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Abstract—As deep learning advances, neural network 

technologies are increasingly penetrating the field of steel 

surface defect detection. To tackle the challenges of low accuracy 

and inadequate quality, we introduce CMS-YOLOv8s, a defect 

detection algorithm engineered for superior precision and 

efficiency. Initially, integrate the CBAM to enhance the 

network's focus on relevant information, allowing it to leverage 

multi-dimensional data like spatial and channel dimensions fully. 

Next, introduce the SPPFCSPC module to fuse feature 

information from different scales, expanding the model's 

receptive field and enhancing its feature extraction abilities. 

Finally, incorporate a small object detection head to boost the 

model's capability in identifying tiny targets, strengthening its 

ability to detect targets across different scales. Experimental 

findings show that CMS-YOLOv8s attains a detection accuracy 

of 70.4%, registering a significant 3.3% enhancement compared 

to the original YOLOv8s. This advancement distinctly improves 

defect detection accuracy across all categories. 

 
Index Terms—steel defect detection, YOLOv8s, CBAM 

attention mechanism, SPPFCSPC 

I. INTRODUCTION 
 

during the processing of steel, factors like processing 

techniques and environmental uncertainties can give 

rise to surface defects for examples: cracks, patches, or 

scratches. Which not only diminishes the service life of the 

steel but also compromises its overall quality, posing 

potential safety hazards in various applications. Hence, 

attaining a high level of precision in detecting surface defects 

in steel is not only crucial but holds paramount significance 

[1-6]. 

Traditional defect detection methods predominantly 

involve manual inspection, leading to issues like low 

accuracy and slow efficiency. With the evolution of deep 

neural networks, defect detection has seen widespread 

application of deep learning-based object detection [7]. The 

primary detection algorithms can be categorized into two-

stage detection models, represented by Faster R-CNN [8][24], 

and single-stage detection models, represented by YOLO[9] 

and SSD.  

Although two-stage object detection algorithms deliver high 

detection accuracy, their methodology of initially generating  
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candidate boxes and subsequently classifying them not only 

diminishes detection speed and efficiency but also escalates the 

computational burden on the model. In single-stage object 

detection algorithms, target detection is conducted during the 

forward propagation task without the necessity to generate 

candidate regions. These models predict the position and 

category of the target through anchor boxes, enabling faster 

inference speeds [9].The YOLO series detection algorithms are 

widely embraced in defect detection due to their simplicity, 

efficiency, and rapid detection capabilities [11][12][23].  
At present, many domestic and foreign scholars have 

conducted a series of studies on steel defect detection. 

Reference [13] devised a fully convolutional YOLO network 

comprising 27 convolutional layers, producing a feature map 

with a size of 13×13. This improvement not only expands the 

receptive field for enhanced feature extraction but also 

strengthens the network's capability to detect small targets. In 

the YOLOv7 model, the introduction of the ECA by the 

reference [14] enhances the algorithm's feature learning 

capabilities, directing increased attention towards valuable 

information. In this study, the CBAM attention mechanism is 

integrated into the model. Which aims to improve the 

algorithm's feature learning abilities. It also reinforces the 

network's focus on spatial and channel aspects. Ultimately, 

this enhancement elevates the model's capacity for 

recognizing targets. Reference [15] made improvements to 

the neck module of YOLOv5 by introducing the BiFPN 

structure, a sophisticated cross-scale bidirectional fusion 

method. This innovation involves fusing features from 

various scales, thereby enhancing the model's capability to 

adapt to objects of various sizes. Reference [16] innovatively 

designed a new multi-scale block for image processing, 

leading to a notable improvement in the network's overall 

accuracy. Reference [17] adopted Partial Convolution as the 

foundational operator and introduced an improved Fusion 

module. This module not only preserves detection speed but 

also strengthens the feature extraction capabilities of shallow 

networks. 

