
 

ABSTRACT—Software-defined networking (SDN) is a modern 

paradigm leveraging software programmability to enhance 

communication networks, garnering significant attention and 

undergoing substantial development due to its diverse 

applications. One key challenge in SDN lies in managing 

increasing traffic while avoiding flow table overflow, particularly 

due to the limited capacity of Ternary Content Addressable 

Memory (TCAM) in OpenFlow switches. This paper presents a 

Systematic Literature Review (SLR) that analyzes various 

approaches to defending against flow table overflow in SDN. 

Employing a structured approach, we sift through a substantial 

corpus of research, distilling it into 44 noteworthy articles 

published from 2015 to the present. We provide an overview of 

strategies to mitigate flow table overflow attacks, including 

eviction strategies, dynamic timeout mechanisms, flow rerouting, 

and aggregated flow entries. Additionally, we analyze mitigation 

approaches based on deployment strategies, testbed environments, 

and traffic generation methods. In conclusion, we identify research 

gaps and challenges, laying the groundwork for future 

investigations in this domain. 

 
Index Terms—data plane, flow table, flow table attacks, 

OpenFlow, software-defined network 

 

I INTRODUCTION 

he digital age is steering in an era where the demands 

for Cloud Computing, Big Data, and the Internet of 

Things (IoT) are reshaping the landscape of network 

services. This transformation is driven by the increasing 

need for large-scale data centers and the exponential growth 

of big data processing, catalyzing a shift towards more 

efficient and intelligent networking architectures [1]. 

Among these, SDN emerges as a revolutionary concept that 

leverages software programmability to monitor, regulate, 

and enhance communication networks [2],[3].  
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Furthermore, the  flexibility of SDN simplifies the 

integration of new functionalities into the network, 

facilitating rapid technological advancements and significant 

growth [4]–[8]. DN achieves this by dividing networks into 

layers or planes, including the data plane (forwarding 

elements) and the control plane (controller), thereby 

introducing innovation, flexibility, centralization, 

virtualization, and programmability into networks [9], [10]. 

However, the implementation of SDN is not without 

challenges. For instance, OpenFlow-enabled switches, 

pivotal to SDN architecture, rely on Ternary Content 

Addressable Memory (TCAM) [11] and TCAM's high cost 

and exceptionally high power consumption inherently limit 

its capacity [12]. While commercial SDN switches have 

made strides in storing hundreds of thousands of flow 

entries, managing the escalating traffic presents a significant 

challenge. The necessity to install a substantial number of 

flow entries to accommodate this growth can lead to flow 

table overflow. Proactive mechanisms that install flow 

entries before the arrival of flows offer a potential solution 

to this issue. Nevertheless, implementing such mechanisms 

requires a deep understanding of traffic distribution and 

properties to ensure satisfactory network performance [13]. 

However, for dynamic applications where flow prediction is 

impractical, a reactive approach to flow entry installation 

proves more suitable. The hard timeout approach, tailored 

for short-lived flows which frequently populate networks, 

effectively manages such flows. Meanwhile, an idle timeout 

strategy accommodates other types of flow entries. Many 

researchers have embraced the flow entry eviction approach 

based on idle timeout, leading to enhanced flow table 

utilization and reduced controller involvement in entry 

removal. Nonetheless, this method may not effectively 

handle elephant flows [14], [15].  

 

Moreover, flow delegation, a novel approach for 

addressing flow table capacity constraints, involves 

dynamically redistributing flow rules from a fully utilized 

switch to nearby switches with available capacity, a strategy 

explored by researchers [16]. Flow table overflow occurs 

when attackers consume the flow tables housing the 

controller's rules for managing packet flows, resulting in a 

Denial of Service (DoS) scenario that severely impacts 

network performance. Several surveys in the literature have 

addressed various flow table challenges and aspects, such as 

flow table management, challenges, and solutions [17], 

enhancing the limited flow table [18],[19].  

To this end, earlier SDN review efforts have neglected to 

delve into approaches for mitigating flow table overflow, as 

no single survey has comprehensively tackled this issue. As 
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a result, this survey presents a comprehensive examination 

of flow table overflow, detailing various mitigation 

approaches. 

 

A. Contributions 

 Unlike traditional review methodologies, this study 

adopts a distinctly defined approach by employing a SLR 

methodology. This rigorous method ensures the inclusion of 

all high-quality publications and mitigates selection bias. To 

enhance the identification of relevant research studies, the 

SLR initiates with a meticulous search technique. Selected 

articles are scrutinized for solutions pertaining to the study's 

queries, while unsuitable papers are excluded based on 

abstract, title, full text, and publication year criteria. The 

main contributions of this paper are:   

1. Identify high-quality research publications on flow table 

overflow in SDN. 

2. Present detailed approaches to combat flow table 

overflow in SDN, including experimental details. 

3. Present future perspective. 
 

The rest of this paper is organized as follows: Section 2 

outlines the stages of the SLR. Section 3 presents the 

overview of SDN, with a focus on the data plane and its 

forwarding components. Section 4 analyzes various 

approaches to prevent flow table overflow. Section 5 

identifies research gaps. Finally, section 6 concludes the 

study. 

 

II   SURVEY PROTOCOL 

A SLR serves to find and appropriately evaluate 

published articles related to a given research domain, 

utilizing a well-defined and structured approach. SLR helps 

in this work to reduce a large volume of papers into a 

manageable number for informed decision-making on flow 

table overflow, causes of flow table overflow, flow entry 

eviction approaches, and the results. Additionally, this 

review seeks to identify new and future research directions 

by pinpointing existing gaps in the literature. 

 

B. Research Questions Formulation 

A crucial aspect of this study is the design of research 

questions. Hence, the study addresses the following research 

questions through a comprehensive assessment and 

thorough critique of the selected articles: 

RQ1: What is the overview of SDN? (Section 3). 

RQ2: What constitutes the flow table, and what are the 

causes and effects of flow table overflow? (Section 4). 

RQ3: What are the existing solutions to flow table overflow 

attacks? (Section 5). 

RQ4: What issues have been addressed regarding overflow 

attacks in a flow table? (Section 6). 

RQ5: What are the research gaps in the existing approaches, 

including their challenges and limitations? (Section 7).  

This review focuses on developing and responding to the 

listed research questions and critically analyzing the various 

approaches to flow table overflow defense used in SDN. In 

the first question, RQ1, we briefly provide an overview of 

SDN. In RQ2, we categorize approaches to detecting, 

preventing, and mitigating attacks based on the proposed 

method, testing platform, and proposed technique. In RQ3, 

we present literature gaps identified in the existing articles 

and list issues related to flow table overflow, as addressed in 

RQ4. Additionally, we outline the main research issues that 

would motivate researchers to conduct this type of study in 

RQ5. 

 

C. The Search Strategy              

The search strategy includes a set of databases to ensure 

the inclusion of all relevant articles. The search strategy 

initially consults four digital libraries: ACM, IEEE Xplore, 

ScienceDirect, and Springer, and concludes with the 

academic search engine Google Scholar. Including Google 

Scholar ensures coverage all relevant scientific studies. The 

keywords used for the search are related to SDN only: 

“Flow Table Overflow” OR “Flow entries eviction” OR 

“Prevention of Flow Table Overflow” OR “Mechanism to 

Prevent Flow Table Overflow” OR “Flow Table Overload”.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

Fig 1. The overall process of the systematic review 
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D. The Quality Assessment             

 The purpose of the quality evaluation is to identify high-

quality research articles. The evaluation process entailed 

thorough examination of each article, resulting in the 

selection of 44 research papers. Evaluation criteria 

encompassed the following: Is the problem statement 

sufficiently specific? Does the study offer guidance on 

implementing the research? Is the methodology clearly 

articulated? Are the results presented in a lucid manner? Can 

the research effectively address the research questions?  

      

E. Extraction of Data                 

 Each academic paper underwent meticulous scrutiny to 

extract essential information. The research extracted and 

utilized details including the title, authors, problem 

addressed, proposed solutions, simulation platform, utilized 

topology (if applicable), metric employed, motivation, and 

benefits. Table 1 illustrates the number of research 

publications at each stage of the evaluation process. 

 

TABLE I 

NUMBER OF RESEARCH PAPERS AT EACH PHASE OF THE REVIEW ACTIVITY 

Search 

String 

Phase 

1 

Phase 

2 

Phase 

3 

Phase 

4 

Phase 

5 

Phase 

6 

ACM 114 113 53 13 6 6 

Google 

Scholar 
91 89 60 36 16 14 

IEEE 

Xplore 
389 350 107 31 22 20 

Science 

Direct 
123 111 30 3 2 2 

Springer 77 67 23 3 3 2 

Total 794 730 273 86 49 44 

 

III  AN OVERVIEW OF SDN 

This section presents the SDN architecture and its layers. 

 

A. SDN Architecture   

 SDN represents a network technology that facilitates the 

efficient and effective management of heterogeneous 

networks. It addresses the limitations of traditional network 

design, which struggles to accommodate the growing 

demand for deploying diverse applications with real-time 

communication requirements. This innovative networking 

paradigm involves relocating control modules from switches 

and routers to a centralized entity known as the controller 

[20],allowing for better resource utilization. This separation 

allows network administrators and operators to make better 

use of network resources and deploy resources more easily. 

Key characteristics of SDN include centralized control 

management, network automation, virtualization, ease of 

programmability, openness, and simplified devices [21]. 

Designers created SDN architecture (Figure 2) to enable the 

rapid development and deployment of network services and 

applications. SDN developers write computer network 

programs or code at the controller to manage the network in 

an OpenFlow-based SDN deployment. The controller is the 

brain of the network, which communicates with the 

Switches’ OpenFlow agents to direct how to set up the data 

plane. Achieving this involves issuing flow modification 

instructions to insert rules in the forwarding tables [22]. In 

SDN, there are northbound and southbound application 

program interfaces (APIs) in addition to the layers [23],[24]. 

 

Fig 2. The Architecture of SDN (Adapted from [25] with copyright 

permission). 

1). Data Layer: The data layer, also called the infrastructural 

layer, consists of network nodes that forward traffic and 

data. It consists of OpenFlow-enabled switches that manage 

traffic in line with the controller’s instructions.  

