings.

5). For their studies, 47.71% of researchers utilized a

common benchmark dataset, while 27.27% employed

traffic-generating tools to simulate traffic, including both

normal and attack scenarios. However, relying solely on

traffic-generating tools may not accurately replicate real-

world traffic levels. Moreover, CAIDA stands out as the

sole benchmark dataset used. Therefore, there is a crucial

need to incorporate real datasets into the development of

solutions aimed at detecting, mitigating, and preventing flow

table overflow attacks. This area of research warrants

significant attention to ensure that proposed solutions are

effectively validated against real-world traffic patterns,

thereby enhancing their reliability and applicability in

practical scenarios.

6). In the realm of SDN, optimizing eviction strategies

emerges as a pivotal area of research, particularly in

mitigating flow table overflow attacks. Our study reveals

that 54.54% of researchers have adopted these strategies,

underscoring their crucial role in SDN security. This opens

an exciting avenue for further innovation. We propose an

exploration of advanced algorithms that enhance the

efficiency of eviction processes, thereby striking a balance

between network performance and security. Comparative

analyses of various eviction strategies under diverse network

loads and attack scenarios will provide invaluable insights.

This research direction not only promises to fortify SDN

against sophisticated threats but also paves the way for

groundbreaking advancements in network management. By

delving deeper into optimizing these strategies, we can

redefine the boundaries of network security and efficiency,

making a substantial contribution to the field of SDN.

7). In the quest to fortify SDN against flow table overflow

attacks, enhancing the utilization of simulation tools stands

as a crucial endeavor. Our findings highlight that a

substantial 68.19% of researchers rely on simulation or

emulation tools, signaling an urgent need for more refined

and realistic models. We propose a bold initiative to develop

state-of-the-art simulation tools that accurately mirror the

complexities of real-world network environments and

cyberattack patterns. Collaborating with industry experts to

access real traffic data and configurations will inject a dose

of practicality into these simulations. Additionally,

integrating artificial intelligence into these tools could offer

predictive insights and a deeper understanding of network

behavior under varied conditions. This approach not only

elevates the accuracy of our research outcomes but also

serves as a beacon for future studies, guiding the way

towards more resilient and intelligent SDN solutions.

8). In the dynamic landscape of SDN, the deployment

efficiency of controller modules stands as a frontier for

groundbreaking research. Our analysis indicates that a

striking 63.64% of researchers target the controller module

due to the switch's limited intelligence, pointing to a

significant opportunity for enhancement. The need for the

development of innovative algorithms and frameworks that

streamline flow table management while minimizing

resource consumption is key. These advancements could

revolutionize the controller's functionality, potentially

integrating predictive analytics or machine learning to

achieve unprecedented efficiency. By shifting the focus to

more resource-efficient controllers and potentially

redistributing intelligence to the switches, we can

dramatically enhance network resilience and performance.

This proactive approach in redefining controller module

deployment will not only address current challenges in SDN

but also set a new standard for future network architectures,

fostering a paradigm shift in how we conceptualize and

implement network intelligence.

VIII CHALLENGES AND FUTURE DIRECTION

A. Deployment of Flow Table Overflow Detection,

Mitigation, and Prevention Solutions

The deployment of solutions for detecting, mitigating,

and preventing flow table overflow attacks presents a

critical challenge in SDN. The majority of detection,

mitigation, and prevention measures against flow table

overflow attacks have been implemented within the

controller [80, 84, 86–88, 92–103, 106–116, 122].

Consequently, communication between forwarding elements

and the controller becomes essential for acquiring switch

information and redirecting all traffic (normal and attack) to

the controller for detection and mitigation. Moreover, the

controller must continually gather flow statistics from

forwarding devices to monitor network traffic, resulting in

overhead and latency. Some authors [82, 84, 115] have

tackled this challenge by deploying the detection and

mitigation modules into both the controller and the switch.

Therefore, there is a pressing need to distribute the

deployment of solutions for flow table overflow attacks.

This entails exploring methods to decentralize the

implementation of these solutions, reducing the burden on

controllers and enhancing overall network efficiency and

resilience. Consequently, the distribution of deployment for

solutions to flow table overflow attacks represents a

significant area of concern and interest for future research

endeavors.

B. Providing Solutions to Flow Table Overflow Attacks in

Various Scenarios

Addressing flow table overflow attacks requires solutions

tailored to both typical network settings and scenarios where

OpenFlow switches are under threat. Researchers have

offered solutions to these attacks in both typical network

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1219-1239

__

settings [98, 99, 104, 108, 117, 123] and when the

OpenFlow switch is under threat. It's imperative to apply the

same techniques to detect and mitigate attacks under these

two scenarios (normal network setting and OpenFlow

Switch) to determine the most effective technique for each

scenario.

C. The Security in SDN

 Security in SDN is paramount due to the separation of the

control plane from the data plane, which introduces

vulnerabilities such as flow table overflow attacks leading to

DoS incidents. Attackers exploit the limited size of TCAM

to flood the flow table, compromising the confidentiality,

integrity, and availability (CIA) of the network. Thus,

implementing robust measures is essential to safeguard SDN

networks and their resources against security threats. The

separation of the control plane from the data plane ushers in

the security threats, such as flow table overflow attacks

resulting in DoS attacks in SDN when not adequately

prevented. The attackers take advantage of the limited size

of TCAM to overflow the flow table. It violates the three

triads (CIA) of security such that the switches could not

hold additional flow entries, and the controller would not be

unavailable due to an influx of illegitimate requests from the

attackers. Therefore, it is required to put appropriate

measures in place to guarantee the confidentiality, integrity,

and availability of the networks and their resources to

prevent security threats in SDN.

D. Deployment of Solutions in a Multi-Controller

Architecture

In the realm of SDN, distributed controllers outperform

centralized ones in scalability, consistency, load balancing,

and response time necessitating the adoption of a multi-

controller architecture to mitigate single points of failure

and ensure network availability.

Scalability, consistency, load balancing, and response

time are all areas where distributed controllers outperform

centralized controllers [126],[127]. In the SDN environment,

it is necessary to consider multi-controller architecture to

address the single point of failure in a centralized

architecture of SDN, as this will also cater to handling large

traffic volume and ensures network availability.

E. Empirical validation in a range of network configurations

Empirical validation across diverse network

configurations is crucial to assess the practical effectiveness,

adaptability, and scalability of methods proposed for

addressing flow table overflow attacks, particularly in

resource-constrained environments.

Methods proposed to address flow table overflow attacks

consume TCAM memory heavily, creating scalability issues

for larger networks and further limiting scalability and

applicability, especially in resource-constrained

environments. It is worth noting that many proposed

techniques struggle to adapt to dynamic traffic scenarios,

causing inefficiencies in flow management. Empirical

validation across diverse network setups is imperative to

ascertain the practical effectiveness, adaptability, and

scalability of these methods. Moreover, addressing these

challenges is pivotal for advancing the scalability,

adaptability, and efficiency of systems in real-world

deployments, as improvements in real-time adaptation and

efficiency are crucial, particularly in managing flow entries

exhibiting diverse behavioral patterns.

F. The need for more optimization strategies

Certain approaches like NFV-Guard and specific

rerouting strategies are promising in preventing flow table

overflow attacks, but their efficacy against complex and

covert attack patterns remains uncertain. Furthermore, a

notable research gap lies in the lack of validation of

proposed strategies within real-world network

environments, raising concerns about their genuineness in

practical scenarios. Additionally, some optimization

techniques aim to identify and improve redundant entries

within flow tables, there remains a need for more efficient

optimization approaches to address the bloat and

inefficiencies within SDN flow tables comprehensively.

These gaps represent significant avenues for further

academic research in SDN, pivotal for enhancing security,

scalability, and practical applicability in real-world network

environments.

G. Resource-efficient strategies and unified evaluation

techniques

There is a need for a comprehensive analysis of

approaches' robustness against sophisticated attacks,

exploration of dynamically adaptive eviction strategies,

establishment of unified evaluation metrics, and further

research on resource-efficient strategies for scalability in

large-scale SDN networks. These areas represent key

directions for enhancing the effectiveness, security, and

scalability of systems in practical deployments.

H. Empirical evaluation in real-world settings

Ensuring the scalability and adaptability of techniques in

dynamic networks is challenging; proposed solutions may

struggle against complex attacks, requiring enhancements to

tackle covert patterns effectively. Empirical validation in

real-world scenarios is crucial to confirm practical

effectiveness and real-time adaptation to evolving threats is

vital for bolstering security measures. Additionally, while

some approaches mitigate primary attacks, they might

inadvertently expose vulnerabilities, risking secondary

attacks or network disruptions.

I. Diverse Network Topologies

In the evolving domain of SDN, exploring diverse

network topologies represents a pivotal step toward

comprehensive research. Our analysis reveals a predominant

focus on linear topologies, a scenario that scarcely reflects

the multifaceted nature of real-world networks. There is a

need for a bold expansion into studying SDN's behavior

across a spectrum of complex topologies, including tree,

star, and fat-tree configurations. This exploration is not just

an academic exercise; it is a vital undertaking to understand

how SDN solutions perform under varied structural

complexities, especially in the face of flow table overflow

attacks. By broadening our investigative scope to encompass

these diverse topologies, as this will uncover critical insights

into the resilience and adaptability of SDN architectures.