Summarizing the aforementioned, this paper proposes an 

enhanced method for detecting surface defects in steel, 

leveraging YOLOv8s. It integrates attention mechanisms to 

fine-tune the network's attention to relevant information and 

enhance feature extraction capabilities. The SPPFCSPC 

module extends the model's receptive field, fortifying its 

robustness, and improving the integration of features across 

varying scales. Adding a small object detection head 

significantly boosts the network's ability to identify tiny 

targets. This enhancement greatly improves precision in small 
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object detection, thereby enhancing the network's detection 

effectiveness. 

II. RELATED WORK 

The YOLOv8 algorithm represents the newest iteration in 

the YOLO series of one-stage target detection algorithms. It 

incorporates many SOTA technologies and boasts scalability. 

This encompasses various components such as the input 

module, the backbone network, the neck layer, and the head 

segment. Classified by depth and width, the network includes 

n, s, m, l, x, and so on five versions. The model parameters 

and computational load experience substantial increments 

with enhanced accuracy, meeting the demands of various 

scenarios [18]. 

The input module dynamically adapts the dimensions of 

input images through adaptive scaling and integrates mosaic 

data augmentation, thereby enhancing the model's 

performance.  

The backbone network is made up of convolutional layers, 

C2f modules, and SPPF [19]. Multiple convolutional and C2f 

modules process input images to extract feature maps at 

diverse scales. The C2f module aims to provide 

comprehensive gradient flow information while keeping a 

lightweight design. Within the SPPF, feature fusion is 

achieved through a combination of pooling and convolution 

operations, enhancing the feature extraction ability of the 

model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. CMS-YOLOv8s model 

The resulting features are then passed on to the neck layer. 

The neck structure of YOLOv8 incorporates the FPN+PAN 

architecture [20], leveraging both top and bottom inter-layer 

connections to achieve feature fusion. This yields feature 

maps that integrate rich semantic information with precise 

localization details, ultimately improving the ability of the 

model to detect objects at different scales. 

The Head utilizes a decoupled header structure, effectively 

segregating the detection from the classification tasks, and 

leverages the Task-Aligned Assigner for precise positive and 

negative sample matching. The loss computation encompasses 

both classification and regression aspects, employing binary 

cross-entropy as the classification loss[22]. Additionally, 

DFL and CIOU are introduced as regression losses to 

augment object detection. 

III. IMPROVED MODULE 

Fig. 1 illustrates the CMS-YOLOv8s network, which 

exhibits advanced improvements in object detection 

compared to YOLOv8s. Moreover, this model integrates the 

CBAM [21], SPPFCSPC module, and a dedicated layer for 

detecting small objects. These enhancements collectively 

elevate the model's detection capabilities, expediting 

convergence, expanding the model's receptive field, 

bolstering robustness, and optimizing both the efficiency and 

accuracy of the detection process. 
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A. CBAM 

CBAM (Convolutional Block Attention Module) stands as 

a lightweight attention mechanism, featuring two discrete 

sub-modules: Channel Attention Module (CAM) and Spatial 

Attention Module (SAM), which structure as shown in Fig. 2 

These modules operate independently to apply attention to 

both channel and spatial. This paper adopts the CBAM to 

augment the model's feature expressiveness, emphasizing 

crucial features while suppressing unnecessary ones.  

 

 

 

 

 

 

 

 

 
Fig. 2. Convolutional Block Attention Module 

 

CAM operates on the input feature map F by applying 

global max pooling and global average pooling. The resulting 

feature maps are subsequently inputted into a two-layer neural 

network. The features outputted by the MLP are further 

subjected to summation, resulting in the generation of 

attention feature, denoted Mc. In this context,  Favg
c  and Fmax

c  

respectively represent average pooling and max pooling 

operations; 𝜎 shows the activation function; Wi signifies the 

weight matrix of perceptron layer i, and F represents the input 

feature map.Fig. 3 illustrates the principle of CAM, and the 

calculation formula is as follows：   

( ) ( )( ) ( )( )( )

( ) ( )(1 0 1 0

M F MLP AvgPool F MLP MaxPool Fc

c cW W F W W Favg max
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Fig. 3. Channel Attention Module 

 

SAM takes F as the input, produced by channel attention. 