 

2). Control Layer : The control plane, also known as the 

controller, acts as a bridge between the applications and the 

data plane. Prominent SDN controllers include Ryu [26], 

POX [27], OpenDayLight [28], Floodlight [29], NOX [30], 

etc. The northbound interface in SDN links the controller to 

the application. It also communicates with the switches 

through the southbound interface [31]. One of the 

controllers’ tasks is to produce flow rules, and the switches 

route traffic based on the flow rules [32].  

 

3). Application Layer: The application layer contains 

network applications that help the control plane configure 

the network to meet these application needs, including 

network control, quality of network service, monitoring, etc. 

The layer utilizes the global view provided by the control 

layer to make recommendations [28] in designing various 

application-based rules and policies. 

 

4). Southbound API: The Southbound API refers to the 

interface that allows the control plane and the data plane to 

communicate with each other. Most SDN implementations use 

OpenFlow and Network Configuration Protocol (NetConf), of 

which OpenFlow is the most popular [33]. 

 

5). Northbound API: The Northbound API refers to the 

interface that enables communication between the control 

plane and the application layer. It facilitates information 

exchange between the control layer and the applications, 

with features depending largely on individual network 

applications. 
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B. Use Cases of SDN Systems              

 This section discusses the application and virtualization 

of SDN, as well as Named Data Network (NDN). 

 

1). Virtualization of SDN: Network Virtualization (NV) 

enables multiple virtual networks to operate on a single 

physical network substrate, with each virtual network 

designed to meet the requirements of specific network 

services or end-user applications. The goal of network 

virtualization, an SDN use case, is to address several 

networking issues, including flexibility, resource usage, and 

on-demand deployments [34]. Network hypervisors (NH) 

for SDN provide the necessary features for virtualizing 

SDNs. These hypervisors logically segregate various virtual 

SDN networks and their associated tenant controllers [35]. 

Solutions to SDN-based virtualization are categorized into 

control plane virtualization, data plane virtualization, and 

heterogeneous virtualization.  

 

 
 

Fig. 3. SDN-NV architecture (Adapted from [36] with copyright 

permission). 

 

Network virtualization development addresses 

ossification issues and resolves constraints in 

communication networks. Its key drivers include rapid 

service deployment, cost reduction, and quicker network 

operations. Numerous researchers have introduced Network 

Virtualization solutions using SDN, such as hypervisor 

architecture in VeRTIGO [37], Carrier-grade Virtualization 

Scheme [38], ADVisor [39], FlowVisor [40], AutoSlice 

[41], and OpenVirteX [42]. However, these approaches 

encounter challenges with dynamic network changes. 

HyperFlex, however, enhances resource utilization by 

virtualizing the hypervisor into separate functions. It 

implements control plane virtualization using SDN network 

element software on commodity hardware or software, 

facilitating variable function virtualization allocation. 

Hyperflex regulates the receiving rate by discarding the 

control channel packets [43].  Researchers have 

implemented NV in cloud settings, representing an 

advanced application for SDN. They observed that NH 

contributes to SDN-NV overhead by adding more 

processing to the control plane. The study measured 

computational overhead and found that, despite the 

increasing number of switches, VN, and flows, the overhead 

from network hypervisors (NH) remains constant [44]. The 

study in [45] addresses fairness in control channels in SDN-

NV scenarios using throughput and setup time as 

performance metrics. Comparative results show that Sincon 

reduces interference across control channels in throughput 

cases and achieves greater improvement in control channels 

measured by setup time.  

 

2). NDN: NDN emerged to develop an effective Internet 

alternative, enabling content-centric communication to adapt 

to the rapidly changing content distribution paradigm [46].  

It enhances network communication through data security, 

in-network caching, and multipath forwarding. CCFS, a 

controller-based forwarding and caching strategy proposed 

in [47], addresses inefficiencies in NDN's modules. This 

architecture focuses on how controllers maintain cache 

cooperation and how forwarding mechanisms function, 

outperforming existing algorithms. NDN uses routable 

content names instead of IP addresses, increasing 

complexity for applications requiring advanced content 

delivery. The authors in [48] introduced an Enhanced NDN 

(ENDN) architecture, which provides content delivery 

services encoded in the data plane using customized P4 

applications. 

 

IV OVERVIEW OF OPENFLOW 

This section deals with OpenFlow, flow table, 

background to flow table attacks, and their causes. 

Additionally, it introduces a Programmable SBI.  

 

A. Introduction to OpenFlow            

OpenFlow is the most widely used Application 

Programming Interface (API) in SDN technology, owing to 

its low implementation costs and potential for novel 

solutions [49]–[51]. It is also the first SDN-specific standard 

interface, allowing high-performance, granular traffic 

management across various networking devices [52]. It aims 

to standardize the communication between a controller 

(control plane) and the switches (data layer). Moreover, its 

specification describes how to move control logic from a 

switch to a controller. The OpenFlow architecture, as 

depicted in Figure 4, includes features that enable 

researchers (both in academia and industry) to explore new 

ideas and test new applications, such as traffic analysis, flow 

abstraction, and real-world network experiments. These 

applications were proposed to ease the network in areas like 

configuration, management, security, virtualization, etc. An 

OpenFlow switch, also known as a forwarding device, 

comprises (i) at least a flow table and a group table, which 

handle packet lookups and forwarding; (ii) at least an 

OpenFlow channel to an external controller, ensuring secure 

communication through the OpenFlow protocol with the 

controller. There are two ways in which the controller can 

add, update, and delete flow entries in the flow table in an 

OpenFlow-enabled switch: reactive and proactive [53]. The 

flow table comprises flow entries, with each entry dictating 

how packets in a flow are processed and routed. Match 

fields (rules for matching), counters, and actions make up 

the flow entries. The match fields’ role is to match incoming 

packets, counters help collect the flow’s statistics, and 

actions reveal how to process a matching packet. Packet 

header fields are collected and matched against the matching 

fields section of the flow table entries when the packet 

arrives at the OpenFlow switch, undergoing a match test. If 

a matching entry occurs, the switch executes the instructions 

associated with it (or actions). If not, a table-miss flow 

occurs. The table-miss entry handles this by discarding the 

packet, continuing the matching process to the next flow 

table, or forwarding packet to the controller for further 

action(s). Pantou/OpenWRT [54], OpenvSwitch (OVS), 

BOFUSS [55], Indigo, and ofsoftswitch13 are examples of 

OpenFlow switches. The most popular among them is OVS. 
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B. Flow Table                   

                       

 A flow table is a part of the SDN switch that store flow 

rules. An OpenFlow-enabled flow table can be divided into 

three components: Datapath (hardware layer), Control path 

(software path), and the OpenFlow protocol. The Datapath, 

responsible for packet forwarding and lookups, includes at 

least one flow table or a group table. 

 

 

Fig 4. OpenFlow (Adapted from [56] with copyright permission). 

 

The flow table contains flow entries, while the group 

table holds a collection of group entries. The control path 

acts as a channel, enabling the switch and the controller to 

exchange packets and commands via the OpenFlow 

protocol. An OpenFlow Switch (OF-Switch) stores flow 

entries in its flow table, which has a limited capacity ranging 

from a few hundred to thousands of entries, insufficient to 

handle the millions of flows typical in data center networks. 

Consequently, the required rules significantly exceed the 

flow table's capacity. TCAM, a highly efficient associative 

memory, hosts the flow table. Each flow table within the 

OpenFlow switch contains flow entries [57], with three 

fields: Packet Header, Action, and Statistic. Flow entries, 

used for matching and processing packets, are limited in size 

[58],[59]. This limitation often results in flow table 

overflow, making the reinstallation of flow entries 

challenging and degrading network performance.   

                                                           

1). Background of Flow Table Overflow Attacks: The first 

flow table attack appeared after the launch of the internet in 

1969. In a conventional network, flow table overflow 

attacks occur in the Media Access Control (MAC) address 

and routing tables. The former attack happens when an 

attacker bombards the switch with many MAC addresses 

from spoofing sources. In contrast, the latter attack happens 

when a malicious router alerts trustworthy routers to routes 

to fictitious (imaginary) destinations. Researchers in 

[60],[61] have raised security concerns about flow table 

overflow threats interfering with SDN. In [62], the authors 

grouped the flow table attacks into Brute force, Slow, and 

Sophisticated. Updating or removing flow table entries 

involves flow mod messages with additional parameters, 

hard timeouts, and idle timeouts, the latter being an 

automatic yet inefficient method for flow table management. 

Security challenges, such as rule insertion & manipulation 

and overflow, characterize the flow table. Rule insertion, for 

example, results in violations of the three security triads. 

The former violates the three triads (CIA) of security, while 

the latter compromises the network's availability. In this 

scenario, the switches become unable to hold additional 

flow entries, and the controller becomes overwhelmed due 

to an influx of illegitimate requests from the attackers. 

 

2). The Causes of Flow Table Overflow:  Switches equipped 

with OpenFlow-based technology leverage TCAM for swift 

flow entry lookup and mask matching. However, the 

constraints of TCAM, both in terms of capacity and cost, 

restrict OpenFlow switches to accommodating only a 

limited number of flow entries, typically in the range of tens 

of thousands. Consequently, this limitation presents a 

significant challenge, leading to potential flow table 

overflows, particularly under scenarios of burst traffic or 

deliberate overflow attacks, thereby severely impacting 

network performance. In practice, this means that most flow 

tables tend to reach their capacity threshold, exacerbating 

the issue and posing a considerable risk to network 

functionality. To manage packet handling, the controller, as 

a pivotal component in the SDN architecture, issues 

instructions to switches. However, this architecture becomes 

susceptible to exploitation by malicious actors who leverage 

its inherent functionality. These bad actors inundate 

switches with numerous packets, characterized by altered 

header fields that do not conform to existing flow rules. 