This foray into uncharted territory promises to elevate our

understanding of SDN, ensuring that our solutions are

robust, versatile, and aligned with the intricate realities of

modern network infrastructures.

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1219-1239

__

J. Employing Real World dataset.

In the quest to enhance the robustness of SDN against

flow table overflow attacks, the employment of real-world

datasets emerges as a crucial and transformative research

strategy. Our study underscores the limitations of relying

solely on common benchmark datasets and traffic-

generating tools, which currently dominate the research

landscape. There is a need to champion the pioneering move

to utilize real-world traffic datasets, bringing an

unprecedented level of authenticity and relevance to our

research. This approach not only promises a more accurate

representation of network behaviors under attack scenarios

but also offers invaluable insights into the effectiveness of

proposed solutions in genuine settings. By embracing real-

world data, we propel our research beyond theoretical

models, grounding it in the tangible complexities of existing

network environments. This shift marks a significant stride

towards developing SDN solutions that are not just

theoretically sound, but practically invincible in the face of

evolving cyber threats.

IX CONCLUSIONS

The development of SDN has been primarily driven by its

advantages over traditional networks, simplifying and

streamlining flow table management through its centralized

architecture. However, despite these advantages, ensuring

the security of SDN remains a significant challenge. This

paper presents a systematic review of flow table overflow

attacks in SDN, examining 44 high-quality research articles

out of a pool of 794. These articles are categorized based on

suggested solutions, with 54.54% employing eviction

methods, 15.91% utilizing entry and dynamic timeouts

along with flow rerouting, and 13.61% adopting aggregated

flows. Our findings highlight the need to explore alternative

approaches such as entry and dynamic timeouts, flow

rerouting, and flow aggregation. Additionally, articles are

categorized based on where solutions are deployed: 63.64%

at the control plane, 36.36% at the data plane, and 6.82%

addressing overhead and latency issues by deploying

solutions in both the switch and the controller.

Consequently, the distribution of solution deployment for

flow table overflow attacks emerges as a crucial area of

interest and concern.

Furthermore, 68.19% reviewed papers validated their

approaches with simulation or emulation tools, while

15.91% used self-developed simulators using various

programming languages. In addition, only 9.09% of the

63.64% of researchers that deployed SDN controllers did so

in a logically distributed manner. Implementing solutions to

flow table overflow attacks in a logically distributed

controller architecture is a crucial area of research interest

because a centralized controller suffers from a single point

of failure.

Many existing approaches struggle to adapt to traffic

dynamics, resulting in inefficient flow management.

Therefore, empirical validation across various network

configurations is crucial to address these inefficiencies.

Additionally, while some optimized approaches effectively

combat flow table overflow attacks, their validation within

real-world network environments remains uncertain, leading

to inefficiencies in SDN flow tables. Thus, enhancing

security, scalability, and practical applicability in real-world

network environments necessitates efficient optimization

approaches. Moreover, existing approaches often overlook

unified evaluation metrics and fail to adopt dynamically

adaptive eviction approaches, which are vital for scalability

in large SDN networks.

In the intricate world of SDN, the comparative study of

hardware and software switches emerges as a vital research

avenue. Our study reveals a stark contrast in their usage,

with a predominance of software switches (6.81%) in

experimental evaluations. This disparity highlights an

untapped potential for comprehensive comparative studies.

There is a need for in-depth research comparing the

performance, scalability, and security of hardware versus

software switches under various attack scenarios,

particularly flow table overflow attacks. Such research

promises to unravel the unique strengths and limitations of

each switch type, offering a nuanced understanding of their

roles in SDN environments. Pioneering this comparative

approach, will pave the way for more adaptive, secure, and

efficient network infrastructures, tailored to meet the diverse

needs of modern digital ecosystems. This endeavour not

only bridges a significant knowledge gap but also propels us

towards a future where network solutions are as versatile as

the challenges they face.

In the evolving domain of SDN, exploring diverse

network topologies represents a pivotal step toward

comprehensive research. Our analysis reveals a predominant

focus on linear topologies, a scenario that scarcely reflects

the multifaceted nature of real-world networks. There is a

need for a bold expansion into studying SDN’s behaviour

across an academic exercise; it is a vital undertaking to

understand how SDN solutions perform under varied

structural complexities, especially in the face of flow table

overflow attacks. By broadening our investigative scope to

encompass these diverse topologies, we stand to uncover

critical insights into the resilience and adaptability of SDN

architectures. This foray into uncharted territory promises to

elevate our understanding of SDN, ensuring that our

solutions are robust, versatile, and aligned with the intricate

realities of modern network infrastructures.

ACKNOWLEDGEMENTS

We appreciate Universiti Putra Malaysia (UPM) for

providing an enabling environment for conducting the

research work. In addition, O. I. Aladesote would like to

thank the Management of Federal Polytechnic, Ile Oluji,

Ondo State, Nigeria for their support in pursuing his

postgraduate studies.

REFERENCES

[1] L. OCHOA-ADAY, C. CERVELLÓ-PASTOR, and A. FERNÁNDEZ-

FERNÁNDEZ, “Discovering the Network Topology: An Efficient

Approach for SDN,” Adcaij Adv. Distrib. Comput. Artif. Intell. J., vol.

5, no. 2, p. 101, 2016, doi: 10.14201/adcaij201652101108.

[2] L. Ochoa-Aday, C. Cervello-Pastor, and A. Fernandez-Fernandez,

“ETDP: Enhanced topology discovery protocol for software-defined

networks,” IEEE Access, vol. 7, pp. 23471–23487, 2019, doi:

10.1109/ACCESS.2019.2899653.

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1219-1239

__

Fig 5. Flow Table Overflow Taxonomy Attacks

TABLE II

MITIGATING FLOW TABLE OVERFLOW ATTACKS USING EVICTION STRATEGY

Ref.

Proposed

Solution

Technique

Used

Issue

Addressed

Metrics Used

Motivation

Merits

Demerits

[80] A behavior-

based priority-

aware tagged

FTGuard

Priority-

based

Network

Performance

The resource

usage under

attack scenarios

The LRU mechanism for

flow entry eviction is not

efficient and effective

Effective in the

prevention of

overflow attacks

Consider neither the

controller workload

nor the additional

traffic features

[81] SFF Matching

period and

MWT

Processing

delay and

controller

overhead

Flow Miss Rate

and Ratio of

delayed packets,

The existing replacement

strategies (LFU, LRU,

and FIFO) failed to take

traffic patterns into

account when replacing

flow entries.

Increasing the

number of

matching flow

entries reduces the

overhead of the

controller

High packet

processing time and

increased switch

memory efficiency.

[82] A two-stage

timeout (TST)

approach.

FIFO,

Random,

timeout

The

scalability

issue of

SDN

switches’

flow tables

Cache hit ratio,

discarded packet

ratio, rule

installation

times, Energy

saving on

TCAM query

The fixed timeout

management causes

inefficient utilization of

the flow table

The retention of

only those flow

rules that are

necessary

No suitable timeout

[83] WLRU Linked List The flow

table

overflow

degrades

network

scalability

Number of

entries, RTT

delay, Replied

packets

An attempt to detect and

mitigate SDN attacks and

their internal factors.

The approach

improves the

network

scalability.

The approach is not

tested on a larger

testbed.

[84] CAB-ACME Bucket tree Efficiency in

flow table

usage

Cache miss,

bandwidth

usage,

Computational

time, Latency,

flow setup,

cache entries

Proximity of traffic and

issue of rule dependency

Reduction in

control load and

enhancement in

efficiency of flow

table

It requires adjustment

and modification

before being

implemented across

the network.

[85] Transmission

layer

disconnection-

based strategy

Active

Connection

Counter

Limited

Flow table

capacity

Flow entry

requirements,

flow table

construction,

control

overheads, flow

table miss rates,

and traffic

intensities.

Flow expiry

mechanisms, employed

to address limited flow

table capacity do not

guarantee optimal

performance

There is an

improvement in

scalability with

little or no costs.

The expedited invalid

TCP flow eviction

method, which does

not work well in

elephant traffic

situations, needs to be

improved.

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1219-1239

__

[86] SRL Hash value Flow table

overflow

Service delivery

time, CPU

utilization, and

Time

Issues arise with a

delayed TCP handshake

and the implementation

of temporary forwarding

rules while handling a

high number of users

Able to prevent

flow table

overflow

Failed to resolve

overhead issues

[87] Early Eviction Random,

FIFO, and

LRU

techniques

Flow table

overflow

Throughput,

delay, and

number of

replacements.

The timeout approach to

overflow falls short of

optimum performance

because it works

effectively if there is

enough memory to store

large flow rules.

LRU outperforms

others in

preventing

overflow

There is a need to

consider more traffic

and a dynamic

timeout approach.

[88] A dynamic

monitoring

approach

based on RL

Q-learning Flow table

overflow

Control

overhead,

overflow

occurrences,

and flow

reinstallations.

