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Abstract—The spread of computer virus is an important
topic, which has an important impact on network security.
By studying the propagation law of viruses on wireless sensor
networks, the future trends can be predicted, so that preventive
measures can be taken as far as possible to minimize the
harms. Based on the existing SIQR model and the transmission
characteristics of computer virus, a new fractional SIQR model
is established by innovating such a dynamic process that an
infected node can automatically recover to a recovery node with
the probability of ν. Furthermore, the concrete steps to solve
the new model are given by the residual power series method.
We apply the steps to solve an example, in which the dynamic
process is displayed successfully. Finally, by comparing the two
different models, it can be shown that the infective component
disappears faster in our new model. The improved SIQR model
can better simulate the spread of computer virus in wireless
sensor networks.

Index Terms—residual power series method, fractional dif-
ferential equation, virus propagation model, wireless sensor
network.

I. INTRODUCTION

THE utilization of sensor networks is expanding due
to the ongoing advancements in Internet of Things

technologies. Wireless sensor networks consist of the vast
majority of tiny and low-power sensor nodes, which are
distributed in the area to be monitored or controlled. Wireless
sensor networks frequently have poor defense capabilities
and are vulnerable to malicious software like worms, viruses,
or trojans because of the limited memory capacity of indi-
vidual nodes and the locational disadvantage. In addition,
since sensor networks use wireless communication, they are
vulnerable to exploitation by hackers or advertisers who
may introduce malicious programs into the wireless sensor
networks. Due to the nature of wireless communication,
malware attacks can cause nodes to deplete energy rapidly,
decrease the overall computing speed of the network, and
increase network traffic. So far, there is no antivirus soft-
ware that can completely detect and remove computer virus
transmissions. Therefore, to effectively preventing the spread
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of computer viruses, it is essential to have a clear under-
standing of their characteristics and transmission patterns,
predicting their development direction, and implementing
efficient prevention and removaling strategies. In response to
this problem, comparing the similarities between the spread
of diseases in populations and the spread of computer viruses
in wireless sensor networks, a number of infectious disease
models have been applied to model and studied the spread
of computer viruses in networks.

Over the past few decades, numerous researchers have
conducted studies on mathematical modeling of malware
object propagation using various models. Kermark and Mc
Kendrick ([1]) studied the classical epidemic model of SIR.
They proposed a malicious object propagation model, and
estimated the time evolution of infected nodes by considering
network parameters in network topology [2]. This method
is also applied to email propagation schemes [3]. Pastor
Satorras and Vespignani ([4, 5]) studied the effect of network
topology on disease transmission. The transmission of the
SIS infectious disease scaleless networks model is also con-
sidered [6] and [7]. Barthelemy ([8]) found that the spread of
computer viruses in scale-free networks follows specific hier-
archical dynamics. Loecher and Kadtke ([9]) recognized and
extended details of graded dissemination, to improving the
predictability of the order of infected nodes. In [10], Mishra
and Saini proposed a delayed SEIRS epidemiological model
to studying propagation of malicious objects in computer
networks and the stability of the free equilibrium point of
malicious objects. Next, Mishra and Keshri ([11]) established
worm transmission of wireless sensors networks by using the
SEIRS-V model. It also examined the relationship between
the basic reproductive count and stability the equilibrium
point. Then, a predator-prey model ([12]) was proposed
to analyzing impact of energy saving during worm attacks
in wireless sensor networks, and identifing the stability
conditions of various a balance point. Recently, Sellali ([13])
studied a partial computerized epidemiological models virus
transmission and discussed the effect free-ordered on the
dynamic behavior impact of virus spread. Dong ([14]) used
the SIQR model to investigating the unpredictable attack
behavior of computer viruses in wireless sensor networks.

The infection of malware objects, such as viruses, worms,
or trojans in wireless sensor networks occurs through the
transmission of radio waves and signals between wireless
sensor nodes. Signal transmission, which encompasses mem-
ory and genetic processes, is often heavily influenced by
flexible environment, the functional history, texture and na-
ture of the material. Describing these phenomena accurately
with integer-order differential equations is a big challeng.
However, fractional calculus can offer a completely new
mathematical approach. It is well known that fractional-
order derivatives and integrals have a nonlocal nature. These
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derivatives and integrals can represent both past informa-
tion and distributional effects of any physical system. This
demonstrates the powerful compared with ordinary calculus,
fractional derivative and integral can represent complex real-
world phenomena more accurately and efficiently.

In its long history of development, a large number of
studies have proven that fractional calculus offers signif-
icant advantages in various disciplines and specialties in
the real world. In recent years, with the rapid development
integral calculus of fractions, some of the main advantages
include the mnemonic properties of fractional derivatives
and improved simulation in fractal materials or viscoelastic
environments, see [15–22]. With the development of frac-
tional calculus, fractional differential equations and fractional
partial differential equations have also been studied exten-
sively, see [23–25]. In the past decades, significant progress
has been made in studying fractional differential equations
under uncertain conditions. For example, Agarwal ([26])
studied the Cauchy problem of fuzzy differential equation,
where the fuzzy fractional differential equation was analyzed
without the application of fuzzy fractional derivatives. Next,
Allahviranloo ([27]) used fuzzy Riemann-Liouville fractional
derivatives to investigating the initial value problem of fuzzy
fractional differential equations. In the field of fuzzy par-
tial differential equations, Long studied local and nonlocal
problems for fuzzy fractional partial differential equations
under Caputo’s generalized H-differentials, as referenced in
[28, 29]. Recently, multiple papers have explored epidemic
modeling and its application to computer networks and WSN.
For example, Hassouna [30] used variational iteration method
and Euler’s method to solving the fractional SIS model.
Huo and Zhao ([31]) studied a class of fractional-order
SIR models with complex heterogeneous networks. Shingh
[32] analyzed a fractional-modified infectious disease model
associated with the new Caputo-Fabrizio score derivative.
Dubey [33] used the homotopy perturbation transformation
method, which given an approximate analytical solution for
a class of fractional-order computer virus propagation (CVP)
with nonlinear characteristics. Graef [34] builted a fractional
infectious disease model to investigating user’s adoption and
abandonment of online social networks (OSNs). Naim [35]
studied a fractional SEIR model with latent infection.