Consequently, these packets necessitate forwarding to the 

controller for processing. The controller, being the central 

decision-maker in the SDN, handles these packets and 

instructs the switch accordingly, thereby adding instructions 

to the switch's flow table. However, this influx of 

illegitimate traffic not only overwhelms the switch's flow 

table but also hampers its ability to process genuine packets 

effectively. As a result, the network experiences degradation 

in performance and efficiency, highlighting the critical need 

for robust solutions to mitigate the impact of flow table 

overflows on network operations. [63]. Consequently, 

legitimate users cannot access the flow table [64]. The 

limited size of flow entries in a flow table results in flow 

table overflow and reinstallation of flow entry challenges, 

degrading network performance. Earlier versions of the 

OpenFlow specification (1.0–1.3.2) prevented adding new 

flow entries when a table reached capacity and sent an error 

message to the controller [65]. Versions 1.4 and higher 

introduce two solutions for this issue: eviction and vacancy 

events. Eviction enables the switch to automatically discard 

less important entries, making space for new ones. It 

employs techniques like Least Recently Used (LRU), First 

In First Out (FIFO), or Random selection for this purpose 

[66]. The choice of which flow entry to remove depends on 

either the switch's decision or factors like flow entry 

parameters, the switch's resource allocations, and internal 

limitations. Vacancy events allow the controller to get an 

early warning based on a set capacity threshold, enabling 

proactive measures to prevent table overload. 

 

3). A Programmable SBI: P4 is a domain-specific 

programming language designed for defining the handling 

and forwarding of data plane network traffic in P4-enabled 

forwarding devices, such as network appliances, switches, 

routers, and network interface cards [67]. The workflow of 
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the P4 programming model includes three main 

components: P4 architecture, P4 program, and target [68]. 

The architecture delineates the blocks and interfaces within 

the data plane. Developers craft the program, typically 

utilizing the P4 language, tailored for either a target 

software device or a hardware design. This target could be a 

software-based switch or a hardware component [69]. This 

target demonstrates the advantages of programmable data 

plane devices over traditional networks and SDN. These 

advantages include allowing user code to control message 

forwarding, ensuring the same P4 program runs on multiple 

targets without changing runtime applications, using 

protocol-independent primitives for packet processing, and 

employing a robust computing model where match-action 

stages can function both serially and in parallel. However, 

despite these benefits, the programmable data plane is 

limited by its finite memory capacity and inability to 

perform complex computations like division, exponential, or 

logarithmic calculations [70]. 

V  REDUCING TCAM ENTRIES IN SDN 

SDN uses a unique memory type called TCAM to 

maximize its programmability benefits. The capacity of 

TCAM in available SDN switches ranges from 1 to 2 Mbits. 

Each 1 Mbit chip costs about 350 USD and consumes an 

average of 15 Watts [71]. Due to TCAM’s limitations, SDN 

switches can only hold a few rules. To manage the flow 

table in SDN switches more efficiently and reduce TCAM 

entries, experts have proposed several approaches. One 

approach is a compression method for the flow table, known 

as a two-level tagging strategy. This strategy replaces flow 

entries with two simpler, smaller tags – a path tag (PT) and a 

flow tag (FT). These tags help reduce the bits needed for 

TCAM entries to represent flow rules. For example, tagged 

flows require only 24 bits, significantly less than the 356 

bits needed for standard flow entries, thus increasing 

TCAM’s storage capacity [72]. Another proposal is bit 

weaving, a compression algorithm applied to TCAM. This 

method lowers the number of rules needed to implement 

policies on a single switch. Bit weaving involves finding bit 

swaps that allow related rules to be written as an LPM table, 

followed by LPM table compression and merging 

compatible rules into a ternary string [73].  

The iSTAMP approach, as proposed in [74] , introduces a 

method for measuring incoming flows at either fine-grained 

or coarse levels. This technique dynamically divides flow 

inputs and utilizes optimization algorithms to enhance the 

accuracy of network flow predictions. It dynamically splits 

flow inputs and uses optimization algorithms for accurate 

network flow predictions. Additionally, to reduce the 

number of flow rules in network devices and address the 

rule placement issue, the approach uses wildcard 

expressions and logic reduction, resulting in minimal 

compression time [75]. Furthermore, the MINNIE 

compression technique has two phases: routing and 

compression. In the routing phase, flows are distributed 

across the network using a shortest-path method to prevent 

link overloading. The compression phase employs an 

effective table compression heuristic to generate three 

compressed routing tables, selecting the smallest one for use 

[76].  

Researchers in [77] investigated two types of slow DdoS 

attacks that exploit the limited capacity of switches to store 

forwarding rules. They recommended combining SIFT with 

other mitigation techniques and Moving Target Defense-

based strategies to counter these attacks. They also proposed 

the TCAM Razor, which uses multi-dimensional topological 

transformation and decision trees to minimize TCAM rules 

[78]. To address NV’s scalability issues, which consume 

significant switch memory, control channel, and CPU  

cycles, the Flow Virt approach was introduced for flow 

merging with low overhead [79]. 

VI FLOW TABLE OVERFLOW PROPOSED 

SOLUTIONS IN SDN 

 In this section, we delve into proposed solutions for 

addressing flow table overflow in SDN. Our analysis 

encompassed a thorough review of 44 selected articles, as 

illustrated in Figure 1. Figure 5 provides a taxonomy of flow 

table attacks, categorizing solutions based on the methods 

proposed, testing platforms employed, techniques utilized, 

and specific issues targeted in mitigating these attacks. 

Among the 44 articles surveyed, 19 identified optimal 

strategies for eliminating flows when the flow table reaches 

saturation. Additionally, seven articles outlined strategies 

for establishing suitable values for flow entry timeouts, 

thereby reducing overall flow table space. Moreover, eight 

articles proposed rerouting flows from switches that 

consume excessive flow table space to nearby switches with 

available capacity, effectively optimizing resource 

utilization. Furthermore, six articles concentrated on the 

aggregation of flow entries as a means of conserving flow 

table space. Lastly, four articles introduced various methods 

aimed at preventing flow table overflow attacks, bolstering 

the security and resilience of SDN infrastructures against 

such threats. 

 

A). Mitigating Flow Table Overflow Attacks Using Eviction 

Strategy                    

 In addressing flow table overflow, eviction emerges as a 

pivotal strategy, facilitating the removal of existing flow 

entries to accommodate new rules. This process is 

particularly vital for popular switch systems like OVS, 

Pica8, and Cisco Nexus, which commonly rely on the LRU 

eviction technique. Table 2 offers a comprehensive 

overview of various eviction mechanisms employed to 

combat flow table overflow. Noteworthy among these 

strategies is FTGuard, proposed by the authors of [80]. 

FTGuard introduces a defense mechanism grounded in 

prioritization to safeguard switches against saturation and 

overflow attacks. This innovative approach underscores the 

proactive measures necessary to mitigate the risks associated 

with flow table overflow in SDN environments. This 

mechanism analyzes and categorizes network traffic into 

high, medium, and low priority. It starts the flow eviction 

process with lower-priority entries, making room for 

incoming flows. When the switch’s flow table fills up, it 

uses values stored in the Flow-Mod message’s field to 

remove entries. This strategy employs a statistical approach 

to assign values to flows. Similarly, authors in [81] 

introduced the Short Flow First (SFF) replacement 

algorithm. This algorithm classifies flows into short and 

long survival periods based on each flow entry’s matching 

period. Deleting short flows first increases matching entries 

and reduces controller overhead. The SFF al’orithm 

outperforms FIFO, LFU, and LRU, especially with varying 

flow table sizes. In another related work, the authors of [82] 
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proposed a two-stage timeout cache management scheme to 

preserve significant flow entries. The primary table stores 

entries based on timeout durations set by the controller. 

When a flow becomes inactive, it moves to the Inactive 

Flow Queue instead of being removed. This scheme 

prioritizes evicting short-lived flows to conserve resources 

while keeping active flows.  

The study in [83] suggested the WLRU algorithm for 

flow table management. This algorithm assigns initial 

weights to each flow, increasing the weight for existing 

flows or saving new flow information before forwarding. 

Enhancing their previous work, CAB, the authors 

implemented CAB-ACME [84], a reactive caching 

approach. This approach improves CAB’s flow table usage 

by dynamically adjusting bucket shapes and sizes to fit 

traffic patterns and preloads large rules for quick response to 

traffic and policy changes. 

To address scalability issues caused by limited flow table 

capacity, the authors of [85]. Proposed a strategy based on 

transmission layer disconnection. This approach employs 

TCP and SCTP control signals to determine flow 

completion, adding an Active Connection Counter to each 

entry. The flow entry is automatically ejected when the 

counter hits zero. The authors in [86] presented the SRL 

framework with two modules: flow aggregator and hashing. 

The controller computes hash values for every packet, using 

the source IP address and maximum segment size. During 

overflow, the controller replaces the entry with the lower 

hash value with a new entry. In [87], the authors developed 

a technique using a D-ITG traffic generator to initiate flow 

rule eviction before overflow. This approach identifies table 

capacities and the appropriate eviction threshold. Once the 

threshold is known, the switch starts the eviction process 

using Random, LRU, or FIFO techniques. 

The study in [88] found that existing works didn’t address 

eviction techniques for UDP flows. They proposed a 

dynamic monitoring solution using RL and Q-Learning. 

This model, comprising states, actions, and rewards, uses 

adaptive sampling of UDP flow statistics to determine when 

to evict a flow entry. Reference [89] introduced the concept 

of multiple bloom filters (MBF) to reduce controller-switch 

communication due to table misses. MBF encodes flows 

based on locality and recentness, automatically removing 

less relevant rules during overflow. This increased the 

overall hit ratio by about 63.2% compared to LRU. The 

authors of [90] proposed setting a threshold for early 

eviction of flow entries, inversely related to the number of 

hosts and packet arrival speed, to reduce packet loss and 

latency. In [91], a unique flow rule eviction algorithm, 

Dynamic In/Out Balancing, was proposed. Instead of a fixed 

threshold, it dynamically modifies flow timeout based on 

time. 

The study in [92] developed a dynamic in/out balancing 

method with the least frequently used (DIOB/LFU) criteria. 