Existing works do not

capture eviction strategy

for UDP flows

A reduction in the

rate of flow table

overflow and flow

entry

reinstallation

Needs to be evaluated

on more performance

metrics to ascertain

its effectiveness.

[89]

Smart data

logging

approach

Multiple

Bloom

Filters

(MBF) and

hash

function

Overhead

and latency

issues of

flow table

overflow

Active flow and

table hit ratio.

Existing works do not

use data structures

focused on space

efficiency to avoid flow

table overflow

It reduces the rate

of flow misses,

irrespective of the

type of flow

Not compared with

existing techniques to

ascertain its

effectiveness.

[90] Eviction

approach

Setting a

threshold

The impact

of flow table

overflow on

latency and

packets

Delay The existing approaches

to preventing flow table

overflow led to packet

loss and an increase in

latency

It leads to a

reduction in

packet loss and

latency

The study fails to

incorporate more

metrics to determine

an appropriate

eviction threshold in a

real time environment

[91] Dynamic Rule

eviction

approach

DLFU Performance

of SDN

when

overflow

occurs

N/A The need to lower the

rate of flow table miss

and provide protection

from dangers brought on

by overflow motivates

the work.

It reduces the rate

of overflow

occurrence

Unable to reduce the

risks brought on by

the overflow attack.

[92] An eviction

algorithm

DIOB/LFU Flow table

security and

performance

Bandwidth and

packet

The necessity or need to

improve flow table

performance and

security.

It significantly

reduces the

frequency of

overflow

It results in packet

loss

[93] FireGuard LRU and

Token

CFTO Communication

delay, detection

delay, CPU

Utilization,

accuracy.

The existing remedies for

repeatedly overloading a

single switch are

ineffective when dealing

with an attack involving

complex and covert

patterns.

With negligible

overheads, the

novel strategy is

particularly

effective in

preventing

crossfire attacks.

The strategy needs to

be implemented on a

physical environment

[94] Proactive

technique

based on

matching

probability of

the entry’s

prediction

HMM Select an

entry

carefully and

efficiently

for eviction

during table

misses or

when a

timeout

occurs

CPU

consumption

rate, number of

misses,

matching

probability

The existing reactive

approaches do not

improve the forecast

accuracy and increase the

rate of table misses.

Eviction of flow

entry with the

smallest matching

probability

Further investigation

needs to be carried

out to ascertain the

variables affecting the

performance of the

metrics.

[95] A packet

monitoring

approach

Filtering

approach

Flow table

overflow

attack

Flow change

rate, flow rule

count, and

packet_in count

The necessity to identify

and defend against SDN

susceptibilities.

It effectively

reduces the attack

Restrict the controller

mitigation technique

whenever the traffic

increases.

[96] A mitigation

approach

Flow entry

token

bucket and

statistics

Flow table

overflow

attack

The number of

transmitted

attack flows,

flow table

consumption on

the victim

switch

The need to address flow

table overflow attacks

with a sophisticated

attack pattern since the

existing simplified

approach does not give

the desired results.

It lowers attack

rates

The flow entries with

static timeouts require

manual deletion.

[97]

Rate limiting

approach

Threshold Flow table

overflow

attack

Flow table

capacity, packet

loss, and impact

of bandwidth

The existing works do

not ensure a secured

SDN environment

It is effective in

preventing flow

table overflow

High rate of packet

loss

[98] Eviction

Approach

based on

machine

learning

Random

forest and

k-fold

cross-

validation

effective

utilization of

the flow

table.

The number of

capacity misses

normalized, and

the number of

active flow

entries

There is a need for a new

and better deletion

approach to evict flow

entry than the current one

that produces very low

overhead.

It outperforms the

LRU scheme

regarding flow

table utilization

and fewer

capacity misses.

Do not consider the

overhead of the study

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1219-1239

__

[99] STAR LRU and

Idle timeout

Low table

bloat and

Overflow

Controller

workload,

packet delay,

throughput,

mouse flow, and

elephant flow

completion

percentages

Using the LRU process

to evict flow entries

causes flow table

overflow, as well as the

flow table utilization

being misinterpreted due

to timeout design,

resulting in flow table

bloat.

Prevent flow table

bloat and

overflow with low

controller

workload, low

packet delay, and

high server

throughput.

Need to be tested in a

test bed environment.

[100] TF-

IdleTimeout

Confidence

interval

Scalability

issue in flow

table

overflow

Flow entry

missing and

flow dropping

The existing plan failed

to consider the dynamic

nature of traffic in an

SDN-based network.

It enhances the

efficiency of

TCAM usage

The study does not

consider all variables

required to determine

a suitable idle time

out.

[101] STEREOS Machine

learning

Efficient

management

of flow table

Normalized

number of

capacity misses,

accuracy, and

number of

active flows

Existing approaches to

evicting flow rules

degrade network

performance by evicting

flow entries incorrectly

It minimizes

control overhead,

boosts network

speed, and lowers

packet loss rates

Its performance

should be compared

with other machine

learning methods.

[102] DTER Decision

tree

Controller

overhead

arising from

overflow

Accuracy rate,

true positive,

false positive

rates, workload,

elephant, and

mice flow

completion

percentage

without packet

drop, packet

delay, and

throughput.

Overhead that arises due

to huge route request to

the controller in a large

data center and the

limited flow table space

Reduction in

controller

workload and

prevention flow

table overflow

More metrics

(throughput and

latency) should be

considered to measure

its performance.

[103] SAIA LRU and

statistical

analysis

Network

performance

CPU usage,

throughput, and

detection rate

There has not been

comprehensive research

on table overflow LDoS

attacks, and the available

research centered on

mitigation solutions for

table overflow in a

typical network.

Effective in

detecting and

preventing LDoS

attacks

Require an intelligent

algorithm to enhance

the detection accuracy

of the attack.

TABLE III

MITIGATING FLOW TABLE OVERFLOW ATTACKS USING FLOW ENTRY TIMEOUT OR DYNAMIC TIMEOUT

Ref.

Proposed
Solution

Technique
Used

Issue
Addressed

Metrics Used

Motivation

Merits

Demerits

[104] The flow

table

overload,

which

results in

DDoS

attacks

A dynamic

hybrid timeout

approach

TCAM

Memory

durability

and network

performance

Flow table

memory status

with different

switches and

time

Existing related works

relied on idle timeout to

solve the problem, which

is inefficient when

dealing with network

flows with a limited

number of packets and

short duration.

Improvement in

memory

utilization of flow

table

Utilizing long-lived

flows with a short

packet inter-arrival

time results in

reduced efficiency.

[105] Idle–hard

timeout

allocation

(IHTA)

LRU Scalability

issue
Number of

packet_in

messages, flow

duration

Timeouts that are

inappropriately set result

in the early eviction of

active flows

It reduces the

packet_in

messages, thereby

enhancing the

efficiency and

scalability of the

flow table.

It is impracticable to

get the precise

packet count before

the flow’s

conclusion via

experiment.

[106] Adaptive

and hybrid

idle–hard

timeout

allocation

(AH-IHTA)

strategy

FIFO, Random,

LRU, and DFE

Prevention

of flow rules

from

expiring

frequently

Flows packet

count, packet_in

event

The fixed timeout

approach to managing

flow entries is inefficient

and ineffective in dealing

with the ever-changing

characteristics of traffic

flow.

It outperforms

IHTA by reducing

the number of

packet_in

messages to 72%

as against IHTA,

which has a

35.2% reduction.

Not suitable for

applications in a

multi-controller

environment

[107] Adaptive

flow table

Mgt.

scheme

AFTM)

Timeouts

setting

Inefficient

use of

limited flow

table space.

Packet drop, and

Extra table miss

Existing works did not

consider the use of

timeout settings.

Reduction in table

miss

The approach is not

tested on a larger

testbed.

[108] HQTimer Hybrid timeout

mechanism and

a Q-learning

approaches

Rules

dependency

issues

Table-hit rates,

overflow

numbers, total

installations

The rule dependency

issue introduced by

wildcard rules makes it

difficult to maintain the

network’s semantics and

Efficient in a

small-scale

network and does

not require switch

modifications.

Not effective in a

large-scale network

environment

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1219-1239

__

create a timeout

mechanism.

[109] History-

based

dynamic

timeout

Bloom filter Flow table

overflow

attack

The number of

DoS flows over

and the number

of normal flows.

The hard and soft

timeouts are ineffective

in reducing the number

of flow rules that cause

overflow.

It leads to a

reduction in the

number of flow

rules

Tested using a small

testbed.

[110] CEOF Hierarchical

Agglomerative

Clustering and

HyperLogLog

Scalability

issue in flow

table

overflow

Compression

ratio, space

saving, flow

processing time,

packet_in

request, flow

entries, count,

throughput, and

retransmission

error rate

The existing approaches

are limited to generating

outstanding results in

uncertain conditions.

Hence, there is a need for

an approach that will

give excellent results.