It then undergoes global max pooling and global average 

pooling along the channel dimension, resulting in two feature 

maps. These maps arefollowed by a 7× 7 convolutional 

operation to generate the spatial attention feature, denoted as 

Ms. Ultimately, this characteristic is multiplied by the 

module's input feature to derive the final generated attribute. 

In this context: 𝑓7×7  represents the convolution operation. 

The corresponding model structure diagram and formula are 

as follows： 

( ) ( ) ( )( )( )7 7  M F F ; Fs

          
7 7 s sF ;Favg max

f AvgPool MaxPool

f




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    =         (2) 

 

 

 

 

 

 

 

 

 
Fig. 4. Spatial Attention Module 

 

B. Adding a small target detection head 

The images examined in this paper depict surface defects 

in steel, utilizing the NEU-DET dataset, which contains 

numerous minuscule metal defects, with some having 

dimensions smaller than 10×10 pixels. The original YOLOv8 

model undergoes five down-sampling stages, resulting in the 

loss of a substantial portion of feature information for these 

metal defects after multiple down-sampling steps. Despite 

employing an 80×80 detection head, detecting these types of 

metal defects at high resolution remains challenging. 

In conclusion, to enhance the identification of minute metal 

defects, we integrated a novel 160×160 small target detection 

head into the model, as depicted in Fig. 5. This component 

encompasses more comprehensive underlying feature 

information of the targets, facilitating swift and efficient 

processing of small targets. Despite the increased 

computational demand attributed to adding the small target 

detection head, it markedly improves the efficacy in detecting 

and recognizing small targets. 

 

   

  

 

 

 

 
Fig. 5. Improvement at the head 

C. SPPFCSPC 

Spatial Pyramid Pooling (SPP) works by applying pooling 

at various scales to the feature map, yielding diverse pooling 

outcomes and acquiring different receptive fields. This design 

allows the model to effectively handle feature maps of 

varying resolutions. It adeptly mitigates challenges like image 

distortion resulting from operations such as scaling and 

cropping, addresses the model's tendency to repetitively 

extract image-related features, and enhances the speed of 

generating candidate boxes while concurrently reducing 

computational costs. The structural details are visually 

presented in Fig. 6. 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Spatial Pyramid Pooling 
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The YOLOv5 algorithm undergoes enhancement by 

incorporating the Spatial Pyramid Pooling (SPP) structure, 

introducing the SPPF structure. This improvement entails 

repositioning the max-pooling layer within the architecture 

and adjusting parameters like convolutional kernel size, stride, 

padding, etc. These modifications are geared towards 

accelerating pooling speed while preserving the network's 

consistent receptive field size. The model is shown in the Fig. 

7. 

 

 

 

 

 

 

 

 

 
Fig. 7. Spatial Pyramid Pooling – Fast 

 

In addition, the YOLOv7 algorithm proposes the 

SPPCSPC structure, building upon the Spatial Pyramid 

Pooling (SPP) architecture. Within the SPP, the Cross Stage 

Partial (CSP) structure is introduced, incorporating an 

additional residual branch. This augmentation serves to 

optimize input images, enhance feature extraction, and 

improve overall accuracy. The SPPCSPC structure is shown 

in Fig. 8. 

Due to the introduction of the CSP structure in SPPCSPC, 

both model parameters and computational load increase, 

resulting in slower pooling speeds. To address this, building 

upon the SPPF concept, we propose an enhanced module 

termed SPPFCSPC. By adjusting the pooling kernel of the 

max-pooling layer, we aim to boost detection speed while 

maintaining detection effectiveness. 