This method evicts rules with a zero idle timeout and 

counter value when the flow table is full, significantly 

reducing table overflow. FireGuard [93] designed to prevent 

complex crossfire attacks, consists of three elements: a 

traffic locator, an attack detector, and a traffic monitor. The 

strategy uses switch information to identify attacks and their 

paths. However, its effectiveness in physical environments 

remains untested. The work in [94] proposed using the 

hidden Markov model (HMM) for a proactive approach to 

overcome TCAM memory size limitations. This technique 

uses a utilization table for eviction and categorizes traffic 

based on setup flow rules, showing superior performance in 

various environments. The study in [95], introduced a 

method to mitigate flow table overflow by replacing 

forwarding flows from attackers with drop flows, monitored 

by their timeouts. This method restricts the controller’s 

mitigation technique when traffic increases. 

 The work in [96] presented a model to counter SDN-

based table-overflow attacks using a mathematical technique 

based on SDN topology. This model includes a token bucket 

algorithm to ensure consistent transmission for legitimate 

clients while limiting attacker data rates. The authors in [97] 

introduced a rate-limiting approach, incorporating a flow-

checking module into the controller to regulate traffic and 

blacklist flows exceeding thresholds. Researchers  in  [98] 

introduced a machine learning-based system to select the 

appropriate flow for removal, using historical data to predict 

flow entry durations.  The study in [99], presented the 

STAR adaptive routing approach, using limited flow-table 

resources for efficient network operation. STAR 

intelligently deletes expired flow inputs and determines 

routes for new entries based on real-time switch usage.  The 

study in  [100] introduced the TF-IdleTimeout technique, 

dynamically modifying flow entry idle timeout based on real 

network activity to optimize TCAM capacity usage.  

In [101] researchers proposed STEREOS, a machine 

learning-based intelligent eviction technique, classifies flow 

inputs into active and inactive categories, significantly 

reducing control overhead and improving network speed and 

packet loss rates. Another mechanism named DTER has 

been proposed in [102], uses a decision tree to select the 

best flow entries, temporarily storing others using the CBF 

until their idle timeout expires. Entries, temporarily storing 

others using the CBF until their idle timeout expires. To 

detect and prevent low-rate DoS (LdoS) attacks, in [103] 

authors proposed a mechanism using statistical analysis and 

LRU replacement for mitigation. This approach includes 

data collection, overflow prediction, attack detection, and 

mitigation modules. 

 

F. Mitigating Flow Table Overflow Attacks Using Flow 

Entry Timeout or Dynamic Timeout 
This section delves into the mitigation of flow table 

overflow attacks through the implementation of flow entry 

timeout or dynamic timeout mechanisms. Table 3 

summarizes the various flow entry timeout or dynamic 

timeout mechanisms against flow table overflow.  In [104], 

the authors combined a dynamic hybrid timeout strategy 

with a peer support strategy to prevent flow table overload, 

which can lead to DDoS attacks and assist in acquiring 

necessary flow data for attack detection. When the flow 

table usage nears its maximum, the strategy allocates longer 

durations with larger idle timeout numbers, while flows with 

shorter durations receive smaller timeout values. The results 

demonstrate its effectiveness in preventing flow table 

overflow. The authors in [105] established a hard timeout 

for long-lived flows based on short inter-arrival periods and 

set a specific value for short-lived flows. This method 

removes a flow entry from the table if no packet matches it 

within a certain time. It has successfully reduced controller 

overhead and experimental results show a 64.8% decrease in 

the number of packets in messages. However, it struggles to 
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erase invalid and completed flows from the table, which is 

crucial for active network operations. Isyaku et al. expanded 

on IHTA and introduced AH-IHTA (AH-IHTA) [106]. In 

this approach, flows receive timeouts based on their 

characteristics. The controller frequently collects data on all 

active entries from the switch and stores them in a module. 

When a table miss-entry occurs or a new flow arrives, the 

module's active flow entries are examined and compared 

with the flow table usage. If the table shows high usage, the 

scheme removes the data flow with the fewest packets. 

Otherwise, new flow entries are installed. In  [107], the 

authors implemented an Adaptive Flow Table Management 

(AFTM) scheme. AFTM employs dynamic timeout 

assignment based on flow characteristics and proactive 

eviction to monitor flow table utilization at set intervals. The 

cache within this scheme holds flow information and related 

entries, identifying entries with a long lifespan in the flow 

table to be removed when the usage ratio exceeds the 

predetermined threshold. In addition, the authors in [108]  

presented HQTimer to address the impact on the data plane 

performance arising from attackers’ exploitation of the flow 

table and apply Q-learning to set values for flow expiry 

timeout to enhance the flow table performance. The 

approach is efficient in a small-scale network and does not 

require switch modifications. The authors in [109] presented 

a dynamic timeout approach utilizing idle and hard timeouts, 

which depends on the per-flow packet count. The three 

components that make up the suggested scheme are the 

statistics module, the timeout calculation module, and the 

2D counting Bloom Filter. The first module updates the 

bloom filter by extracting specific data (features) from flow 

entries. The second modules determine the values for the 

hard and soft timeouts, while the third assigns timeout to 

every flow.  The authors [110] proposed an approach where 

all extraneous entries that cause bloat are recognized using 

HyperLogLog, aggregated, and organized into clusters using 

Hierarchical Agglomerative Clustering in this entry 

reduction approach. Furthermore, the redundant entries in 

each cluster are optimized using a Pareto optimizer and a 

multi-objective optimization technique. 

 

C. Mitigating Flow Table Overflow Attacks by Rerouting 

Flows                       

 In this section, we explore strategies aimed at mitigating 

flow table overflow attacks. Table 4 provides a 

comprehensive summary of studies focusing on rerouting 

flows from switches with excessive flow table usage to 

neighboring switches with available capacity. The study in 

[111] proposes NFV-Guard, a method to mitigate table 

overflow attacks in SDNs using Network Function 

Virtualization to filter attackers dynamically. This approach 

filters traffic through an NFVI, enabling precise 

management of table overflow attacks. The method operates 

in three phases: virtual honeypot, NFV-GUARD Controller, 

and Dynamic Traffic Filtering and Distribution. The virtual 

honeypot dynamically resizes devices and assigns flow 

entries. The NFV-GUARD Controller oversees networking 

tasks. The final phase involves computing the THD, 

merging IP, and processing TLS packet-in. This method 

excels when handling a massive influx of new traffic. 

However, for attacks with complex, covert patterns, existing 

approaches that prevent overload in a single switch prove 

ineffective; they only prevent flow table overflow attacks. 

Authors in [112] introduces a QoS-aware mitigation 

technique that identifies non-overloaded switches to defend 

against flow table overflow attacks. This technique involves 

a traffic monitoring module to observe switch status and a 

traffic guiding module to check for available flow table 

space. Standard forwarding rules are inserted if space 

permits; otherwise, directional rules reroute packets to 

nearby switches, preventing buildup on the victim switch. A 

stochastic differential equation-based defense [113] 

addresses the shortcomings of centralized detection methods 

in SDN networks. This method consolidates unused space in 

the network's flow tables, redistributing new entries during 

attacks. In [114], the authors propose a flow table mitigation 

technique for managing the flow table and preventing 

overflow by collecting the state of the switches (data 

collection) regularly using a sampling approach and 

applying flow-table space usage strategies. The technique 

brings about a reduction in table miss rate. However, it is 

ineffective with dynamic traffic.  In [115], the authors 

introduced the discrete-time finite-state Markov chain 

(DTMC) model and unsupervised hashing to defend against 

flow table overload and link spoofing attacks, respectively. 

More specifically, DMTC determines the status of every 

switch and forwards the same to the controller. To mitigate 

the flow table overflow, it uses the switch information to 

redirect the flows from busy and overflow switches to idle 

switches. The authors proposed DIFF [116], a dynamic 

routing technique, to classify traffic based on its impact on 

resources on the network and adjust the routing pattern. The 

scheme makes distinctions based on how they affect the 

resources on the network and modifies routing patterns to 

lessen flow-table overflow issues and wasteful bandwidth 

distribution. It creates a set of paths for each pair on the 

source-destination link edge switches. New flow paths are 

dynamically selected from pre-generated path sets to 

balance flow-table usage. The scheme adaptively reroutes 

elephant flows, utilizing the law of providing max-min equal 

bandwidth to achieve maximum throughput. The 

experimental results show that DIFF can simultaneously 

manage connection utilization and flow tables. It also 

reduces the controller’s workload, and packet latency, thus 

enhancing throughput compared to other methods (OSPF, 

Hedera, and FE). Authors in [117] proposed a flow table 

sharing method that allows a switch in the network unable to 

process a flow transfer to another switch with a spare flow 

table. The approach reroutes traffic from overloaded 

switches to idle or neighbor switches with free flow table 

resources. It yields a reduction in the number of control 

messages and RTT time. Nevertheless, the victim switch 

may flood the nearby switches in the event of a significant 

attack, leading to a DoS attack.            

          

F. Mitigating Flow Table Overflow Attacks through 

Aggregated Flow Entries Mechanisms         

 This section delves into solutions aimed at resolving flow 

table overflow attacks by aggregating flow entries. Table 5 

presents the summary of the various studies through 

aggregate flow entries to resolving flow table overflow 

attacks. In [118], the authors proposed IDFA to prevent flow 

table overflow by creating duplicate entries, which are then 

combined to form a single entry. The processing logic 

resides in the switches instead of the controller. Three 
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modules make up IDFA. The first module is responsible for 

adding and verifying flow entries. The second effectively 

aggregates flows using a dynamic threshold, and the third 

handles flow aggregation using degradation and 

repermutation techniques. It brings about a reduction in flow 

entry size. However, it uses up the limited TCAM memory. 

In terms of compression ratio, average flow convergence 

time, and the likelihood that a flow table overflow will 

occur, the method outperforms FTRS.  The authors of 

[119] presented a flow rule aggregation method for reducing 

the number of flow rules in an SDN switch while limiting 

the impact on individual traffic flow QoS (such as packet 

loss, delay, etc.). It determines the optimum network path 

using a heuristic called Best fit. The proposed method 

performs better than previous benchmark methods (Greedy, 

Random, Exact-Match, and Agg-Delay) with some metrics. 