The experimental

results show that

the approach can

effectively

prevent flow table

overflow

The scheme needs to

have its QoS and

security improved

TABLE IV

MITIGATING FLOW TABLE OVERFLOW ATTACKS BY REROUTING FLOWS

Ref.
Proposed

Solution

Technique

Used

Issue

Addressed

Metrics Used

Motivation

Merits

Demerits

[111] NFV-GUARD NFV Flow table

security and

performance

Flow table

occupancy,

RTT, and CPU

usage

Sending flow entries to

network nodes on the

physical infrastructure

appears to be effective

only in large networks.

It reduces the

controller loads

and the delay

Could not

effectively mitigate

flow table

overflow in a large

network.

[112] A Peer

Support

Strategy

Poisson

distribution.
The limited

size of the

flow table,

which

attackers use

to cause

overloading

Holding time No research has dealt

with a specific attack by

thoroughly investigating

and proffering solutions

to the attack.

It minimizes

violation of quality

of service

It yields an

additional delay

and relies on the

resources of the

idle flow table

[113] A stochastic

differential

equation-based

defense for

overflow

attack

BPNN

algorithm

and flow

table sharing

Flow table

overflow

attack

occasioned

by the

limited flow

table

Recognition

rate, time-

consuming

Due to the poor defense

capability, present

centralized detection

solutions for overflow

attacks result in

insufficient SDN network

protection and

irreversible losses.

The proposed

method performs

better in detection

rate and takes less

time to run.

Do not consider the

situation where the

neighboring

switches are totally

or nearly full.

[114] CPD Taylor series Flow table

overflow

attack

The number of

flows, CPU

utilization,

frequency of

table overflow,

and the number

of dropped

packets.

Existing approaches are

computationally costly,

result in more table

misses, and have

scalability issues

It lowers the

network’s table

miss rate.

It is unsuitable

when traffic is

dynamic.

[115] Hybrid

method

Discrete-

time finite-

state Markov

chain, fuzzy

classifier,

and L1-

extreme

learning

machine

Flow table

overflow

Delay, failure

ratio, and

holding time

The use of peer-to-peer

topology in addressing

the flow table overflow

caused much switch

damage, which resulted

in the replacement of

many damaged switches.

It resolves the

security problems

(flow table

overflow and link

spoofing attacks)

in SDN

It relies on the

resources of the

flow table

[116] DIFF, A

dynamic

routing

scheme

LRU Flow table

overflow and

inefficient

bandwidth

allocation

Controller

workload,

packet delay,

and throughput

Unbalanced flow-table

usage at different

switches. Traditional,

inefficient bandwidth

allocation, and flow table

bloat

Enhances network

throughput and

regulates flow

table utilization

Does not consider

experimental

research to

determine the

appropriate

threshold for idle

timeout

[117] File Table

Sharing

FTS Overhead in

flow table

overflow

Number of

entries and

distance

The limited size of a flow

table results in a

significant increase in the

number of packet_in

messages between the

switch and the controller

when a table miss occurs.

It reduces the

number of control

messages and is

simple to

implement.

The victim switch

may flood the

nearby switches in

the event of a

significant attack,

leading to a DoS

attack.

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1219-1239

__

TABLE V

MITIGATING FLOW TABLE OVERFLOW ATTACKS THROUGH AGGREGATED FLOW ENTRIES MECHANISM

Ref.

Proposed
Solution

Technique
Used

Issue
Addressed

Metrics Used

Motivation

Merits

Demerits

[118] In-switch

dynamic flow

aggregation

(IDFA)

Degradation

and

repermutation

algorithms

Link delay

arising from

flow table

overflow

issue

Compression

ratio,

convergence

time, overflow

time, and

number of

redundant flow

entries.

The failure of FTRS, a

previously used method,

to generate an efficient

outcome in terms of

compression ratio,

convergence time, and

overflow rate

This method

reduces the number

of entries in the

flow table

When used in a

large-scale

network

environment,

this could

produce an

additional

overhead.

[119] Flow rule

aggregation

scheme

Best-fit

heuristic

Flow table

overflow

attack

Average delay,

packets dropped,

average

throughput, and

flow rules

The research is motivated

by the idea of using

specific QoS measures

(delay and packet loss) to

determine a routing path.

It improves

throughput while

lowering average

delay and packet

loss.

Need to consider

the Internet

traffic in the

study

[120] A cluster-

based

management

of flow entries

k-means

clustering

Flow table

overflow and

unnecessary

overhead

Throughput,

number of

clusters.

The per-flow SDN

management is

inappropriate for high-

traffic networks, as it

causes flow table

overflow and additional

processing overhead.

It minimizes the

flow table

consumption and

improves routing

performance.

Need to be tested

in a large test

bed

environment.

[121] A bit and

subset

weaving-based

flow

aggregation

Merging of

flows

Flow table

overflow

Average

compression

ratio, average

number of times

to trigger flow

aggregation, and

average

aggregation time

The per-flow

management of the flow

table cannot solve or

reduce flow table

overflow.

It resolves the flow

table problem

reasonably.

The overhead

increases with

the number of

messages

transmitted.

[122] Guaranteed

minimum

progress and

bounded

maximum

Algorithm

N/A Flow table

overbooking

isolation

guarantees

problem

(FOLA)

Minimum

progress,

maximum flow

table overflow,

network

throughput.

Degradation in network

performance and packet

losses arising from

massive flow rules

replacement when

overflow occurs.

Increase network

throughput

Need to be tested

in a large

network

environment.

[123] Agg-ExTable

scheme

HMM,

Pruning, and

Quine–

McCluskey

algorithm

Memory

overhead

Flow processing

time, match rate,

accuracy

Existing flow table

systems that ensure

isolation across flows are

ineffective because they

do not account for flow

table size.

It performs better

than existing

approaches in

terms of network

throughput

It consumes a lot

of memory and

solely addresses

TCAM

constraints.

TABLE VI

SELECTED ARTICLES’ CLASSIFICATION BASED ON

APPROACHES USED

Approaches Research Articles % of Articles

Eviction strategy [80-103] 54.54

Entry and Dynamic Timeouts [104-110] 15.91

Rerouting of Flows [111–117] 15.91

Aggregated Flows [118–123] 13.64

TABLE VII

SELECTED ARTICLES’ CLASSIFICATION BASED ON THE

DEPLOYMENT OF THE MITIGATION AND PREVENTION

MODULE

Mitigation/Prevention

Module Deployment

Research Articles

% of

Articles

Controller [80, 84, 86–88, 92–100,

102, 103, 106–116, 122]

 63.64

Switch

[81–83, 85, 89–91, 101,

104, 105, 117–121, 123]

 36.36

TABLE VIII

SELECTED ARTICLES’ CLASSIFICATION BASED ON TESTBED

ENVIRONMENT

Testbed

Hardware/

Software

Research Articles

% of

Articles

Emulation/

Simulation

Software

Self-

Developed

Software

Controller

Software

Switch

Hardware

Switch

Mininet

OMNET++

NS-3

MATLAB

OPNET

C++
C

Python

Ryu

Floodlight

POX

ODL

BEACON

ONOS

OVS

Pica83297
Switch

HP2920

Switch

P4 Switch

[80, 81, 83, 87, 88, 90, 92,

93, 95, 97, 100, 102-106,

110-112, 117-121, 123]

[115]

[101]

[94, 123]

[99, 116]

[84]

[85]

[82, 101, 113, 116]

[83, 87, 88, 93, 100, 102-

106, 109-111, 122]

[80, 95, 118, 121, 123]

[95, 117, 124]

[83, 94, 96]

[92, 97]

[81]

[80–83, 87–102, 103–106,

109–112, 115–119, 121–

124]

[84]

[84]

[85]

54.55

2.27

2.27

4.55

4.55

2.27

2.27

9.09

31.82

11.36

6.82

6.82

4.55

2.27

84.08

2.27

2.27

2.27

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1219-1239

__

TABLE IX

SELECTED ARTICLES’ CLASSIFICATION BASED ON TRAFFIC

GENERATION

Traffic

Generation

Tool / Dataset

Research Articles

% of

Articles

Traffic

Generating

Tool

Hping

Iperf

D-ITG

Scapy

TCPReplay &

Ostinato Packet

Generator

[96]

[88, 106, 111, 120]

[87, 119]

[92, 97, 100, 109]

[81]

2.27

9.09

4.55

9.09

2.27

Dataset CAIDA

Tsinghua Campus

Network Lab.

UNIV1 & UNIV2

UNIV1, UNIV2 &

MAW1

WITS ISPDSL-II

UNIBS0930 &

UNIBS1001

T3U7, T5US &

T7U3

UNIV1

Classbench & Syn

MAWI

CAIDA & MAWI

University data

Network center data

SDNLib

[82, 96]

[80]

[86, 89, 98, 101,

105-107]

[108]

[86]

[101]

[88]

[120]

[108]

[102, 110]

[114]

[114]

[122]

4.55

2.27

15.91

2.27

2.27

2.27

2.27

2.27

2.27

4.55

2.27

2.27

2.27

[3] A. Mateen, Q. Zhu, S. Afsar, and S. A. Sahil, “Effect of encryption

delay on TCP and UDP transp

[4] M. Jarschel, T. Zinner, T. Hoßfeld, P. Tran-Gia, and W. Kellerer,

“Interfaces, attributes, and use cases: A compass for SDN,” IEEE

Commun. Mag., vol. 52, no. 6, pp. 210–217, 2014, doi:

10.1109/MCOM.2014.6829966.