Above all, there are few article proposed the residual
power series method to studing the fractional order SIQR
model in wireless sensor networks. Shatha [36] used the
residual power series method to approximating the numerical
solutions of fractional SIR models. The residual power series
method is a simple and effective technique that has been
applied to numerous equations. Qazza [37] used residual
power series method to analyzing linear and nonlinear differ-
ential equations of fractional order. Qayyum [38] proposed
the Residual Power Series Method (RPSM) for solving
wave-type partial differential equations (PDEs). Modanli [39]
proposed a residual power series method for solving pseudo-
hyperbolic partial differential equations under non-local con-
ditions. Abu [40] proposed the residual power series method
to solving the fractional Schrödinger equation. Khalouta [41]
used fractional residual power series method to solving the
Bratu-type equation.

In this paper, we establish a fractional mathematical model
for the computer virus propagation in wireless sensor net-

works, which with isolated and uncertain initial data using
the Caputo fractional derivative. The organizational structure
of this paper is as follows. In Section 2, the Caputo fractional
derivative is introduced. In addition, the concepts of frac-
tional integrals related to the proposed fractional derivatives
are also discussed. In Section 3, a mathematical model of
fractional transmission of viruses in wireless sensor networks
is established. The proposed model consists of the following
four components: susceptibility (S), infection (I), quarantine
(Q) and recovery (R). It describes the uncertain dynamic
behavior of virus attacks in the network by considering
isolation and initial data ambiguity. In Section 4, the steps of
the residual power series method for solving the established
model are proposed. In Section 5, the application and result
analysis are summarized in Section 6.

II. PRELIMINARIES

In this section, firstly, we will introduce the definition of
the Caputo fractional derivative in detail. Secondly, the con-
cepts related to the fractional residual power series method
will be introduced.

Definition 1([42]). Given a continuous function f(t), and
let n be the smallest integer greater than α(α > 0), the
Caputo fractional derivative is defined by
Dαf(t) ={

1
Γ(n−α)

∫ x

0
(t− τ)n−α−1 dnf(τ)

dτn dτ , n− 1 < α < n,
dnf(t)
dtn , α = n ∈ N.

(1)

Theorem 1([42]). By the Caputo derivative, we get

Dαxα =

{
Γ(q+1)

Γ(q+1−α)x
q−α, α ≤ q,

0, α > q.
(2)

Definition 2([43–45]). The Riemann-Liouville fractional
integration operator of α ≤ 0 is defined as
Jαf(t) ={

1
Γ(α)

∫ t

0
f(s)

(t−s)1−α ds =
1

Γ(α) t
α−1 ∗ f(t), α > 0, t > 0,

f(t), α = 0.

(3)

Where tα−1 ∗ f(t) is the convolution of tα−1 and f(t).
For Riemann-Liouville fractional integrals, we have
1.Jαtβ = Γ(β+1)

Γ(β+α+1) t
α+β , β > −1,

2.Jα(λf(t) + µg(t)) = λJαf(t) + µJαg(t).
Where, λ and µ are constants.

For the Caputo fractional derivative, we have
1.DαJαf(t) = f(t),
2.JαDαf(t) = f(t)−

∑n−1
i=0 y(i)(0) t

i

i! ,
3.Dαc = 0,
4.Dα(λf(t) + µg(t)) = λDαf(t) + µDαg(t).

Where, λ, µ and c are constants.
Next, this section introduces the relevant definitions and

theorems of fractional power series, which are based on the
Caputo fractional derivative definition.

Definition 3([46, 47]). The fractional power series expan-
sion form is

∞∑
m=0

cm(t− t0)
mα = c0 + c1(t− t0)

α + c2(t− t0)
2α + · · · .

(4)
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Which satisfies the conditions 0 ≤ ⌈α⌉ − 1 ≤ α ≤ ⌈α⌉ , t ≥
t0, where t is a variable and cm is a constant, which is known
as the coefficients of the series.

Theorem 2([46]). Let f have a fractional power series form
at t0, then
f(t) =

∑∞
m=0 fm(t) =

∞∑
m=0

cm(t− t0)
mα, 0 ≤ ⌈α⌉ − 1 ≤ α ≤ ⌈α⌉ , t0 ≤ t < t0 +R.

(5)

If Dmαf(t) ∈ (t0, t0 + R),m = 0, 1, 2, · · · , then the
coefficient cm of equation (5) can be given by the following
equation

cm =
Dmαf(t0)

Γ(mα+ 1)
,m = 0, 1, 2, · · · . (6)

Where Dmα = Dα ·Dα · · ·Dα(m− times), R is the radius
of convergence.

According to the convergence of the classical residual
power series, there exists a real number λ ∈ (0, 1) such
that ∥fm(t)∥ ≤ λ ∥fm−1(t)∥, where t ∈ (t0, t0 +R).

Definition 4([47]). The power series is of the form∑∞
m=0 fm(x)(t− t0)

kα =

f0(x) + f1(x)(t− t0)
α + f2(x)(t− t0)

2α + · · · . (7)

Where t is a variable and fm is a function of x, which also
known as the coefficient of the series. The conditions 0 ≤
⌈α⌉ − 1 < α ≤ n and t ≥ t0 are also satisfied.