To resolve the flow table overflow occasioned by the 

management of each flow in SDN and enable effective 

cluster-based flow management, a similarity-based 

hierarchical clustering framework [120] is proposed, which 

uses both similarity-based initial clustering and hierarchical 

cluster merging. The framework allows flows to be grouped 

into cluster for routing and processing. The experimental 

results show that the approach can reduce forwarding rules 

to 32% and 27% for data center networks and campus 

networks, respectively, compared to per-flow management. 

In [121], the authors offer a quick and efficient bit and 

subset weaving-based flow aggregation technique to reduce 

the flow table size, offer realistically quick updates and 

mitigate the problem of flow table overflow such that it 

takes a short time to update the table. The flow rules are 

split into different partitions based on their instructions. This 

results in a reduction in the flow table capacity and suitable 

update time. It performs better than the FFTA scheme in 

terms of the average compression ratio. The authors in [122] 

presented a flow table overbooking isolation guarantees 

problem (FOLA) approach to route flows through multiple 

paths. It routes a flow via a path to prevent overflow and 

enhances the network throughput of the system. To address 

the diverse behavioral patterns, they were displayed by 

flows with different properties, and the use of timeouts (idle 

and hard) results in inefficient management of flows when 

set higher than the flow durations.           

 Authors in [123] developed an approach employing a 

hidden Markov model (HMM) in which entries that are 

often accessed are placed in the Agg-ExTable to alleviate 

the issue of a bloated single table and improve flow table 

management. The method lessens flow processing time. 

However, it consumes a lot of memory and solely addresses 

TCAM constraints. 

VII DETAILED ANALYSIS OF THE LITERATURE 

AND RESEARCH GAPS 

After conducting a comprehensive analysis of flow table 

overflow attacks, the authors have categorized the examined 

articles according to various attack approaches. The 

classification of reviewed publications is outlined in Tables 

6–9, which categorize the studies based on eviction 

strategies, entry and dynamic timeouts, rerouting of flows, 

aggregated flows, and other methods. Based on the 

summarized findings from these tables, several research 

gaps have been identified. These include but are not limited 

to: 

1). After a thorough analysis of flow table overflow 

attacks, it is evident that 54.54% of researchers primarily 

relied on the eviction strategy to mitigate these attacks. 

Conversely, a smaller percentage of researchers, comprising 

15.91%, explored the entry and dynamic timeout approach, 

along with the rerouting flows technique, while 13.64% 

opted for an aggregated flows approach (Table 6). However, 

there's a notable gap in research concerning aggregate flows, 

rerouting flows, and dynamic timeout approaches for 

addressing flow table overflow attacks. Specifically, the 

rerouting flow strategy assumes that some flow tables 

remain unburdened, redirecting incoming flows to these 

neighboring tables. Nevertheless, none of the researchers 

have considered the possibility of overwhelming all flow 

tables simultaneously, which could be a significant 

vulnerability considering the number of switches. Given 

these observations, further investigation into dynamic 

timeout, rerouting traffic, and aggregated flow techniques is 

warranted to develop more comprehensive solutions for 

mitigating flow table overflow attacks effectively. These 

strategies hold promise but require deeper exploration and 

analysis to ensure their practical applicability and efficacy in 

real-world scenarios.  

 

2). In total, 63.64% of the researchers applied their 

approaches to the controller module because of the 

unintelligent nature of the switch (Table 7). This method’s 

deployment on the controller necessitates the controller’s 

acquisition of information on each flow entry in the switch, 

necessitating interaction and communication between the 

controller and the switches. The controller’s memory, 

processing power, overhead, and bandwidth are all used in 

their interaction. Except for [73], which requires a switch 

modification, 36.36% of authors deployed their solutions on 

the switch without altering it to address the issues caused by 

approaches on the controller module. Deploying flow table 

overflow attack solutions in SDN switches is a crucial area 

for research.           

     

3). Table 8 provides clear insights into the methodologies 

employed by researchers in evaluating their studies. It 

indicates that a majority (68.19%) utilized simulation or 

emulation tools, while 15.91% developed self-made 

simulators using diverse programming languages. 

Furthermore, among the studies leveraging SDN controllers 

(63.64% of the total), only a fraction (9.09%) opted for 

logically distributed controllers. Notably, the use of a 

logically centralized controller, as highlighted by [124], 

introduces a single point of failure. Given these findings, a 

critical area of research involves implementing solutions 

tailored to address flow table overflow threats within the 

framework of a logically distributed controller architecture. 

This approach seeks to mitigate the risks associated with 

single points of failure, thereby enhancing the robustness 

and reliability of SDN infrastructures. 

 

4).  In the experimental evaluation, software switches were 

predominantly utilized in most studies (84.09%), while 

hardware switches were employed in only 6.81% of cases 
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(Table 9). It's well understood that the distinct processing 

capabilities of hardware and software switches can 

significantly impact switch performance across various 

parameters [125]. Hence, there arises a necessity to conduct 

evaluations using both types of switches with the same 

approaches to ascertain their effectiveness in providing 

solutions to table overflow attacks in SDN. Furthermore, it's 

noteworthy that all studies evaluated their work within a 

linear topology, except for [80, 91, 95, 99, 105, 115, 116]. 

Therefore, there exists a clear need for further investigation 

utilizing alternative topologies such as tree and fat networks. 

Such exploration can provide valuable insights into the 

performance and scalability of proposed solutions in diverse 

network configurations, thus enhancing the applicability and 

generalizability of research findings. 

 

5). For their studies, 47.71% of researchers utilized a 

common benchmark dataset, while 27.27% employed 

traffic-generating tools to simulate traffic, including both 

normal and attack scenarios. However, relying solely on 

traffic-generating tools may not accurately replicate real-

world traffic levels. Moreover, CAIDA stands out as the 

sole benchmark dataset used. Therefore, there is a crucial 

need to incorporate real datasets into the development of 

solutions aimed at detecting, mitigating, and preventing flow 

table overflow attacks. This area of research warrants 

significant attention to ensure that proposed solutions are 

effectively validated against real-world traffic patterns, 

thereby enhancing their reliability and applicability in 

practical scenarios.  

 

6). In the realm of SDN, optimizing eviction strategies 

emerges as a pivotal area of research, particularly in 

mitigating flow table overflow attacks. Our study reveals 

that 54.54% of researchers have adopted these strategies, 

underscoring their crucial role in SDN security. This opens 

an exciting avenue for further innovation. We propose an 

exploration of advanced algorithms that enhance the 

efficiency of eviction processes, thereby striking a balance 

between network performance and security. Comparative 

analyses of various eviction strategies under diverse network 

loads and attack scenarios will provide invaluable insights. 

This research direction not only promises to fortify SDN 

against sophisticated threats but also paves the way for 

groundbreaking advancements in network management. By 

delving deeper into optimizing these strategies, we can 

redefine the boundaries of network security and efficiency, 

making a substantial contribution to the field of SDN. 

 

7). In the quest to fortify SDN against flow table overflow 

attacks, enhancing the utilization of simulation tools stands 

as a crucial endeavor. Our findings highlight that a 

substantial 68.19% of researchers rely on simulation or 

emulation tools, signaling an urgent need for more refined 

and realistic models. We propose a bold initiative to develop 

state-of-the-art simulation tools that accurately mirror the 

complexities of real-world network environments and 

cyberattack patterns. Collaborating with industry experts to 

access real traffic data and configurations will inject a dose 

of practicality into these simulations. Additionally, 

integrating artificial intelligence into these tools could offer 

predictive insights and a deeper understanding of network 

behavior under varied conditions. This approach not only 

elevates the accuracy of our research outcomes but also 

serves as a beacon for future studies, guiding the way 

towards more resilient and intelligent SDN solutions. 

 

8). In the dynamic landscape of SDN, the deployment 

efficiency of controller modules stands as a frontier for 

groundbreaking research. Our analysis indicates that a 

striking 63.64% of researchers target the controller module 

due to the switch's limited intelligence, pointing to a 

significant opportunity for enhancement. The need for the 

development of innovative algorithms and frameworks that 

streamline flow table management while minimizing 

resource consumption is key. These advancements could 

revolutionize the controller's functionality, potentially 

integrating predictive analytics or machine learning to 

achieve unprecedented efficiency. By shifting the focus to 

more resource-efficient controllers and potentially 

redistributing intelligence to the switches, we can 

dramatically enhance network resilience and performance. 

This proactive approach in redefining controller module 

deployment will not only address current challenges in SDN 

but also set a new standard for future network architectures, 

fostering a paradigm shift in how we conceptualize and 

implement network intelligence. 
 

VIII  CHALLENGES AND FUTURE DIRECTION 
 

A. Deployment of Flow Table Overflow Detection, 

Mitigation, and Prevention Solutions 

The deployment of solutions for detecting, mitigating, 

and preventing flow table overflow attacks presents a 

critical challenge in SDN. The majority of detection, 

mitigation, and prevention measures against flow table 

overflow attacks have been implemented within the 

controller [80, 84, 86–88, 92–103, 106–116, 122]. 

Consequently, communication between forwarding elements 

and the controller becomes essential for acquiring switch 

information and redirecting all traffic (normal and attack) to 

the controller for detection and mitigation. Moreover, the 

controller must continually gather flow statistics from 

forwarding devices to monitor network traffic, resulting in 

overhead and latency. Some authors [82, 84, 115] have 

tackled this challenge by deploying the detection and 

mitigation modules into both the controller and the switch. 

Therefore, there is a pressing need to distribute the 

deployment of solutions for flow table overflow attacks. 

This entails exploring methods to decentralize the 

implementation of these solutions, reducing the burden on 

controllers and enhancing overall network efficiency and 

resilience. Consequently, the distribution of deployment for 

solutions to flow table overflow attacks represents a 

significant area of concern and interest for future research 

endeavors. 

 

B.  Providing Solutions to Flow Table Overflow Attacks in 

Various Scenarios 

Addressing flow table overflow attacks requires solutions 

tailored to both typical network settings and scenarios where 

OpenFlow switches are under threat. Researchers have 

offered solutions to these attacks in both typical network 
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settings [98, 99, 104, 108, 117, 123] and when the 

OpenFlow switch is under threat. It's imperative to apply the 

same techniques to detect and mitigate attacks under these 

two scenarios (normal network setting and OpenFlow 

Switch) to determine the most effective technique for each 

scenario. 