[5] F. Ieee et al., “Software-Defined Networking : A Comprehensive

Survey,” vol. 103, no. 1, 2015.

[6] H. Elzain and W. Yang, “Decentralizing software-defined wireless

mesh networking (D-SDWMN) control plane,” Lect. Notes Eng.

Comput. Sci., vol. 2235, 2018

[7] X. Liya, D. Anyuan, G. Mingzhu, S. Jiaoli, and G. Guangyong, “A

MADM-based handover management in software-defined 5G

network,” Eng. Lett., vol. 27, no. 4, pp. 842–849, 2019.

[8] I. S. Hwang, A. Rianto, E. Ganesan, A. F. Pakpahan, and A. T. Liem,

“A Generic Peer-to-peer File Sharing Architecture for Software-

defined TWDMA-PON,” Lect. Notes Eng. Comput. Sci., vol. 2239,

pp. 120–123, 2019.

[9] N. A. Jagadeesan and B. Krishnamachari, “Software-defined

networking paradigms in wireless networks: A survey,” ACM

Comput. Surv., vol. 47, no. 2, 2014, doi: 10.1145/2655690.

[10] H. N. Noura, R. Melki, A. Chehab, and M. M. Mansour, “A Physical

Encryption Scheme for Low-Power Wireless M2M Devices: a

Dynamic Key Approach,” Mob. Networks Appl., vol. 24, no. 2, pp.

447–463, 2019, doi: 10.1007/s11036-018-1151-7.

[11] Q. Guo, X. Guo, Y. Bai, R. Patel, E. Ipek, and E. G. Friedman,

“RESISTIVE TERNARY CONTENT ADDRESSABLE MEMORY

SYSTEMS FOR DATA-INTENSIVE COMPUTING,” 2015.

Availabe:

https://ieeexplore.ieee.org/stampPDF/getPDF.jsp?tp=&arnumber=727

4248&ref

[12] K. Mathan and T. Ravichandran, “Data Intelligent Low Power High

Performance TCAM for IP-Address Lookup Table,” Circuits Syst.,

vol. 07, no. 11, pp. 3734–3745, 2016, doi: 10.4236/cs.2016.711313.

[13] M. Rzepka, P. Borylo, A. Lason, and A. Szymanski, “PARD: Hybrid

Proactive and Reactive Method Eliminating Flow Setup Latency in

SDN,” J. Netw. Syst. Manag., vol. 28, no. 4, pp. 1547–1574, 2020,

doi: 10.1007/s10922-020-09550-z.

[14] X. Y. Miao, Q. N. Yang, C. J. Feng, R. M. Bao, K. Zhao, and L. Z.

Xiao, “DevoFlow: Scaling Flow Management for High-Performance

Networks,” Sel. Pap. Photoelectron. Technol. Comm. Conf. held

June–July 2015, vol. 9795, p. 979532, 2015, doi:

10.1117/12.2209580.

[15] N. Katta, O. Alipourfard, J. Rexford, and D. Walker, “Infinite

CacheFlow in software-defined networks,” HotSDN 2014 - Proc.

ACM SIGCOMM 2014 Work. Hot Top. Softw. Defin. Netw., pp. 175–

180, 2014, doi: 10.1145/2620728.2620734.

[16] R. Bauer and M. Zitterbart, “An Optimization-based Approach for

Flow Table Capacity Bottleneck Mitigation in Software-Defined

Networks,” 2021, [Online]. Available:

http://arxiv.org/abs/2109.08482

[17] B. Isyaku, M. S. Mohd Zahid, M. Bte Kamat, K. Abu Bakar, and F.

A. Ghaleb, “Software Defined Networking Flow Table Management

of OpenFlow Switches Performance and Security Challenges: A

Survey,” Futur. Internet, vol. 12, no. 9, p. 147, 2020, doi:

10.3390/fi12090147.

[18] E. Do Kim, Y. Choi, S. I. Lee, and H. J. Kim, “Enhanced flow table

management scheme with an LRU-based caching algorithm for

SDN,” IEEE Access, vol. 5, pp. 25555–25564, 2017, doi:

10.1109/ACCESS.2017.2771807.

[19] L. Yang and H. Zhao, “DDoS attack identification and defense using

SDN based on machine learning method,” Proc. - 2018 15th Int.

Symp. Pervasive Syst. Algorithms Networks, I-SPAN 2018, pp. 174–

178, 2019, doi: 10.1109/I-SPAN.2018.00036.

[20] M. Paliwal, D. Shrimankar, and O. Tembhurne, “Controllers in SDN:

A review report,” IEEE Access, vol. 6, no. March 2011, pp. 36256–

36270, 2018, doi: 10.1109/ACCESS.2018.2846236.

[21] M. Priyadarsini and P. Bera, “Software defined networking

architecture, traffic management, security, and placement: A survey,”

Comput. Networks, vol. 192, no. June 2020, p. 108047, 2021, doi:

10.1016/j.comnet.2021.108047.

[22] I. Conference and D. Hutchison, 11th International Conference on

Passive and Active Network Measurement, PAM 2010, vol. 6032

LNCS. 2010.

[23] S. Bera, S. Misra, and A. Jamalipour, “FlowStat: Adaptive Flow-Rule

Placement for Per-Flow Statistics in SDN,” IEEE J. Sel. Areas

Commun., vol. 37, no. 3, pp. 530–539, 2019, doi:

10.1109/JSAC.2019.2894239.

[24] S. Bera, S. Misra, and A. V. Vasilakos, “Software-Defined

Networking for Internet of Things: A Survey,” IEEE Internet Things

J., vol. 4, no. 6, pp. 1994–2008, 2017, doi:

10.1109/JIOT.2017.2746186.

[25] L. Ochoa Aday, C. Cervelló Pastor, and A. Fernández Fernández,

“Current Trends of Topology Discovery in OpenFlow-based Software

Defined Networks,” Int. J. Distrib. Sensor Netw., vol. 5, no. 2, pp. 1–

6, 2015, [Online]. Available:

http://upcommons.upc.edu/handle/2117/77672

[26] A. Shalimov, D. Zimarina, and V. Pashkov, “Advanced Study of SDN

/ OpenFlow controllers,” 2013.

[27] S. Kaur, J. Singh, and N. S. Ghumman, “Network Programmability

Using POX Controller,” Int. Conf. Commun. Comput. Syst., no.

August, p. 5, 2014, doi: 10.13140/RG.2.1.1950.6961.

[28] Z. K. Khattak, M. Awais, and A. Iqbal, “Performance evaluation of

OpenDaylight SDN controller,” Proc. Int. Conf. Parallel Distrib.

Syst. - ICPADS, vol. 2015-April, no. April 2015, pp. 671–676, 2014,

doi: 10.1109/PADSW.2014.7097868.

[29] I. Z. Bholebawa and U. D. Dalal, “Performance analysis of

SDN/openflow controllers: POX versus floodlight,” Wirel. Pers.

Commun., vol. 98, no. 2, pp. 1679–1699, 2018, doi: 10.1007/s11277-

017-4939-z.

[30] N. Gude, J. Pettit, and S. Shenker, “NOX: Towards an Operating

System for Networks”.

[31] K. Benzekki, A. El Fergougui, and A. Elbelrhiti Elalaoui, “Software-

defined networking (SDN): a survey,” Secur. Commun. Networks,

vol. 9, no. 18, pp. 5803–5833, 2016, doi: 10.1002/sec.1737.

[32] Y. Jarraya, T. Madi, and M. Debbabi, “A survey and a layered

taxonomy of software-defined networking,” IEEE Commun. Surv.

Tutorials, vol. 16, no. 4, pp. 1955–1980, 2014, doi:

10.1109/COMST.2014.2320094.

[33] A. Hakiri, A. Gokhale, P. Berthou, D. C. Schmidt, and T. Gayraud,

“Software-defined networking: Challenges and research opportunities

for future internet,” Comput. Networks, vol. 75, no. PartA, pp. 453–

471, 2014, doi: 10.1016/j.comnet.2014.10.015.

[34] S. Rao, “SDN and its use-cases-NV and NFV,” Network, vol. 2, p.

H6, 2014, [Online]. Available:

http://www.nectechnologies.in/en_TI/pdf/NTI_whitepaper_SDN_NF

V.pdf

[35] A. Blenk, A. Basta, J. Zerwas, M. Reisslein, and W. Kellerer,

“Control Plane Latency with SDN Network Hypervisors: The Cost of

Virtualization,” IEEE Trans. Netw. Serv. Manag., vol. 13, no. 3, pp.

366–380, 2016, doi: 10.1109/TNSM.2016.2587900.

[36] L. Leonardi, L. Lo Bello, and S. Aglianò, “Priority-based bandwidth

management in virtualized software-defined networks,” Electron.,

vol. 9, no. 6, pp. 1–21, 2020, doi: 10.3390/electronics9061009.