III. VIRUS PROPAGATION MODEL IN WIRELESS SENSOR
NETWORKS

In this section, we will examine the virus propagation issue
in a fractional-order wireless sensor network. In this network,
it is assumed those which all sensor nodes are in one of the
following four possible states during this process:
State (S): (S) is composed of nodes those which are not
attacked by viruses. Because these nodes are highly sensitive
to viruses and vulnerable to virus attacks, we refer to them
as susceptible nodes.
State (I): When node (I) has been infected by a virus in the
sensor network, it may be infected other nodes in state (S).
The sensor nodes in this state are referred to as infectious
nodes.
State (Q): (Q) is composed of these all wireless sensor nodes
which are isolated from the state (I) in (I). In other words,
which are referred to as quarantine nodes.
State (R): The sensor node does not contain a virus, which
is immune to it.

At time t, S(t), I(t), Q(t), and R(t) are used to repre-
senting the number of susceptible, infectious, quarantine, and
recovered sensor nodes.

To fight the virus, we need to understand its dynamic char-
acteristics. The infectious disease transmission model is an
excellent way to characterize specific information in human
society. By understanding the characteristics of malicious
software, we can accurately predict the propagation patterns
by establishing a comprehensive mathematical model of
computer virus spread.

According to the SIQR model proposed in article [48],
this paper makes enhancements to align it more closely

with the actual scenario of computer virus propagation in
wireless sensor networks. Considering the current situation,
some infected nodes can recover on their own after being
infected, increasing the likelihood that infected nodes can
spontaneously recover to become nodes with a certain prob-
ability. Based on the above situation, it is also convenient
to enhancing the model in the future and adapting to more
variables. The details will be described below, as shown in
state (I).

The propagation of computer viruses in wireless sensor
networks is a very complex process that exhibits non-locality
and memory. In this way, fractional differential equations
can be used to describe the problem more accurately and
efficiently. In this paper, the Caputo derivative is used to
characterize the virus propagation rate in wireless sensor
networks. In practical applications, it is often necessary
to use fuzzy dynamic system methods to solving virus
attack problems due to uncertainties, missing or incomplete
information. This method allows us to describing and demon-
strating uncertainty in the real world. Moreover, such an
explanation can be closer to the source of the actual model
and have strong generalization ability.

It is assumed that the sensor nodes in each state (S), (I),
(Q), and (R) leave the network at a rate of µ. Then, the SIQR
model can be represented as follows:

State (S): Assume sensor nodes beyond wireless sensor
network access the network at rate A. Since the probability
of this node being infected by a virus is λI(t), the speed of
its exit from the network is µ, and the probability of having
direct immunity is ω, the rate of change of (S) in this system
can be expressed as follows:

DαS(t) = A− λS(t)I(t)− µS(t)− ωS(t).

State (I): In the virus-infected state (S), the sensing node
becomes infected by the virus and is then transmitted to an
individual with a probability of λI(t). The infected node
exits the network at µ. Each infected node can be isolated
independently with a probability of γ. On this basis, with the
help of the antiviral program, the infected node transitions
to the recovery node at the speed of ν. Thus, an equation
for the rate of change of (I) can be given by the following
formula:

DαI(t) = λS(t)I(t)− µI(t)− γI(t)− νI(t).

State (Q): An infecting node can be isolated as a (Q) state
with a probability γ, and may also enter by: (i) individual
nodes exiting WSN at µ, (ii) returning to (R) state at η.
Next, the equation describing the rate of change (Q) is the
following formula:

DαQ(t) = γI(t)− µQ(t)− ηQ(t).

State (R): The rate of change (R) of the recovery state
indicates that: (i) each recovery node leaves the network
at a rate of µ, and (ii) each isolated node transitions to
the recovery state at a rate of η. (iii) Restore the infected
node by a certain proportion of ν using antivirus procedures
as described above. (iv) A portion of susceptible nodes
are autoimmune, and the probability of this portion is ω.
Accordingly, the equation associated with state (R) is:

DαR(t) = ωS(t) + νI(t) + ηQ(t)− µR(t).
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Therefore, the spread of computer viruses can be described
by the following fuzzy fractional differential equation.

DαS(t) = A− λS(t)I(t)− µS(t)− ωS(t),
DαI(t) = λS(t)I(t)− µI(t)− γI(t)− νI(t),
DαQ(t) = γI(t)− µQ(t)− ηQ(t),
DαR(t) = ωS(t) + νI(t) + ηQ(t)− µR(t).

(8)

The initial conditions are:

S(0) = S0, I(0) = I0, Q(0) = Q0, R(0) = R0. (9)

The following diagram can be used to illustrating the
transmission mode of computer viruses, which is depicted
in Figure 1.

S RQI
A γ η

ω

ν

μμμμ

λSI

Fig. 1. SIQR model of computer virus propagation

N(t) represents the total number of nodes in the wireless
sensor network, where N(t) = S(t) + I(t) + Q(t) +
R(t),∀t ≥ 0. We will investigate how to assess the impact
of a virus attack on this model. The basic number of
reproductions is an important indicator, which can be used to
describe the contagiousness of an infectious source, such as a
virus, worm or Trojan. In the SIQR model, the basic number
of reproductions ℜ for a system of fractional differential
equations (8) is expressed as ℜ = λA

µ(ν+γ+µ) .

IV. RESIDUAL POWER SERIES METHOD FOR SOLVING
FRACTIONAL SIQR INFECTIOUS DISEASE MODEL

In this section, we will use the residual power series
method to solving the fractional SIQR infectious disease
model. The calculation steps are described below:

Step 1: Suppose that at t = 0, the fractional power series
of S(t), I(t), Q(t) and R(t) are

S(t) =
∑∞

k=0
ak

Γ(kα+1) · t
kα,

I(t) =
∑∞

k=0
bk

Γ(kα+1) · t
kα,

Q(t) =
∑∞

k=0
ck

Γ(kα+1) · t
kα,

R(t) =
∑∞

k=0
dk

Γ(kα+1) · t
kα.