 

C.  The Security in SDN  

 Security in SDN is paramount due to the separation of the 

control plane from the data plane, which introduces 

vulnerabilities such as flow table overflow attacks leading to 

DoS incidents. Attackers exploit the limited size of TCAM 

to flood the flow table, compromising the confidentiality, 

integrity, and availability (CIA) of the network. Thus, 

implementing robust measures is essential to safeguard SDN 

networks and their resources against security threats. The 

separation of the control plane from the data plane ushers in 

the security threats, such as flow table overflow attacks 

resulting in DoS attacks in SDN when not adequately 

prevented. The attackers take advantage of the limited size 

of TCAM to overflow the flow table. It violates the three 

triads (CIA) of security such that the switches could not 

hold additional flow entries, and the controller would not be 

unavailable due to an influx of illegitimate requests from the 

attackers. Therefore, it is required to put appropriate 

measures in place to guarantee the confidentiality, integrity, 

and availability of the networks and their resources to 

prevent security threats in SDN. 
 

D.   Deployment of Solutions in a Multi-Controller 

Architecture 

In the realm of SDN, distributed controllers outperform 

centralized ones in scalability, consistency, load balancing, 

and response time necessitating the adoption of a multi-

controller architecture to mitigate single points of failure 

and ensure network availability. 

Scalability, consistency, load balancing, and response 

time are all areas where distributed controllers outperform 

centralized controllers [126],[127]. In the SDN environment, 

it is necessary to consider multi-controller architecture to 

address the single point of failure in a centralized 

architecture of SDN, as this will also cater to handling large 

traffic volume and ensures network availability. 
 

E. Empirical validation in a range of network configurations 

Empirical validation across diverse network 

configurations is crucial to assess the practical effectiveness, 

adaptability, and scalability of methods proposed for 

addressing flow table overflow attacks, particularly in 

resource-constrained environments. 

Methods proposed to address flow table overflow attacks 

consume TCAM memory heavily, creating scalability issues 

for larger networks and further limiting scalability and 

applicability, especially in resource-constrained 

environments. It is worth noting that many proposed 

techniques struggle to adapt to dynamic traffic scenarios, 

causing inefficiencies in flow management. Empirical 

validation across diverse network setups is imperative to 

ascertain the practical effectiveness, adaptability, and 

scalability of these methods. Moreover, addressing these 

challenges is pivotal for advancing the scalability, 

adaptability, and efficiency of systems in real-world 

deployments, as improvements in real-time adaptation and 

efficiency are crucial, particularly in managing flow entries 

exhibiting diverse behavioral patterns.  
 

F. The need for more optimization strategies 

Certain approaches like NFV-Guard and specific 

rerouting strategies are promising in preventing flow table 

overflow attacks, but their efficacy against complex and 

covert attack patterns remains uncertain. Furthermore, a 

notable research gap lies in the lack of validation of 

proposed strategies within real-world network 

environments, raising concerns about their genuineness in 

practical scenarios. Additionally, some optimization 

techniques aim to identify and improve redundant entries 

within flow tables, there remains a need for more efficient 

optimization approaches to address the bloat and 

inefficiencies within SDN flow tables comprehensively. 

These gaps represent significant avenues for further 

academic research in SDN, pivotal for enhancing security, 

scalability, and practical applicability in real-world network 

environments. 
 

G. Resource-efficient strategies and unified evaluation 

techniques  

There is a need for a comprehensive analysis of 

approaches' robustness against sophisticated attacks, 

exploration of dynamically adaptive eviction strategies, 

establishment of unified evaluation metrics, and further 

research on resource-efficient strategies for scalability in 

large-scale SDN networks. These areas represent key 

directions for enhancing the effectiveness, security, and 

scalability of systems in practical deployments. 

 

H. Empirical evaluation in real-world settings 

Ensuring the scalability and adaptability of techniques in 

dynamic networks is challenging; proposed solutions may 

struggle against complex attacks, requiring enhancements to 

tackle covert patterns effectively. Empirical validation in 

real-world scenarios is crucial to confirm practical 

effectiveness and real-time adaptation to evolving threats is 

vital for bolstering security measures. Additionally, while 

some approaches mitigate primary attacks, they might 

inadvertently expose vulnerabilities, risking secondary 

attacks or network disruptions. 
 

I. Diverse Network Topologies 

In the evolving domain of SDN, exploring diverse 

network topologies represents a pivotal step toward 

comprehensive research. Our analysis reveals a predominant 

focus on linear topologies, a scenario that scarcely reflects 

the multifaceted nature of real-world networks. There is a 

need for a bold expansion into studying SDN's behavior 

across a spectrum of complex topologies, including tree, 

star, and fat-tree configurations. This exploration is not just 

an academic exercise; it is a vital undertaking to understand 

how SDN solutions perform under varied structural 

complexities, especially in the face of flow table overflow 

attacks. By broadening our investigative scope to encompass 

these diverse topologies, as this will uncover critical insights 

into the resilience and adaptability of SDN architectures. 

This foray into uncharted territory promises to elevate our 

understanding of SDN, ensuring that our solutions are 

robust, versatile, and aligned with the intricate realities of 

modern network infrastructures. 
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J. Employing Real World dataset. 

In the quest to enhance the robustness of SDN against 

flow table overflow attacks, the employment of real-world 

datasets emerges as a crucial and transformative research 

strategy. Our study underscores the limitations of relying 

solely on common benchmark datasets and traffic-

generating tools, which currently dominate the research 

landscape. There is a need to champion the pioneering move 

to utilize real-world traffic datasets, bringing an 

unprecedented level of authenticity and relevance to our 

research. This approach not only promises a more accurate 

representation of network behaviors under attack scenarios 

but also offers invaluable insights into the effectiveness of 

proposed solutions in genuine settings. By embracing real-

world data, we propel our research beyond theoretical 

models, grounding it in the tangible complexities of existing 

network environments. This shift marks a significant stride 

towards developing SDN solutions that are not just 

theoretically sound, but practically invincible in the face of 

evolving cyber threats. 

IX CONCLUSIONS 
 

The development of SDN has been primarily driven by its 

advantages over traditional networks, simplifying and 

streamlining flow table management through its centralized 

architecture. However, despite these advantages, ensuring 

the security of SDN remains a significant challenge. This 

paper presents a systematic review of flow table overflow 

attacks in SDN, examining 44 high-quality research articles 

out of a pool of 794. These articles are categorized based on 

suggested solutions, with 54.54% employing eviction 

methods, 15.91% utilizing entry and dynamic timeouts 

along with flow rerouting, and 13.61% adopting aggregated 

flows. Our findings highlight the need to explore alternative 

approaches such as entry and dynamic timeouts, flow 

rerouting, and flow aggregation. Additionally, articles are 

categorized based on where solutions are deployed: 63.64%  

at the control plane, 36.36% at the data plane, and 6.82% 

addressing overhead and latency issues by deploying 

solutions in both the switch and the controller. 

Consequently, the distribution of solution deployment for 

flow table overflow attacks emerges as a crucial area of 

interest and concern. 

 

Furthermore, 68.19% reviewed papers validated their 

approaches with simulation or emulation tools, while 

15.91% used self-developed simulators using various 

programming languages. In addition, only 9.09% of the 

63.64% of researchers that deployed SDN controllers did so 

in a logically distributed manner. Implementing solutions to 

flow table overflow attacks in a logically distributed 

controller architecture is a crucial area of research interest 

because a centralized controller suffers from a single point 

of failure.  
 

Many existing approaches struggle to adapt to traffic 

dynamics, resulting in inefficient flow management. 

Therefore, empirical validation across various network 

configurations is crucial to address these inefficiencies. 

Additionally, while some optimized approaches effectively 

combat flow table overflow attacks, their validation within 

real-world network environments remains uncertain, leading 

to inefficiencies in SDN flow tables. Thus, enhancing 

security, scalability, and practical applicability in real-world 

network environments necessitates efficient optimization 

approaches. Moreover, existing approaches often overlook 

unified evaluation metrics and fail to adopt dynamically 

adaptive eviction approaches, which are vital for scalability 

in large SDN networks. 

In the intricate world of SDN, the comparative study of 

hardware and software switches emerges as a vital research 

avenue. Our study reveals a stark contrast in their usage, 

with a predominance of software switches (6.81%) in 

experimental evaluations. This disparity highlights an 

untapped potential for comprehensive comparative studies. 

There is a need for in-depth research comparing the 

performance, scalability, and security of hardware versus 

software switches under various attack scenarios, 

particularly flow table overflow attacks. Such research 

promises to unravel the unique strengths and limitations of 

each switch type, offering a nuanced understanding of their 

roles in SDN environments. Pioneering this comparative 

approach, will pave the way for more adaptive, secure, and 

efficient network infrastructures, tailored to meet the diverse 

needs of modern digital ecosystems. This endeavour not 

only bridges a significant knowledge gap but also propels us 

towards a future where network solutions are as versatile as 

the challenges they face. 

 

In the evolving domain of SDN, exploring diverse 

network topologies represents a pivotal step toward 

comprehensive research. Our analysis reveals a predominant 

focus on linear topologies, a scenario that scarcely reflects 

the multifaceted nature of real-world networks. There is a 

need for a bold expansion into studying SDN’s behaviour 

across an academic exercise; it is a vital undertaking to 

understand how SDN solutions perform under varied 

structural complexities, especially in the face of flow table 

overflow attacks. By broadening our investigative scope to 

encompass these diverse topologies, we stand to uncover 

critical insights into the resilience and adaptability of SDN 

architectures. This foray into uncharted territory promises to 

elevate our understanding of SDN, ensuring that our 

solutions are robust, versatile, and aligned with the intricate 

realities of modern network infrastructures. 
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Fig 5. Flow Table Overflow Taxonomy Attacks 

 
TABLE II 

MITIGATING FLOW TABLE OVERFLOW ATTACKS USING EVICTION STRATEGY 

 

Ref. 