[37] R. D. Corin, M. Gerola, R. Riggio, F. De Pellegrini, and E. Salvadori,

“VeRTIGO: Network virtualization and beyond,” Proc. - Eur. Work.

Softw. Defin. Networks, EWSDN 2012, no. March 2015, pp. 24–29,

2012, doi: 10.1109/EWSDN.2012.19.

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1219-1239

__

[38] P. Skoldstrom and W. John, “Implementation and evaluation of a

carrier-grade openflow virtualization scheme,” Proc. - 2013 2nd Eur.

Work. Softw. Defin. Networks, EWSDN 2013, pp. 75–80, 2013, doi:

10.1109/EWSDN.2013.19.

[39] E. Salvadori, R. D. Corin, A. Broglio, and M. Gerola, “Generalizing

virtual network topologies in OpenFlow-based networks,”

GLOBECOM - IEEE Glob. Telecommun. Conf., no. March 2015,

2011, doi: 10.1109/GLOCOM.2011.6134525.

[40] R. Sherwood, G. Gibb, and M. Kobayashi, “Carving research slices

out of your production networks with open flow,” Comput. Commun.

Rev., vol. 40, no. 1, pp. 129–130, 2010, doi:

10.1145/1672308.1672333.

[41] Z. Bozakov and P. Papadimitriou, “AutoSlice: Automated and

scalable slicing for software-defined networks,” Conex. Student 2012

- Proc. ACM Conf. 2012 Conex. Student Work., no. December, pp. 3–

4, 2012, doi: 10.1145/2413247.2413251.

[42] A. Al-Shabibi, M. de Leenheer, M. Gerola, A. Koshibe, W. Snow,

and G. Parulkar, “OpenVirteX: A Network Hypervisor,” Open Netw.

Summit 2014 - Res. Track, ONS 2014, 2014.

[43] A. Blenk, A. Basta, and W. Kellerer, “HyperFlex: An SDN

virtualization architecture with flexible hypervisor function

allocation,” Proc. 2015 IFIP/IEEE Int. Symp. Integr. Netw. Manag.

IM 2015, pp. 397–405, 2015, doi: 10.1109/INM.2015.7140316.

[44] G. Yang, C. Shin, Y. Yoo, and C. Yoo, “A Case for SDN-based

Network Virtualization,” Proc. - IEEE Comput. Soc. Annu. Int. Symp.

Model. Anal. Simul. Comput. Telecommun. Syst. MASCOTS, [2021,

doi: 10.1109/MASCOTS53633.2021.9614291.

[45] Y. Yoo, G. Yang, M. Kang, and C. Yoo, “Adaptive control channel

traffic shaping for virtualized SDN in clouds,” IEEE Int. Conf. Cloud

Comput. CLOUD, vol. 2020-Octob, pp. 22–24, 2020, doi:

10.1109/CLOUD49709.2020.00013.

[46] D. Saxena, V. Raychoudhury, N. Suri, C. Becker, and J. Cao, “Named

Data Networking: A survey,” Comput. Sci. Rev., vol. 19, no. January

2016, pp. 15–55, 2016, doi: 10.1016/j.cosrev.2016.01.001.

[47] N. Aloulou, M. Ayari, M. F. Zhani, and L. Saidane, “A popularity-

driven controller-based routing and cooperative caching for named

data networks,” 2015 Int. Conf. Netw. Futur. NOF 2015, 2015, doi:

10.1109/NOF.2015.7333300.

[48] O. Karrakchou, N. Samaan, and A. Karmouch, “ENDN: An Enhanced

NDN Architecture with a P4-programmabIe Data Plane,” ICN 2020 -

Proc. 7th ACM Conf. Information-Centric Netw., pp. 1–11, 2020, doi:

10.1145/3405656.3418720.

[49] A. Lara, A. Kolasani, and B. Ramamurthy, “Network innovation

using open flow: A survey,” IEEE Commun. Surv. Tutorials, vol. 16,

no. 1, pp. 493–512, 2014, doi: 10.1109/SURV.2013.081313.00105.

[50] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and T.

Turletti, “A survey of software-defined networking: Past, present, and

future of programmable networks,” IEEE Commun. Surv. Tutorials,

vol. 16, no. 3, pp. 1617–1634, 2014, doi:

10.1109/SURV.2014.012214.00180.

[51] L. C. Costa et al., “OpenFlow data planes performance evaluation,”

Perform. Eval., vol. 147, p. 102194, 2021, doi:

10.1016/j.peva.2021.102194.

[52] Siamak Azodolmolky, Software Defined Networking with OpenFlow,

illustration ed. Packt Publishing 2013, pp. 62-138.

[53] Open Networking Foundation, “OpenFlow Switch Specification

(Version 1.5.1),” Current, vol. 0, pp. 1–36, 2015, [Online]. Available:

https://www.opennetworking.org/images/stories/downloads/sdn-

resources/onf-specifications/openflow/openflow-switch-v1.5.1.pdf

[54] “Pantou: Openflow 1.0 for openwrt.

http://www.openflow.org/wk/index.php/ Open- Flow 1.0 for

OpenWRT. Available:

https://www.bing.com/search?q=Pantou%3A+Openflow+1.0+for+op

enwrt.+http%3A%2F%2Fwww.openflow.org%2Fwk%2Findex.php%

2F+Open-

+Flow+1.0+for+OpenWRT.&cvid=bb8ca5379f5446419bf1769c4586

bef5&aqs=edge..69i57j69i58.1938j0j9&FORM=ANAB01&PC=U53

1 (accessed May 31, 2022).

[55] E. L. Fernandes et al., “The road to BOFUSS: The basic OpenFlow

userspace software switch,” J. Netw. Comput. Appl., vol. 165, no.

May, p. 102685, 2020, doi: 10.1016/j.jnca.2020.102685.

[56] T. Bakhshi, “State of the art and recent research advances in software

defined networking,” Wirel. Commun. Mob. Comput., vol. 2017,

2017, doi: 10.1155/2017/7191647.

[57] P. Software defined Networks: A comprehensive

approach.Goransson, C. Black, and T. Culver, Software defined

Networks: A comprehensive approach., vol. 53, no. 9. 2017.

[58] O. Blial, M. Ben Mamoun, and R. Benaini, “An Overview on SDN

Architectures with Multiple Controllers,” J. Comput. Networks

Commun., vol. 2016, 2016, doi: 10.1155/2016/9396525.

[59] Y. Su, T. Peng, X. Zhong, and L. Zhang, “Matching model of flow

table for networked big data,” pp. 1–14, 2017, doi: 10.1007/978-981-

13-6834-9_5.

[60] D. Kreutz, F. M. V. Ramos, and P. Verissimo, “Towards secure and

dependable software-defined networks,” HotSDN 2013 - Proc. 2013

ACM SIGCOMM Work. Hot Top. Softw. Defin. Netw., pp. 55–60,

2013, doi: 10.1145/2491185.2491199.

[61] R. Klöti, V. Kotronis, and P. Smith, “OpenFlow: A security analysis,”

Proc. - Int. Conf. Netw. Protoc. ICNP, 2013, doi:

10.1109/ICNP.2013.6733671.

[62] Q. Li, J. Cao, M. Xu, and K. Sun, “Flow Table Overflow Attacks,”

Encycl. Wirel. Networks, pp. 487–489, 2020, doi: 10.1007/978-3-319-

78262-1_297.

[63] S. Gao, Z. Li, B. Xiao, and G. Wei, “Security Threats in the Data

Plane of Software-Defined Networks,” IEEE Netw., vol. 32, no. 4, pp.

108–113, 2018, doi: 10.1109/MNET.2018.1700283.

[64] L. Xinlong and C. Zhibin, “DDoS Attack Detection by Hybrid Deep

Learning Methodologies,” Secur. Commun. Networks, vol. 2022,

2022, doi: 10.1155/2022/7866096.

[65] T. Ren and Y. Xu, “Analysis of the New Features of OpenFlow 1.4,”

Proc. 2nd Int. Conf. Information, Electron. Comput., vol. 59, no.

Icieac, pp. 73–77, 2014, doi: 10.2991/icieac-14.2014.17.

[66] Open Networking Foundation, “OpenFlow 1.4 Specifications,” Onf,

vol. 0, pp. 1–36, 2013.

[67] S. Khorsandroo, A. G. Sánchez, A. S. Tosun, J. M. Arco, and R.

Doriguzzi-Corin, “Hybrid SDN evolution: A comprehensive survey

of the state-of-the-art,” Comput. Networks, vol. 192, p. 107981, 2021,

doi: 10.1016/j.comnet.2021.107981.

[68] P. Bosshart et al., “P4: Programming protocol-independent packet

processors. Computer Communication Review, 44(3),” Comput.

Commun. Rev., vol. 44, no. 3, pp. 87–95, 2014.

[69] Kfoury Elie, Crichigno Jorge, and Bou-Harb Elias, “Exhaustive P4

survey,” vol. 4, 2017.

[70] Y. Gao and Z. Wang, “A Review of P4 Programmable Data Planes

for Network Security,” Mob. Inf. Syst., vol. 2021, 2021, doi:

10.1155/2021/1257046.