(10)

Then, Sn(t), In(t), Qn(t) and Rn(t) are used to representing
the n-order truncation series of S(t), I(t), Q(t) and R(t)
respectively. When n = 0, by using the initial condition of
the model (9), it can be known that S(0) = S0, I(0) =
I0, Q(0) = Q0 and R(0) = R0. Therefore, the n-order
truncation series of S(t), I(t), Q(t) and R(t) can be written
in the following form

Sn(t) = S0 +
∑n

k=1
ak

Γ(kα+1) · t
kα,

In(t) = I0 +
∑n

k=1
bk

Γ(kα+1) · t
kα,

Qn(t) = Q0 +
∑n

k=1
ck

Γ(kα+1) · t
kα,

Rn(t) = R0 +
∑n

k=1
dk

Γ(kα+1) · t
kα.

(11)

Step 2: The residual function of model (8) can be agined
as

ResS(t) = DαS(t)−A+ λS(t)I(t) + µS(t) + ωS(t),
ResI(t) = DαI(t)− λS(t)I(t) + µI(t) + γI(t) + νI(t),
ResQ(t) = DαQ(t)− γI(t) + µQ(t) + ηQ(t),
ResR(t) = DαR(t)− ωS(t)− νI(t)− ηQ(t) + µR(t).

(12)

Therefore, the residual functions of order n for
Sn(t), In(t), Qn(t) and Rn(t) are

ResSn(t) =
DαSn(t)−A+ λSn(t)In(t) + µSn(t) + ωSn(t),
ResIn(t) =
DαIn(t)− λSn(t)In(t) + µIn(t) + γIn(t) + νIn(t),
ResQn(t) =
DαQn(t)− γIn(t) + µQn(t) + ηQn(t),
ResRn(t) =
DαRn(t)− ωSn(t)− νIn(t)− ηQn(t) + µRn(t).

(13)
Obviously, when t ≥ 0, ResS(t) = ResI(t) =
ResQ(t) = ResR(t) = 0. We can get
limn→∞ ResSn(t) = ResS(t), limn→∞ ResIn(t) =
ResI(t), limn→∞ ResQn(t) = ResQ(t) and
limn→∞ ResRn(t) = ResR(t). Since the Caputo derivative
of any constant is equal to 0, it follows

D(k−1)αResS(0) = D(k−1)αResSk(0),
D(k−1)αResI(0) = D(k−1)αResIk(0),
D(k−1)αResQ(0) = D(k−1)αResQk(0),
D(k−1)αResR(0) = D(k−1)αResRk(0).

(14)

Step 3: To get the coefficients ak, bk, ck, dk, k =
1, 2, · · · , n, we plug the n order truncation series
Sn(t), In(t), Qn(t) and Rn(t) into the equation. Then, the
fractional Caputo derivative operators D(n−1)α are applied to
calculating ResSn(t), ResIn(t), ResQn(t) and ResRn(t),
respectively, in the following form

D(n−1)αResSn(0) = 0,
D(n−1)αResIn(0) = 0,
D(n−1)αResQn(0) = 0,
D(n−1)αResRn(0) = 0.

(15)

Step 4: Solving ak, bk, ck, dk, k = 1, 2, · · · , n of the
algebraic equation (15), we can get an approximate solution
for the residual power series of the fractional order SIQR
infectious disease model (8).

Step 5: Repeating the above steps, we can obtain a
sufficient number of coefficients. By estimating unknown
coefficients in the model, the accuracy is improved.

V. APPLICATION AND RESULT ANALYSIS

In this section, an example of the fractional SIQR in-
fectious disease model will be solred by using the residual
power series method. By using the Maple program, the nu-
merical simulation demonstrates that the numerical solution
of fractional SIQR model (8) and the impact of fractional
derivatives virus spreading in wireless sensor networks of
different orders. The results are analyzed using graphs and
tables.
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First, we examine the following SIQR infectious disease
model

DαS(t) = 1− 0.15S(t)I(t)− 0.25S(t)− 0.02S(t),
DαI(t) = 0.15S(t)I(t)− 0.25I(t)− 0.35I(t)− 0.25I(t),
DαQ(t) = 0.35I(t)− 0.25Q(t)− 0.5Q(t),
DαR(t) = 0.02S(t) + 0.25I(t) + 0.5Q(t)− 0.25R(t).

(16)

The initial condition is S0 = 0.8, I0 = 1.4, Q0 = 0.6 and
R0 = 0.05, where α is the order of the fractional derivative
under Caputo’s definition, and 0 < α ≤ 1.

Then, the following steps of the residual power series as
described in the previous section.

When n = 1, from Equation (11), the first truncated series
is

S1(t) = 0.8 + a1

Γ(α+1) t
α,

I1(t) = 1.4 + b1
Γ(α+1) t

α,

Q1(t) = 0.6 + c1
Γ(α+1) t

α,

R1(t) = 0.05 + d1

Γ(α+1) t
α.

From equation (13), the first residual function is
ResS1(t) = Dα(0.8 + a1

Γ(α+1) t
α) − 1 + 0.15(0.8 +

a1

Γ(α+1) t
α)(1.4+ b1

Γ(α+1) t
α)+(0.25+0.02)(0.8+ a1

Γ(α+1) t
α),

ResI1(t) = Dα(1.4 + b1
Γ(α+1) t

α) − 0.15(0.8 +
a1

Γ(α+1) t
α)(1.4 + b1

Γ(α+1) t
α) + (0.25 + 0.35 + 0.25)(1.4 +

b1
Γ(α+1) t

α),

ResQ1(t) = Dα(0.6+ c1
Γ(α+1) t

α)− 0.35(1.4+ b1
Γ(α+1) t

α)+

(0.25 + 0.5)(0.6 + c1
Γ(α+1) t

α) and
ResR1(t) = Dα(0.05+ d1

Γ(α+1) t
α)−0.02(0.8+ a1

Γ(α+1) t
α)−

0.25(1.4 + b1
Γ(α+1) t

α)− 0.5(0.6 + c1
Γ(α+1) t

α) + 0.25(0.05 +
d1

Γ(α+1) t
α).