Proposed 

Solution  

Technique 

Used 

Issue 

Addressed  

 

Metrics Used  

 

Motivation  

 

Merits 

 

Demerits 

[80] A behavior-

based priority-

aware tagged 

FTGuard 

Priority-

based 

Network 

Performance 

The resource 

usage under 

attack scenarios 

The LRU mechanism for 

flow entry eviction is not 

efficient and effective 

Effective in the 

prevention of 

overflow attacks 

Consider neither the 

controller workload 

nor the additional 

traffic features 

[81] SFF Matching 

period and 

MWT 

Processing 

delay and 

controller 

overhead 

Flow Miss Rate 

and Ratio of 

delayed packets, 

The existing replacement 

strategies (LFU, LRU, 

and FIFO) failed to take 

traffic patterns into 

account when replacing 

flow entries. 

Increasing the 

number of 

matching flow 

entries reduces the 

overhead of the 

controller 

High packet 

processing time and 

increased switch 

memory efficiency. 

[82] A two-stage 

timeout (TST) 

approach. 

FIFO, 

Random, 

timeout 

The 

scalability 

issue of 

SDN 

switches’ 

flow tables 

Cache hit ratio, 

discarded packet 

ratio, rule 

installation 

times, Energy 

saving on 

TCAM query 

The fixed timeout 

management causes 

inefficient utilization of 

the flow table 

The retention of 

only those flow 

rules that are 

necessary 

No suitable timeout  

[83] WLRU Linked List The flow 

table 

overflow 

degrades 

network 

scalability 

Number of 

entries, RTT 

delay, Replied 

packets 

An attempt to detect and 

mitigate SDN attacks and 

their internal factors. 

The approach 

improves the 

network 

scalability. 

The approach is not 

tested on a larger 

testbed. 

[84] CAB-ACME Bucket tree Efficiency in 

flow table 

usage 

Cache miss, 

bandwidth 

usage, 

Computational 

time, Latency, 

flow setup, 

cache entries 

Proximity of traffic and 

issue of rule dependency 

Reduction in 

control load and 

enhancement in 

efficiency of flow 

table 

It requires adjustment 

and modification 

before being 

implemented across 

the network. 

[85] Transmission 

layer 

disconnection-

based strategy 

Active 

Connection 

Counter 

Limited 

Flow table 

capacity 

Flow entry 

requirements, 

flow table 

construction, 

control 

overheads, flow 

table miss rates, 

and traffic 

intensities. 

Flow expiry 

mechanisms, employed 

to address limited flow 

table capacity do not 

guarantee optimal 

performance 

There is an 

improvement in 

scalability with 

little or no costs. 

The expedited invalid 

TCP flow eviction 

method, which does 

not work well in 

elephant traffic 

situations, needs to be 

improved. 
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[86]  SRL Hash value Flow table 

overflow 

Service delivery 

time, CPU 

utilization, and 

Time 

Issues arise with a 

delayed TCP handshake 

and the implementation 

of temporary forwarding 

rules while handling a 

high number of users 

Able to prevent 

flow table 

overflow  

Failed to resolve 

overhead issues 

[87] Early Eviction Random, 

FIFO, and 

LRU 

techniques 

Flow table 

overflow 

Throughput, 

delay, and 

number of 

replacements. 

The timeout approach to 

overflow falls short of 

optimum performance 

because it works 

effectively if there is 

enough memory to store 

large flow rules. 

LRU outperforms 

others in 

preventing 

overflow 

There is a need to 

consider more traffic 

and a dynamic 

timeout approach. 

[88] A dynamic 

monitoring 

approach 

based on RL 

Q-learning Flow table 

overflow 

Control 

overhead, 

overflow 

occurrences, 

and flow 

reinstallations. 

Existing works do not 

capture eviction strategy 

for UDP flows 

A reduction in the 

rate of flow table 

overflow and flow 

entry 

reinstallation 

Needs to be evaluated 

on more performance 

metrics to ascertain 

its effectiveness. 

[89] 

 

 

 

 

 

Smart data 

logging 

approach 

Multiple 

Bloom 

Filters 

(MBF) and 

hash 

function 

Overhead 

and latency 

issues of 

flow table 

overflow 

 

Active flow and 

table hit ratio. 

 

Existing works do not 

use data structures 

focused on space 

efficiency to avoid flow 

table overflow 

It reduces the rate 

of flow misses, 

irrespective of the 

type of flow 

Not compared with 

existing techniques to 

ascertain its 

effectiveness. 

[90] Eviction 

approach 

Setting a 

threshold 

The impact 

of flow table 

overflow on 

latency and 

packets 

Delay The existing approaches 

to preventing flow table 

overflow led to packet 

loss and an increase in 

latency 

It leads to a 

reduction in 

packet loss and 

latency 

The study fails to 

incorporate more 

metrics to determine 

an appropriate 

eviction threshold in a 

real time environment 

[91] Dynamic Rule 

eviction 

approach 

DLFU Performance 

of SDN 

when 

overflow 

occurs 

N/A The need to lower the 

rate of flow table miss 

and provide protection 

from dangers brought on 

by overflow motivates 

the work. 

It reduces the rate 

of overflow 

occurrence 

Unable to reduce the 

risks brought on by 

the overflow attack. 

[92]  An eviction 

algorithm 

DIOB/LFU Flow table 

security and 

performance 

Bandwidth and 

packet 

The necessity or need to 

improve flow table 

performance and 

security. 

It significantly 

reduces the 

frequency of 

overflow 

It results in packet 

loss 

[93] FireGuard LRU and 

Token 

CFTO Communication 

delay, detection 

delay, CPU 

Utilization, 

accuracy. 

The existing remedies for 

repeatedly overloading a 

single switch are 

ineffective when dealing 

with an attack involving 

complex and covert 

patterns. 

With negligible 

overheads, the 

novel strategy is 

particularly 

effective in 

preventing 

crossfire attacks. 

The strategy needs to 

be implemented on a 

physical environment 

[94] Proactive 

technique 

based on 

matching 

probability of 

the entry’s 

prediction 

HMM Select an 

entry 

carefully and 

efficiently 

for eviction 

during table 

misses or 

when a 

timeout 

occurs  

CPU 

consumption 

rate, number of 

misses, 

matching 

probability 

The existing reactive 

approaches do not 

improve the forecast 

accuracy and increase the 

rate of table misses. 

Eviction of flow 

entry with the 

smallest matching 

probability 

Further investigation 

needs to be carried 

out to ascertain the 

variables affecting the 

performance of the 

metrics. 

[95] A packet 

monitoring 

approach 

Filtering 

approach 

Flow table 

overflow 

attack 

Flow change 

rate, flow rule 

count, and 

packet_in count 

The necessity to identify 

and defend against SDN 

susceptibilities. 

It effectively 

reduces the attack 

Restrict the controller 

mitigation technique 

whenever the traffic 

increases. 

[96] A mitigation 

approach 

Flow entry 

token 

bucket and 

statistics 

Flow table 

overflow 

attack 

The number of 

transmitted 

attack flows, 

flow table 

consumption on 

the victim 

switch 

The need to address flow 

table overflow attacks 

with a sophisticated 

attack pattern since the 

existing simplified 

approach does not give 

the desired results. 

It lowers attack 

rates 

The flow entries with 

static timeouts require 

manual deletion. 

[97] 

 

 

 

Rate limiting 

approach 

Threshold Flow table 

overflow 

attack 

Flow table 

capacity, packet 

loss, and impact 

of bandwidth 

The existing works do 

not ensure a secured 

SDN environment 

It is effective in 

preventing flow 

table overflow 

High rate of packet 

loss 

[98] Eviction 

Approach 

based on 

machine 

learning  

Random 

forest and 

k-fold 

cross-

validation 

effective 

utilization of 

the flow 

table.  

The number of 

capacity misses 

normalized, and 

the number of 

active flow 

entries  

There is a need for a new 

and better deletion 

approach to evict flow 

entry than the current one 

that produces very low 

overhead. 

It outperforms the 

LRU scheme 

regarding flow 

table utilization 

and fewer 

capacity misses. 

 

Do not consider the 

overhead of the study 
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[99] STAR LRU and 

Idle timeout 

Low table 

bloat and 

Overflow 

Controller 

workload, 

packet delay, 

throughput, 

mouse flow, and 

elephant flow 

completion 

percentages 

Using the LRU process 

to evict flow entries 

causes flow table 

overflow, as well as the 

flow table utilization 

being misinterpreted due 

to timeout design, 

resulting in flow table 

bloat. 

Prevent flow table 

bloat and 

overflow with low 

controller 

workload, low 

packet delay, and 

high server 

throughput. 

Need to be tested in a 

test bed environment. 

[100] TF-

IdleTimeout 

Confidence 

interval 

Scalability 

issue in flow 

table 

overflow 

Flow entry 

missing and 

flow dropping 

The existing plan failed 

to consider the dynamic 

nature of traffic in an 

SDN-based network. 

 

It enhances the 

efficiency of 

TCAM usage 

The study does not 

consider all variables 

required to determine 

a suitable idle time 

out. 

[101] STEREOS Machine 

learning 

Efficient 

management 

of flow table 

Normalized 

number of 

capacity misses, 

accuracy, and 

number of 

active flows 

Existing approaches to 

evicting flow rules 

degrade network 

performance by evicting 

flow entries incorrectly 

It minimizes 

control overhead, 

boosts network 

speed, and lowers 

packet loss rates 

Its performance 

should be compared 

with other machine 

learning methods. 

[102] DTER  Decision 

tree 

Controller 

overhead 

arising from 

overflow 

Accuracy rate, 

true positive, 

false positive 

rates, workload, 

elephant, and 

mice flow 

completion 

percentage 

without packet 

drop, packet 

delay, and 

throughput. 

Overhead that arises due 

to huge route request to 

the controller in a large 

data center and the 

limited flow table space 

Reduction in 

controller 

workload and 

prevention flow 

table overflow 

More metrics 

(throughput and 

latency) should be 

considered to measure 

its performance. 

[103] SAIA  LRU and 

statistical 

analysis 

Network 

performance 

CPU usage, 

throughput, and 

detection rate 

There has not been 

comprehensive research 

on table overflow LDoS 

attacks, and the available 

research centered on 

mitigation solutions for 

table overflow in a 

typical network. 