[71] K. Kannan and S. Banerjee, “Compact TCAM: Flow entry

compaction in TCAM for power aware SDN,” Lect. Notes Comput.

Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 7730 LNCS, pp. 439–444, 2013, doi:

10.1007/978-3-642-35668-1_32.

[72] S. Banerjee and K. Kannan, “Tag-In-Tag: Efficient flow table

management in SDN switches,” Proc. 10th Int. Conf. Netw. Serv.

Manag. CNSM 2014, pp. 109–117, 2014, doi:

10.1109/CNSM.2014.7014147.

[73] C. R. Meiners, A. X. Liu, and E. Torng, “Bit weaving: A non-prefix

approach to compressing packet classifiers in TCAMs,” IEEE/ACM

Trans. Netw., vol. 20, no. 2, pp. 488–500, 2012, doi:

10.1109/TNET.2011.2165323.

[74] M. Malboubi, L. Wang, C. N. Chuah, and P. Sharma, “Intelligent

SDN based traffic (de)Aggregation and Measurement Paradigm

(iSTAMP),” Proc. - IEEE INFOCOM, pp. 934–942, 2014, doi:

10.1109/INFOCOM.2014.6848022.

[75] W. Braun and M. Menth, “Wildcard compression of inter-domain

routing tables for OpenFlow-based software-defined networking,”

Proc. - 2014 3rd Eur. Work. Software-Defined Networks, EWSDN

2014, vol. 12307, no. September, pp. 25–30, 2014, doi:

10.1109/EWSDN.2014.23.

[76] M. Rifai et al., “Too many SDN rules? compress them with

MINNIE,” 2015 IEEE Glob. Commun. Conf. GLOBECOM 2015, pp.

0–6, 2015, doi: 10.1109/GLOCOM.2014.7417661.

[77] T. A. Pascoal, I. E. Fonseca, and V. Nigam, “Slow denial-of-service

attacks on software defined networks,” Comput. Networks, vol. 173,

no. October 2019, 2020, doi: 10.1016/j.comnet.2020.107223.

[78] C. R. Meiners, A. X. Liu, and E. Torng, “TCAM Razor: A systematic

approach towards minimizing packet classifiers in TCAMs,” Proc. -

Int. Conf. Netw. Protoc. ICNP, vol. 18, no. 2, pp. 266–275, 2007, doi:

10.1109/ICNP.2007.4375857.

[79] G. Yang, B. Yu, W. Jeong, and C. Yoo, “FlowVirt : Flow Rule

Virtualization for Dynamic Scalability of Programmable Network

Virtualization,” 2018 IEEE 11th Int. Conf. Cloud Comput., pp. 350–

358, 2018, doi: 10.1109/CLOUD.2018.00051.

[80] M. Zhang, J. Bi, J. Bai, Z. Dong, Y. Li, and Z. Li, “FTGuard: A

priority-aware strategy against the flow table overflow attack in

SDN,” SIGCOMM Posters Demos 2017 - Proc. 2017 SIGCOMM

Posters Demos, Part SIGCOMM 2017, pp. 141–143, 2017, doi:

10.1145/3123878.3132015.

[81] N. Kim, D. Kim, Y. Jang, C. Lee, and B. D. Lee, “A new flow entry

replacement scheme considering traffic characteristics in software-

defined networks,” Appl. Sci., vol. 10, no. 10, 2020, doi:

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1219-1239

__

10.3390/app10103590.

[82] X. Li and Y. Huang, “A flow table with two-stage timeout mechanism

for SDN switches,” Proc. - 21st IEEE Int. Conf. High Perform.

Comput. Commun. 17th IEEE Int. Conf. Smart City 5th IEEE Int.

Conf. Data Sci. Syst. HPCC/SmartCity/DSS 2019, pp. 1804–1809,

2019, doi: 10.1109/HPCC/SmartCity/DSS.2019.00248.

[83] H. Nurwarsito, “Implementation of WLRU Algorithm to Improve

Scalability in Software Defined Network,” Proc. SIET ’20 5th Int.

Conf. Sustain. Inf. Eng. Technol., pp. 165–170, 2020, doi:

h?ps://doi.org/10.1145/3427423.3427444. 1.

[84] B. Yan, Y. Xu, and H. J. Chao, “Adaptive Wildcard Rule Cache

Management for Software-Defined Networks,” IEEE/ACM Trans.

Netw., vol. 26, no. 2, pp. 962–975, 2018, doi:

10.1109/TNET.2018.2815983.

[85] W. K. Jia, R. Ying, and X. Shi, “Deploying a Fast Detection and

Eviction Mechanism of Invalid Connection-Oriented Flow-Entries in

SDNs: A Scalability Approach,” IEEE Access, vol. 8, pp. 208669–

208682, 2020, doi: 10.1109/ACCESS.2020.3036437.

[86] S. Shirali-Shahreza and Y. Ganjali, “Delayed Installation and

Expedited Eviction: An Alternative Approach to Reduce Flow Table

Occupancy in SDN Switches,” IEEE/ACM Trans. Netw., vol. 26, no.

4, pp. 1547–1561, 2018, doi: 10.1109/TNET.2018.2841397.

[87] U. Humayun, M. Hamdan, and M. N. Marsono, “Early Flow Table

Eviction Impact on Delay and Throughput in Software-Defined

Networks,” no. August, pp. 7–12, 2021, doi:

10.1109/iccsce52189.2021.9530933.

[88] H. Choi, S. M. Raza, M. Kim, and H. Choo, “UDP flow entry eviction

strategy using q-learning in software defined networking,” 16th Int.

Conf. Netw. Serv. Manag. CNSM 2020, 2nd Int. Work. Anal. Serv.

Appl. Manag. AnServApp 2020 1st Int. Work. Futur. Evol. Internet

Protoc. IPFutu, no. 2019, 2020, doi:

10.23919/CNSM50824.2020.9269098.

[89] R. Challa, Y. Lee, and H. Choo, “Intelligent eviction strategy for

efficient flow table management in OpenFlow Switches,” IEEE

NETSOFT 2016 - 2016 IEEE NetSoft Conf. Work. Software-Defined

Infrastruct. Networks, Clouds, IoT Serv., pp. 312–318, 2016, doi:

10.1109/NETSOFT.2016.7502427.

[90] M. K. A. Khan, V. K. Sah, P. Mudgal, and S. Hegde, “Minimizing

Latency Due to Flow Table Overflow by Early Eviction of Flow

Entries in SDN,” 2018 9th Int. Conf. Comput. Commun. Netw.

Technol. ICCCNT 2018, pp. 1–4, 2018, doi:

10.1109/ICCCNT.2018.8493926.

[91] H. Luo, W. Li, Y. Qian, and L. Dou, “Mitigating SDN Flow Table

Overflow,” Proc. - Int. Comput. Softw. Appl. Conf., vol. 1, pp. 821–

822, 2018, doi: 10.1109/COMPSAC.2018.00137.

[92] W. You, K. Qian, and Y. Qian, “Software-defined network flow table

overflow attacks and countermeasures,” Int. J. Soft Comput. Netw.,

vol. 1, no. 1, p. 70, 2016, doi: 10.1504/ijscn.2016.077044.

[93] J. Xu, L. Wang, C. Song, and Z. Xu, “An Effective Table-Overflow

Attack and Defense in Software-Defined Networking,” Proc. - 2019

IEEE 44th Local Comput. Networks Symp. Emerg. Top. Networking,

LCN Symp. 2019, pp. 10–17, 2019, doi:

10.1109/LCNSymposium47956.2019.9000663.

[94] G. Huang and H. Y. Youn, “Proactive eviction of flow entry for SDN

based on hidden Markov model,” Front. Comput. Sci., vol. 14, no. 4,

2020, doi: 10.1007/s11704-018-8048-2.

[95] P. T. Duy, L. D. An, and V. H. Pham, “Mitigating flow table

overloading attack with controller-based flow filtering strategy in

SDN,” ACM Int. Conf. Proceeding Ser., pp. 154–158, 2019, doi:

10.1145/3371676.3371706.

[96] T. Xu, D. Gao, P. Dong, C. H. Foh, and H. Zhang, “Mitigating the

table-overflow attack in software-defined networking,” IEEE Trans.

Netw. Serv. Manag., vol. 14, no. 4, pp. 1086–1097, 2017, doi:

10.1109/TNSM.2017.2758796.

[97] Y. Qian, W. You, and K. Qian, “OpenFlow flow table overflow

attacks and countermeasures,” EUCNC 2016 - Eur. Conf. Networks

Commun., pp. 205–209, 2016, doi: 10.1109/EuCNC.2016.7561033.

[98] H. Yang and G. F. Riley, “Machine learning based flow entry eviction

for OpenFlow switches,” Proc. - Int. Conf. Comput. Commun.

Networks, ICCCN, vol. 2018-July, pp. 1–6, 2018, doi:

10.1109/ICCCN.2018.8487362.