Then, applying the fractional caputo derivative operator
D(n−1)α to calculate the above formula, we obtain:
D(n−1)αResS1(t) = a1 − 1 + 0.15(0.8 + a1

Γ(α+1) t
α)(1.4 +

b1
Γ(α+1) t

α) + (0.25 + 0.02)(0.8 + a1

Γ(α+1) t
α),

D(n−1)αResI1(t) = b1 − 0.15(0.8 + a1

Γ(α+1) t
α)(1.4 +

b1
Γ(α+1) t

α) + (0.25 + 0.35 + 0.25)(1.4 + b1
Γ(α+1) t

α),

D(n−1)αResQ1(t) = c1 − 0.35(1.4 + b1
Γ(α+1) t

α) + (0.25 +

0.5)(0.6 + c1
Γ(α+1) t

α) and
D(n−1)αResR1(t) = d1−0.02(0.8+ a1

Γ(α+1) t
α)−0.25(1.4+

b1
Γ(α+1) t

α)− 0.5(0.6 + c1
Γ(α+1) t

α) + 0.25(0.05 + d1

Γ(α+1) t
α).

For t = 0, by setting the above equation to 0, we
solve the equation to get
a1 = 0.6160, b1 = −1.0220, c1 = 0.040, d1 = 0.6535,
therefore

S1(t) = 0.8 + 0.6160
Γ(α+1) t

α,

I1(t) = 1.4 + −1.0220
Γ(α+1) t

α,

Q1(t) = 0.6 + 0.040
Γ(α+1) t

α,

R1(t) = 0.05 + 0.6535
Γ(α+1) t

α.

When n = 2, the truncation series is
S2(t) = 0.8 + 0.6160

Γ(α+1) t
α + a2

Γ(2α+1) t
2α,

I2(t) = 1.4 + −1.0220
Γ(α+1) t

α + b2
Γ(2α+1) t

2α,

Q2(t) = 0.6 + 0.040
Γ(α+1) t

α + c2
Γ(2α+1) t

2α,

R2(t) = 0.05 + 0.6535
Γ(α+1) t

α + d2

Γ(2α+1) t
2α.

The residual function is
ResS2(t) = Dα(0.8 + 0.6160

Γ(α+1) t
α + a2

Γ(2α+1) t
2α) − 1 +

0.15(0.8 + 0.6160
Γ(α+1) t

α + a2

Γ(2α+1) t
2α)(1.4 + −1.0220

Γ(α+1) t
α +

b2
Γ(2α+1) t

2α)+ (0.25+0.02)(0.8+ 0.6160
Γ(α+1) t

α+ a2

Γ(2α+1) t
2α),

ResI2(t) = Dα(1.4+ −1.0220
Γ(α+1) t

α+ b2
Γ(2α+1) t

2α)−0.15(0.8+
0.6160
Γ(α+1) t

α + a2

Γ(2α+1) t
2α)(1.4 + −1.0220

Γ(α+1) t
α + b2

Γ(2α+1) t
2α) +

(0.25 + 0.35 + 0.25)(1.4 + −1.0220
Γ(α+1) t

α + b2
Γ(2α+1) t

2α),

ResQ2(t) = Dα(0.6+ 0.040
Γ(α+1) t

α+ c2
Γ(2α+1) t

2α)−0.35(1.4+
−1.0220
Γ(α+1) t

α + b2
Γ(2α+1) t

2α) + (0.25 + 0.5)(0.6 + 0.040
Γ(α+1) t

α +
c2

Γ(2α+1) t
2α) and

ResR2(t) = Dα(0.05+ 0.6535
Γ(α+1) t

α+ d2

Γ(2α+1) t
2α)−0.02(0.8+

0.6160
Γ(α+1) t

α + a2

Γ(2α+1) t
2α) − 0.25(1.4 + −1.0220

Γ(α+1) t
α +

b2
Γ(2α+1) t

2α) − 0.5(0.6 + 0.040
Γ(α+1) t

α + c2
Γ(2α+1) t

2α) +

0.25(0.05 + 0.6535
Γ(α+1) t

α + d2

Γ(2α+1) t
2α).

Then, applying the fractional caputo derivative operator
D(n−1)α to calculate the above formula, we obtain:
D(n−1)αResS2(t) = Dα(Dα(0.8 + 0.6160