Effective in 

detecting and 

preventing LDoS 

attacks 

Require an intelligent 

algorithm to enhance 

the detection accuracy 

of the attack. 

 
TABLE III 

MITIGATING FLOW TABLE OVERFLOW ATTACKS USING FLOW ENTRY TIMEOUT OR DYNAMIC TIMEOUT 

 
Ref. 

Proposed 
Solution  

Technique 
Used 

Issue 
Addressed  

 
Metrics Used  

 
Motivation  

 
Merits 

 
Demerits 

[104] The flow 

table 

overload, 

which 

results in 

DDoS 

attacks 

A dynamic 

hybrid timeout 

approach  

TCAM 

Memory 

durability 

and network 

performance 

Flow table 

memory status 

with different 

switches and 

time 

Existing related works 

relied on idle timeout to 

solve the problem, which 

is inefficient when 

dealing with network 

flows with a limited 

number of packets and 

short duration. 

Improvement in 

memory 

utilization of flow 

table 

Utilizing long-lived 

flows with a short 

packet inter-arrival 

time results in 

reduced efficiency. 

[105] Idle–hard 

timeout 

allocation 

(IHTA) 

LRU Scalability 

issue   
Number of 

packet_in 

messages, flow 

duration 

Timeouts that are 

inappropriately set result 

in the early eviction of 

active flows 

It reduces the 

packet_in 

messages, thereby 

enhancing the 

efficiency and 

scalability of the 

flow table.  

 

It is impracticable to 

get the precise 

packet count before 

the flow’s 

conclusion via 

experiment. 

[106] Adaptive 

and hybrid 

idle–hard 

timeout 

allocation 

(AH-IHTA) 

strategy 

FIFO, Random, 

LRU, and DFE 

Prevention 

of flow rules 

from 

expiring 

frequently 

Flows packet 

count, packet_in 

event 

The fixed timeout 

approach to managing 

flow entries is inefficient 

and ineffective in dealing 

with the ever-changing 

characteristics of traffic 

flow. 

It outperforms 

IHTA by reducing 

the number of 

packet_in 

messages to 72% 

as against IHTA, 

which has a 

35.2% reduction. 
 

Not suitable for 

applications in a 

multi-controller 

environment 

[107] Adaptive 

flow table 

Mgt. 

scheme 

AFTM) 

Timeouts 

setting 

Inefficient 

use of 

limited flow 

table space. 
 

Packet drop, and 

Extra table miss 

Existing works did not 

consider the use of 

timeout settings. 

Reduction in table 

miss 

The approach is not 

tested on a larger 

testbed. 

[108] HQTimer Hybrid timeout 

mechanism and 

a Q-learning 

approaches 

Rules 

dependency 

issues 

Table-hit rates, 

overflow 

numbers, total 

installations 

The rule dependency 

issue introduced by 

wildcard rules makes it 

difficult to maintain the 

network’s semantics and 

Efficient in a 

small-scale 

network and does 

not require switch 

modifications. 

Not effective in a 

large-scale network 

environment 
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create a timeout 

mechanism. 

[109] History-

based 

dynamic 

timeout 

Bloom filter Flow table 

overflow 

attack 

The number of 

DoS flows over 

and the number 

of normal flows.  
 

The hard and soft 

timeouts are ineffective 

in reducing the number 

of flow rules that cause 

overflow. 

It leads to a 

reduction in the 

number of flow 

rules 

Tested using a small 

testbed. 

[110] CEOF Hierarchical 

Agglomerative 

Clustering and 

HyperLogLog 

Scalability 

issue in flow 

table 

overflow 

Compression 

ratio, space 

saving, flow 

processing time, 

packet_in 

request, flow 

entries, count, 

throughput, and 

retransmission 

error rate 

The existing approaches 

are limited to generating 

outstanding results in 

uncertain conditions. 

Hence, there is a need for 

an approach that will 

give excellent results. 

The experimental 

results show that 

the approach can 

effectively 

prevent flow table 

overflow 

The scheme needs to 

have its QoS and 

security improved 

 
TABLE IV 

MITIGATING FLOW TABLE OVERFLOW ATTACKS BY REROUTING FLOWS 

Ref. 
Proposed 

Solution  

Technique 

Used 

Issue 

Addressed  

 

Metrics Used  

 

Motivation  

 

Merits 

 

Demerits 

[111] NFV-GUARD NFV Flow table 

security and 

performance 

Flow table 

occupancy, 

RTT, and CPU 

usage 

Sending flow entries to 

network nodes on the 

physical infrastructure 

appears to be effective 

only in large networks. 

It reduces the 

controller loads 

and the delay 

Could not 

effectively mitigate 

flow table 

overflow in a large 

network. 

[112]  A Peer 

Support 

Strategy 

Poisson 

distribution. 
The limited 

size of the 

flow table, 

which 

attackers use 

to cause 

overloading 

Holding time No research has dealt 

with a specific attack by 

thoroughly investigating 

and proffering solutions 

to the attack. 

It minimizes 

violation of quality 

of service 

It yields an 

additional delay 

and relies on the 

resources of the 

idle flow table 

[113] A stochastic 

differential 

equation-based 

defense for 

overflow 

attack 

BPNN 

algorithm 

and flow 

table sharing  

Flow table 

overflow 

attack 

occasioned 

by the 

limited flow 

table 

Recognition 

rate, time-

consuming 

Due to the poor defense 

capability, present 

centralized detection 

solutions for overflow 

attacks result in 

insufficient SDN network 

protection and 

irreversible losses. 

The proposed 

method performs 

better in detection 

rate and takes less 

time to run. 

Do not consider the 

situation where the 

neighboring 

switches are totally 

or nearly full. 

[114]    CPD Taylor series Flow table 

overflow 

attack 

The number of 

flows, CPU 

utilization, 

frequency of 

table overflow, 

and the number 

of dropped 

packets. 

Existing approaches are 

computationally costly, 

result in more table 

misses, and have 

scalability issues 

It lowers the 

network’s table 

miss rate. 

It is unsuitable 

when traffic is 

dynamic. 

[115] Hybrid 

method 

Discrete-

time finite-

state Markov 

chain, fuzzy 

classifier, 

and L1-

extreme 

learning 

machine 

Flow table 

overflow 

Delay, failure 

ratio, and 

holding time 

The use of peer-to-peer 

topology in addressing 

the flow table overflow 

caused much switch 

damage, which resulted 

in the replacement of 

many damaged switches. 

It resolves the 

security problems 

(flow table 

overflow and link 

spoofing attacks) 

in SDN 

It relies on the 

resources of the 

flow table 

[116] DIFF, A 

dynamic 

routing 

scheme  

LRU Flow table 

overflow and 

inefficient 

bandwidth 

allocation 

Controller 

workload, 

packet delay, 

and throughput 

Unbalanced flow-table 

usage at different 

switches. Traditional, 

inefficient bandwidth 

allocation, and flow table 

bloat 

Enhances network 

throughput and 

regulates flow 

table utilization 

Does not consider 

experimental 

research to 

determine the 

appropriate 

threshold for idle 

timeout 

[117] File Table 

Sharing 

FTS Overhead in 

flow table 

overflow 

Number of 

entries and 

distance 

The limited size of a flow 

table results in a 

significant increase in the 

number of packet_in 

messages between the 

switch and the controller 

when a table miss occurs. 

It reduces the 

number of control 

messages and is 

simple to 

implement. 

The victim switch 

may flood the 

nearby switches in 

the event of a 

significant attack, 

leading to a DoS 

attack. 
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TABLE V 

MITIGATING FLOW TABLE OVERFLOW ATTACKS THROUGH AGGREGATED FLOW ENTRIES MECHANISM 

 
Ref. 

Proposed 
Solution  

Technique 
Used 

Issue 
Addressed  

 
Metrics Used  

 
Motivation  

 
Merits 

 
Demerits 

[118] In-switch 

dynamic flow 

aggregation 

(IDFA) 

Degradation 

and 

repermutation 

algorithms 

Link delay 

arising from 

flow table 

overflow 

issue 

Compression 

ratio, 

convergence 

time, overflow 

time, and 

number of 

redundant flow 

entries. 

The failure of FTRS, a 

previously used method, 

to generate an efficient 

outcome in terms of 

compression ratio, 

convergence time, and 

overflow rate 

This method 

reduces the number 

of entries in the 

flow table 

When used in a 

large-scale 

network 

environment, 

this could 

produce an 

additional 

overhead. 

[119] Flow rule 

aggregation 

scheme 

Best-fit 

heuristic 

Flow table 

overflow 

attack 

Average delay, 

packets dropped, 

average 

throughput, and 

flow rules 

The research is motivated 

by the idea of using 

specific QoS measures 

(delay and packet loss) to 

determine a routing path. 

It improves 

throughput while 

lowering average 

delay and packet 

loss. 

Need to consider 

the Internet 

traffic in the 

study 

[120] A cluster-

based 

management 

of flow entries 

k-means 

clustering 

Flow table 

overflow and 

unnecessary 

overhead 

Throughput, 

number of 

clusters. 

The per-flow SDN 

management is 

inappropriate for high-

traffic networks, as it 

causes flow table 

overflow and additional 

processing overhead. 

It minimizes the 

flow table 

consumption and 

improves routing 

performance. 

Need to be tested 

in a large test 

bed 

environment. 

[121] A bit and 

subset 

weaving-based 

flow 

aggregation 

Merging of 

flows 

Flow table 

overflow 

Average 

compression 

ratio, average 

number of times 

to trigger flow 

aggregation, and 

average 

aggregation time 
 

The per-flow 

management of the flow 

table cannot solve or 

reduce flow table 

overflow. 

It resolves the flow 

table problem 

reasonably. 

The overhead 

increases with 

the number of 

messages 

transmitted. 

[122] Guaranteed 

minimum 

progress and 

bounded 

maximum 

Algorithm 

N/A Flow table 

overbooking 

isolation 

guarantees 

problem 

(FOLA) 

Minimum 

progress, 

maximum flow 

table overflow, 

network 

throughput.  

Degradation in network 

performance and packet 

losses arising from 

massive flow rules 

replacement when 

overflow occurs. 
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