[99] Z. Guo, R. Liu, Y. Xu, A. Gushchin, A. Walid, and H. J. Chao,

“STAR: Preventing flow-table overflow in software-defined

networks,” Comput. Networks, vol. 125, pp. 15–25, 2017, doi:

10.1016/j.comnet.2017.04.046.

[100]M. Lu, W. Deng, and Y. Shi, “TF-IdleTimeout: Improving efficiency

of TCAM in SDN by dynamically adjusting flow entry lifecycle,”

2016 IEEE Int. Conf. Syst. Man, Cybern. SMC 2016 - Conf. Proc., no.

61471060, pp. 2681–2686, 2017, doi: 10.1109/SMC.2016.7844645.

[101]H. Yang, G. F. Riley, and D. M. Blough, “STEREOS: Smart Table

EntRy Eviction for OpenFlow Switches,” IEEE J. Sel. Areas

Commun., vol. 38, no. 2, pp. 377–388, 2020, doi:

10.1109/JSAC.2019.2959184.

[102]P. Nallusamy, S. Saravanen, and M. Krishnan, “Decision Tree-Based

Entries Reduction scheme using multi-match attributes to prevent

flow table overflow in SDN environment,” Int. J. Netw. Manag., vol.

31, no. 4, pp. 1–20, 2021, doi: 10.1002/nem.2141.

[103]S. Xie, C. Xing, G. Zhang, and J. Zhao, “A Table Overflow LDoS

Attack Defending Mechanism in Software-Defined Networks,” Secur.

Commun. Networks, vol. 2021, 2021, doi: 10.1155/2021/6667922.

[104]B. Sooden and M. R. Abbasi, “A Dynamic Hybrid Timeout Method to

Secure Flow Tables Against DDoS Attacks in SDN,” ICSCCC 2018 -

1st Int. Conf. Secur. Cyber Comput. Commun., pp. 29–34, 2018, doi:

10.1109/ICSCCC.2018.8703307.

[105]B. Isyaku, M. B. Kamat, K. Bin Abu Bakar, M. S. Mohd Zahid, and F.

A. Ghaleb, “IHTA: Dynamic Idle-Hard Timeout Allocation

Algorithm based OpenFlow Switch,” ISCAIE 2020 - IEEE 10th Symp.

Comput. Appl. Ind. Electron., pp. 170–175, 2020, doi:

10.1109/ISCAIE47305.2020.9108803.

[106]B. Isyaku, K. A. Bakar, M. S. M. Zahid, and M. N. Yusuf, “Adaptive

and hybrid idle–hard timeout allocation and flow eviction mechanism

considering traffic characteristics,” Electron., vol. 9, no. 11, pp. 1–18,

2020, doi: 10.3390/electronics9111983.

[107]Y. Shen, C. Wu, Q. Cheng, and D. Kong, “AFTM: An Adaptive Flow

Table Management Scheme for OpenFlow Switches,” in 2020 IEEE

22nd International Conference on High Performance Computing and

Communications; IEEE 18th International Conference on Smart City;

IEEE 6th International Conference on Data Science and Systems

(HPCC/SmartCity/DSS), Dec. 2020, pp. 917–922. doi:

10.1109/HPCC-SmartCity-DSS50907.2020.00122.

[108]Q. Li, N. Huang, D. Wang, X. Li, Y. Jiang, and Z. Song, “HQTimer:

A Hybrid Q-Learning-Based Timeout Mechanism in Software-

Defined Networks,” IEEE Trans. Netw. Serv. Manag., vol. 16, no. 1,

pp. 156–166, 2019, doi: 10.1109/TNSM.2018.2890754.

[109]S. K. Noh, M. Kang, and M. Park, “Protection against Flow Table

Overflow Attack in Software Defined Networks,” Int. Conf. Inf.

Netw., vol. 2021-Janua, pp. 486–490, 2021, doi:

10.1109/ICOIN50884.2021.9333889.

[110]N. Priyanka, T. R. Reshmi, and K. Murugan, “CEOF: Enhanced

Clustering-based Entries Optimization scheme to prevent Flow table

overflow,” Wirel. Networks, vol. 28, no. 1, pp. 69–83, 2022, doi:

10.1007/s11276-021-02823-8.

[111]M. Soylu, L. Guillen, S. Izumi, T. Abe, and T. Suganuma, “NFV-

GUARD: Mitigating Flow Table-Overflow Attacks in SDN Using

NFV,” Proc. 2021 IEEE Conf. Netw. Softwarization Accel. Netw.

Softwarization Cogn. Age, NetSoft 2021, pp. 263–267, 2021, doi:

10.1109/NetSoft51509.2021.9492584.

[112]B. Yuan, D. Zou, S. Yu, H. Jin, W. Qiang, and J. Shen, “Defending

against flow table overloading attack in software-defined networks,”

IEEE Trans. Serv. Comput., vol. 12, no. 2, pp. 231–246, 2019, doi:

10.1109/TSC.2016.2602861.

[113]X. Zhao, Q. Wang, Z. Wu, and R. Guo, “Method for Overflow Attack

Defense of SDN Network Flow Table Based on Stochastic

Differential Equation,” Wirel. Pers. Commun., vol. 117, no. 4, pp.

3431–3447, 2021, doi: 10.1007/s11277-021-08086-y.

[114]J. Xu, L. Wang, C. Song, and Z. Xu, “Proactive Mitigation to Table-

Overflow in Software-Defined Networking,” Proc. - IEEE Symp.

Comput. Commun., vol. 2018-June, pp. 719–725, 2018, doi:

10.1109/ISCC.2018.8538670.

[115]I. H. Abdulqadder, D. Zou, I. T. Aziz, and B. Yuan, “Validating User

Flows to Protect Software Defined Network Environments,” Secur.

Commun. Networks, vol. 2018, 2018, doi: 10.1155/2018/1308678.

[116]Z. Guo et al., “Balancing flow table occupancy and link utilization in

software-defined networks,” Futur. Gener. Comput. Syst., vol. 89, pp.

213–223, 2018, doi: 10.1016/j.future.2018.06.011.

[117]S. Qiao, C. Hu, X. Guan, and J. Zou, “Taming the flow table overflow

in OpenFlow switch,” SIGCOMM 2016 - Proc. 2016 ACM Conf.

Spec. Interes. Gr. Data Commun., pp. 591–592, 2016, doi:

10.1145/2934872.2959063.

[118]T. Y. Chao, K. Wang, L. Wang, and C. W. Lee, “In-switch dynamic

flow aggregation in software defined networks,” IEEE Int. Conf.

Commun., pp. 2–7, 2017, doi: 10.1109/ICC.2017.7997429.

[119]S. Iot, N. Saha, S. Misra, and S. Bera, “QoS-Aware Adaptive Flow-

rule Aggregation in Software-Defined IoT,” pp. 2–7, 2018.

[120]Y. F. Liu, K. C. J. Lin, and C. C. Tseng, “Dynamic Cluster-based

Flow Management for Software Defined Networks,” IEEE Trans.

Serv. Comput., vol. 1374, no. c, pp. 1–11, 2019, doi:

10.1109/TSC.2019.2943852.

[121]T. H. Tsai, K. Wang, and T. Y. Chao, “Dynamic flow aggregation in

SDNs for application-aware routing,” 2016 10th Int. Symp. Commun.

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1219-1239

__

Syst. Networks Digit. Signal Process. CSNDSP 2016, pp. 6–10, 2016,

doi: 10.1109/CSNDSP.2016.7573946.

[122]T. W. Chang, Z. H. Huang, Y. J. Chang, J. J. Kuo, and M. J. Tsai,

“Isolation Guarantees with Flow Table Overflow in Software-Defined

Networks,” 2020 IEEE Glob. Commun. Conf. GLOBECOM 2020 -

Proc., pp. 0–5, 2020, doi:

10.1109/GLOBECOM42002.2020.9322620.

[123]C. Wang and H. Y. Youn, “Entry aggregation and early match using

hidden markov model of flow table in SDN,” Sensors (Switzerland),

vol. 19, no. 10, 2019, doi: 10.3390/s19102341.

[124]F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN Control:

Survey, Taxonomy, and Challenges,” IEEE Commun. Surv. Tutorials,

vol. 20, no. 1, pp. 333–354, 2018, doi:

10.1109/COMST.2017.2782482.

[125]K. Sood, S. Yu, and Y. Xiang, “Performance analysis of software-

defined network switch using M/Geo/1 model,” IEEE Commun. Lett.,

vol. 20, no. 12, pp. 2522–2525, 2016, doi:

10.1109/LCOMM.2016.2608894.

[126]H. G. Ahmed and R. Ramalakshmi, “Performance Analysis of

Centralized and Distributed SDN Controllers for Load Balancing

Application,” Proc. 2nd Int. Conf. Trends Electron. Informatics,

ICOEI 2018, no. May, pp. 758–764, 2018, doi:

10.1109/ICOEI.2018.8553946.

[127]S. Kaur, K. Kumar, N. Aggarwal, and G. Singh, “A comprehensive

survey of DDoS defense solutions in SDN: Taxonomy, research

challenges, and future directions,” Comput. Secur., vol. 110, p.

102423, 2021, doi: 10.1016/j.cose.2021.102423.

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1219-1239

__