Γ(α+1) t
α +

a2

Γ(2α+1) t
2α)−1+0.15(0.8+ 0.6160

Γ(α+1) t
α+ a2

Γ(2α+1) t
2α)(1.4+

−1.0220
Γ(α+1) t

α + b2
Γ(2α+1) t

2α) + (0.25 + 0.02)(0.8 + 0.6160
Γ(α+1) t

α +
a2

Γ(2α+1) t
2α)) = Dα(0.6160 + a2

Γ(α+1) t
α − 1 + 0.15(0.8 +

0.6160
Γ(α+1) t

α + a2

Γ(2α+1) t
2α)(1.4 + −1.0220

Γ(α+1) t
α + b2

Γ(2α+1) t
2α) +

(0.25 + 0.02)(0.8 + 0.6160
Γ(α+1) t

α + a2

Γ(2α+1) t
2α)) =

a2 + 0.15(0.6160 + a2

Γ(α+1) t
α)(1.4 + −1.0220

Γ(α+1) t
α +

b2
Γ(2α+1) t

2α)+0.15(0.8+ 0.6160
Γ(α+1) t

α+ a2

Γ(2α+1) t
2α)(−1.0220+

b2
Γ(α+1) t

α) + (0.25 + 0.02)(0.6160 + a2

Γ(α+1) t
α),

D(n−1)αResI2(t) = Dα(Dα(1.4 + −1.0220
Γ(α+1) t

α +
b2

Γ(2α+1) t
2α) − 0.15(0.8 + 0.6160

Γ(α+1) t
α + a2

Γ(2α+1) t
2α)(1.4 +

−1.0220
Γ(α+1) t

α + b2
Γ(2α+1) t

2α) + (0.25 + 0.35 + 0.25)(1.4 +
−1.0220
Γ(α+1) t

α + b2
Γ(2α+1) t

2α)) = Dα(−1.0220 + b2
Γ(α+1) t

α) −
0.15(0.8 + 0.6160

Γ(α+1) t
α + a2

Γ(2α+1) t
2α)(1.4 + −1.0220

Γ(α+1) t
α +

b2
Γ(2α+1) t

2α) + (0.25 + 0.35 + 0.25)(1.4 + −1.0220
Γ(α+1) t

α +
b2

Γ(2α+1) t
2α)) = b2 − 0.15(0.6160 + a2

Γ(α+1) t
α)(1.4 +

−1.0220
Γ(α+1) t

α + b2
Γ(2α+1) t

2α) − 0.15(0.8 + 0.6160
Γ(α+1) t

α +
a2

Γ(2α+1) t
2α)(−1.0220 + b2

Γ(α+1) t
α) + (0.25 + 0.35 +

0.25)(−1.0220 + b2
Γ(α+1) t

α),

D(n−1)αResQ2(t) = Dα(Dα(0.6 + 0.040
Γ(α+1) t

α +
c2

Γ(2α+1) t
2α) − 0.35(1.4 + −1.0220

Γ(α+1) t
α + b2

Γ(2α+1) t
2α) +

(0.25 + 0.5)(0.6 + 0.040
Γ(α+1) t

α + c2
Γ(2α+1) t

2α)) =

Dα(0.040+ c2
Γ(α+1) t

α−0.35(1.4+−1.0220
Γ(α+1) t

α+ b2
Γ(2α+1) t

2α)+

(0.25 + 0.5)(0.6 + 0.040
Γ(α+1) t

α + c2
Γ(2α+1) t

2α)) = c2 −
0.35(−1.0220+ b2

Γ(α+1) t
α)+(0.25+0.5)(0.040+ c2

Γ(α+1) t
α)

and
D(n−1)αResR2(t) = Dα(Dα(0.05 + 0.6535

Γ(α+1) t
α +

d2

Γ(2α+1) t
2α) − 0.02(0.8 + 0.6160

Γ(α+1) t
α + a2

Γ(2α+1) t
2α) −

0.25(1.4+ −1.0220
Γ(α+1) t

α + b2
Γ(2α+1) t

2α)− 0.5(0.6+ 0.040
Γ(α+1) t

α +
c2

Γ(2α+1) t
2α) + 0.25(0.05 + 0.6535

Γ(α+1) t
α + d2

Γ(2α+1) t
2α)) =

Dα(0.6535+ d2

Γ(α+1) t
α−0.02(0.8+ 0.6160

Γ(α+1) t
α+ a2

Γ(2α+1) t
2α)−

0.25(1.4+ −1.0220
Γ(α+1) t

α + b2
Γ(2α+1) t

2α)− 0.5(0.6+ 0.040
Γ(α+1) t

α +
c2

Γ(2α+1) t
2α) + 0.25(0.05 + 0.6535

Γ(α+1) t
α + d2

Γ(2α+1) t
2α)) =

d2−0.02(0.6160+ a2

Γ(α+1) t
α)−0.25(−1.0220+ b2

Γ(α+1) t
α)−

0.5(0.040 + c2
Γ(α+1) t

α) + 0.25(0.6535 + d2

Γ(α+1) t
α).
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Similarly, t = 0, setting the above equation to 0 and
solving the equation yields:
a2 = −0.1730400, b2 = 0.8754200,
c2 = −0.387700, d2 = −0.386555,
therefore

S2(t) = 0.8 + 0.6160
Γ(α+1) t

α + −0.1730400
Γ(2α+1) t2α,

I2(t) = 1.4 + −1.0220
Γ(α+1) t

α + 0.8754200
Γ(2α+1) t

2α,

Q2(t) = 0.6 + 0.040
Γ(α+1) t

α + −0.387700
Γ(2α+1) t2α,

R2(t) = 0.05 + 0.6535
Γ(α+1) t

α + −0.386555
Γ(2α+1) t2α.

The approximate solution for n = 5 is obtained by the same
method



S5(t) = 0.8 + 0.6160
Γ(α+1) t

α + −0.1730400
Γ(2α+1) t2α + −0.0219912000

Γ(3α+1) t3α

+ 0.09160317600
Γ(4α+1) t4α + −0.1025799482

Γ(5α+1) t5α,

I5(t) = 1.4 + −1.0220
Γ(α+1) t

α + 0.8754200
Γ(2α+1) t

2α + −0.6753950000
Γ(3α+1) t3α

+ 0.4884201980
Γ(4α+1) t4α + −0.3373100776

Γ(5α+1) t5α,

Q5(t) = 0.6 + 0.040
Γ(α+1) t

α + −0.387700
Γ(2α+1) t2α + 0.597172000

Γ(3α+1) t3α

+−0.6842672500
Γ(4α+1) t4α + 0.6841475068

Γ(5α+1) t5α,

R5(t) = 0.05 + 0.6535
Γ(α+1) t

α + −0.386555
Γ(2α+1) t2α + 0.118182950

Γ(3α+1) t3α

+ 0.0997516885
Γ(4α+1) t4α + −0.2431344341

Γ(5α+1) t5α.

Using the residual error obtained by formula (13), the error
is analyzed to verify the accuracy of the residual power series
method for solving the fractional SIQR model. Obviously,
when α ∈ (0, 1], the absolute value of the exact solution
residuals is 0. The approximate solution is substituted to
obtain the residual values for various α values, as illustrated
in Tables 1, 2, 3 and 4, and Figures 2, 3, 4 and 5. It can
be seen that under different α values, as α approaches 1,
the residual decreases, and the approximate solution obtained
becomes more accurate. This demonstrates the feasibility of
using the residual power series method to solve the new
SIQR model proposed in this project.

Figure 6, 7, 8, and 9 depict the approximate solution
graphs of susceptible nodes, infectious nodes, isolated nodes,
and recovery nodes of the new model with different α
values respectively. The same initial data were substituted
into the original model and compared with the new model
as shown in Figures 10, 11, 12, and 13, the original models
are represented by a fork, pentagram, diamond, and square,
while the new models are represented by a plus sign, asterisk,
triangle, and hollow circle. The above figure fully illustrates
the effect of fractional differentiation on the SIQR model. It
is evident from the graph that fractional differentiation pro-
vides more degrees of freedom than integer differentiation.
When the fractional order approaches the integer order, the
corresponding intervals S(t), I(t), Q(t), R(t) are very close
to the SIQR model.

On this basis, we can calculate the corresponding basic
reproduction number ℜ < 1, which indicates the overall
asymptotic stability of the virus-free equilibrium. In fact,
it can be seen from Figure 7 that the infected node I(t)
will disappear over time. This indicates that the virus has
been successfully cleared from the wireless sensor network.
In addition, from Figure 11, it can be clearly seen that
the infected node I(t) of the new model proposed in this
paper disappears earlier, and the recovery of the recovered
node R(t) will also be faster, as shown in Figure 13. The
susceptible node S(t) is similar, as shown in Figure 10.

The quarantined node Q(t), which is more affected by the
infected node, follows the same rule, as illustrated in Figure
12. Therefore, the new model proposed in this paper is
more suitable for simulating computer virus propagation in
wireless sensor networks than the original model.

TABLE I
RESIDUAL VALUE WHEN α = 0.3

t |ResS(t)| |ResI(t)| |ResQ(t)| |ResR(t)|
0.1 0.0195 0.0121 0.0150 0.0075
0.2 0.0298 0.0086 0.0425 0.0213
0.3 0.0394 0.0006 0.0780 0.0391
0.4 0.0491 0.0107 0.1201 0.0602
0.5 0.0591 0.0245 0.1679 0.0842
0.6 0.0695 0.0404 0.2207 0.1106
0.7 0.0804 0.0582 0.2781 0.1394
0.8 0.0916 0.0776 0.3397 0.1704
0.9 0.1033 0.0986 0.4054 0.2033
1 0.1154 0.1211 0.4748 0.2381

TABLE II
RESIDUAL VALUE WHEN α = 0.6

t |ResS(t)| |ResI(t)| |ResQ(t)| |ResR(t)|
0.1 0.0060 0.0059 0.0001 0.0001
0.2 0.0123 0.0119 0.0008 0.0004
0.3 0.0185 0.0171 0.0028 0.0014
0.4 0.0247 0.0213 0.0067 0.0034
0.5 0.0309 0.0243 0.0131 0.0066
0.6 0.0372 0.0259 0.0227 0.0114
0.7 0.0438 0.0258 0.0361 0.0181
0.8 0.0508 0.0240 0.0539 0.0270
0.9 0.0583 0.0201 0.0767 0.0385
1 0.0665 0.0141 0.1052 0.0527

TABLE III
RESIDUAL VALUE WHEN α = 0.9

t |ResS(t)| |ResI(t)| |ResQ(t)| |ResR(t)|
0.1 0.0015 0.0015 0.0000 0.0000
0.2 0.0048 0.0048 0.0000 0.0000
0.3 0.0093 0.0094 0.0001 0.0000
0.4 0.0148 0.0147 0.0002 0.0001
0.5 0.0208 0.0206 0.0005 0.0003
0.6 0.0273 0.0267 0.0012 0.0006
0.7 0.0341 0.0341 0.0024 0.0012
0.8 0.0411 0.0389 0.0044 0.0022
0.9 0.0484 0.0447 0.0075 0.0038
1 0.0559 0.0499 0.0121 0.0060

TABLE IV
RESIDUAL VALUE WHEN α = 1

t |ResS(t)| |ResI(t)| |ResQ(t)| |ResR(t)|
0.1 0.0009 0.0009 0.0000 0.0000
0.2 0.0034 0.0034 0.0000 0.0000
0.3 0.0072 0.0072 0.0000 0.0000
0.4 0.0121 0.0120 0.0001 0.0000
0.5 0.0178 0.0177 0.0002 0.0001
0.6 0.0243 0.0241 0.0004 0.0002
0.7 0.0313 0.0309 0.0009 0.0004
0.8 0.0388 0.0379 0.0017 0.0009
0.9 0.0466 0.0450 0.0031 0.0016
1 0.0546 0.0520 0.0053 0.0026

VI. CONCLUSION

In this paper, an enhanced version of the existing SIQR
model is proposed based on the characteristics of com-
puter virus propagation. By incorporating the possibility
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Fig. 2. The residual of S(t) when α takes different values
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Fig. 3. The residual of I(t) when α takes different values
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Fig. 4. The residual of Q(t) when α takes different values
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Fig. 5. The residual of R(t) when α takes different values
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Fig. 6. The value of S(t) under the new model when α takes different
values
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Fig. 7. The value of I(t) under the new model when α takes different
values
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Fig. 8. The value of Q(t) under the new model when α takes different
values
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Fig. 9. The value of R(t) under the new model when α takes different
values
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Fig. 10. The value of S(t) under the two models when α takes different
values
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Fig. 11. The value of I(t) under the two models when α takes different
values
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Fig. 12. The value of Q(t) under the two models when α takes different
values
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of infected nodes recovering spontaneously with a certain
probability, a new model was developed and solved using the
residual power series method. By comparing the results of the
original model under the same conditions, it is concluded that
the infected component of the new model disappears earlier,
the effect is better, and it is more suitable for simulating the
spread of computer viruses in wireless sensor networks.
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[24] Atangana A, Gómez-Aguilar J F. Decolonisation of fractional calculus

rules: breaking commutativity and associativity to capture more
natural phenomena[J]. The European Physical Journal Plus, 2018,
133: 1-22.

[25] Atangana A, Hammouch Z. Fractional calculus with power law: The
cradle of our ancestors∗[J]. The European Physical Journal Plus,
2019, 134(9): 429.

[26] Agarwal R P, Lakshmikantham V, Nieto J J. On the concept of
solution for fractional differential equations with uncertainty[J]. Non-

linear Analysis: Theory, Methods & Applications, 2010, 72(6): 2859-
2862.

[27] Allahviranloo T, Salahshour S, Abbasbandy S. Explicit solutions of
fractional differential equations with uncertainty[J]. Soft Computing,
2012, 16: 297-302.

[28] Long H V, Son N T K, Tam H T T. The solvability of fuzzy fractional
partial differential equations under Caputo gH-differentiability[J].
Fuzzy Sets and Systems, 2017, 309: 35–63.

[29] Long H V, Nieto J J, Son N T K. New approach for studying nonlocal
problems related to differential systems and partial differential equa-
tions in generalized fuzzy metric spaces[J]. Fuzzy Sets and Systems,
2018, 331: 26-46.

[30] Hassouna M, Ouhadan A, El Kinani E H. On the solution of fractional
order SIS epidemic model[J]. Chaos, Solitons & Fractals, 2018, 117:
168-174.

[31] Huo J, Zhao H. Dynamical analysis of a fractional SIR model with
birth and death on heterogeneous complex networks[J]. Physica A:

Statistical Mechanics and its Applications, 2016, 448: 41-56.
[32] Singh J, Kumar D, Hammouch Z, et al. A fractional epidemiological

model for computer viruses pertaining to a new fractional deriva-
tive[J]. Applied Mathematics and Computation, 2018, 316: 504-515.

[33] Dubey V P, Kumar R, Kumar D.A hybrid analytical scheme for the
numerical computation of time fractional computer virus propagation
model and its stability analysis[J]. Chaos, Solitons & Fractals, 2020,
133: 109626.

[34] Graef J R, Kong L, Ledoan A, et al. Stability analysis of a fractional
online social network model[J]. Mathematics and Computers in

Simulation, 2020, 178: 625-645.
[35] Naim M, Lahmidi F, Namir A, et al. Dynamics of an fractional SEIR

epidemic model with infectivity in latent period and general nonlinear
incidence rate[J]. Chaos, Solitons & Fractals, 2021, 152: 111456.

[36] Hasan S, Al-Zoubi A, Freihet A, et al. Solution of fractional SIR
epidemic model using residual power series method[J]. Applied

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1240-1249

 
______________________________________________________________________________________ 



Mathematics and Information Sciences, 2019, 13(2): 153-161.
[37] Qazza A, Burqan A, Saadeh R. Application of ARA-residual power

series method in solving systems of fractional differential equa-
tions[J]. Mathematical Problems in Engineering, 2022, 2022.

[38] Qayyum M, Khan A. Residual Power Series Method for Wave
Type Equations[C]. 2021 International Conference on Applied and

Engineering Mathematics (ICAEM). IEEE, 2021: 77-80.
[39] Modanli M, Abdulazeez S T, Husien A M. A residual power series

method for solving pseudo hyperbolic partial differential equations
with nonlocal conditions[J]. Numerical Methods for Partial Differen-

tial Equations, 2021, 37(3): 2235-2243.
[40] Abu Arqub O. Application of residual power series method for the

solution of time-fractional Schrödinger equations in one-dimensional
space[J]. Fundamenta Informaticae, 2019, 166(2): 87-110.

[41] Ghazanfari B, Sepahvandzadeh A. Solution of the Fractional Bratu-
type Equation Via Fractional Residual Power Series Method[J].
Journal of Mathematics and Computer Science, 2014, 8: 236-244.

[42] Podlubny I. An introduction to fractional derivatives, fractional dif-
ferential equations, to methods of their solution and some of their
applications[J]. Math. Sci. Eng, 1999, 198: 340.

[43] Torge M, Bottlender R, StraußA, et al. An introduction to the
fractional calculus and fractional differential equations [M]. Wiley,
1993: 1-10.

[44] Kilbas A A, Srivastava H M, Trujillo J J. Theory and applications of
fractional differential equations[M]. Elsevier, 2006.

[45] Almeida R, Torres D F M. Calculus of variations with fractional
derivatives and fractional integrals[J]. Applied Mathematics Letters,
2009, 22(12): 1816-1820.

[46] El-Ajou A, Arqub O A, Zhour Z A, et al. New Results on Fractional
Power Series: Theory and Applications[J]. Entropy, 2013, 15(12):
5305-5323.

[47] El-Ajou A, Arqub O A, Momani S. Approximate analytical solution
of the nonlinear fractional KdVCBurgers equation: A new iterative
algorithm[J]. Journal of Computational Physics, 2014, 293: 81-95.

[48] Ahmed N, Raza A, Rafiq M, et al. Numerical and bifurcation analysis
of SIQR model[J]. Chaos, Solitons and Fractals, 2021, 150: 111133.

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1240-1249

 
______________________________________________________________________________________ 