The SPPFCSPC module initially employs three CBS 

modules for image feature extraction. It then utilizes three 

distinct max-pooling layers to capture different-scale 

receptive fields, thus gathering more comprehensive feature 

information. Furthermore, by integrating two CBS modules 

with residual connections, the module achieves a more 

refined feature fusion, enriching the overall feature 

representation. The improved structure is shown in the Fig. 9. 
 

 

 
 

 

 
 

 

 
 

 

 

Fig. 8. SPPCSPC Model 

 
 

 

 
 

 

 
 

 

 
 

Fig. 9. SPPFCSPC Model 

IV. EXPERIMENT AND ANALYSIS 

A.  Datasets 

This paper utilizes the publicly available Northeastern 

University Surface Defects Dataset (NEU-DET) for steel strip 

surfaces, which encompasses six primary types of defects. As 

illustrated in Fig. 10, these defects are labeled as follows: 0 

for crazing, 1 for inclusion, 2 for patches, 3 for pitted surface, 

4 for roll-in scale, and 5 for scratches. Each defect category 

comprises 300 images, totaling 1800 images across all 

categories. The dataset is randomly partitioned into training, 

validation, and test sets in a ratio of 7:2:1. In total, there are 

1260 images in the training set, 360 in the test set, and 180 in 

the validation set. 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10. NEU-DET Dataset 
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(3) 

 

 

(4) 

 

 

(5) 

B. Evaluation Index 

The experimental results in this paper utilize common 

evaluation metrics for object detection: Precision (P), Recall 

(R), and Mean Average Precision (mAP). The calculation 

formulas for these metrics are as follows:

 

                                                                   

                                      

1
                                   

1

TP
P

TP FP

TP
R

TP FN

N
mAP APi

N i

=
+

=
+

= 
=  

TP (True Positive) represents instances where the target in 

the image is correctly identified. FP (False Positive) refers to 

cases where the model correctly identifies the location of the 

target but misclassifies its category. FN (False Negative) 

indicates instances where the correct target is not identified 

and is considered as another object, leading to a missed 

detection. N represents the number of classes. A larger API 

area signifies a more effective classifier. mAP is the average 

of APi values across multiple classes. Additionally, to 

highlight the model's advantages on small devices compared 

to other models, we incorporate parameters such as model 

size, computation, and model file size as additional evaluation 

criteria. 

 

C. Experimental Configuration 

The experiment used the Ubuntu 22.04 operating system, 

Python as the programming language, and the PyTorch deep 

learning framework, version 1.8.1. The hardware includes a 

GeForce GTX 1080ti graphics card with 11178MB of 

memory. During the training process, the input image is 

adjusted to a size of 640×640, and Stochastic Gradient 

Boosting (SGB) is used as the optimizer function. The model 

was trained for 300 epochs with a batch size set to 1. The 

momentum and attenuation parameters are set to 0.937 and 

0.0005 respectively, the learning rate is 0.01, and the cosine 

annealing scheduling algorithm is used. The Mosaic 

enhancement technique was used in the last 10 epochs of the 

training. 

 

D. Experimental Results 

Fig. 11 depicts the PR curves for YOLOv8s and CMS-

YOLOv8s during testing on the NEU-DET dataset. The blue 

line represents the mAP curve at IoU 0.5, with precise values 

detailed in the accompanying table. Figure 11(a) displays the 

Precision-Recall (P-R) curve for the original YOLOv8s 

algorithm, while Figure 11(b) showcases the P-R curve for 

the enhanced CMS-YOLOv8s algorithm. In Figure 11(a), the 

area under the blue curve for mAP@0.5 is 67.1%, whereas in 

Figure 11(b), it reaches 70.4%. A larger area under the curve 

signifies superior model performance. The area under the blue 

curve in Figure 11(a) is smaller compared to the area in Figure 

11(b), providing strong evidence for the effectiveness of the 

improved YOLOv8s algorithm in this study. 

 The numerical results and table highlight that the enhanced 

model exhibits accelerated convergence and substantial 

advancements in recognizing the majority of classes. Notably, 

significant improvements are observed in identifying defect 

categories like crazing, scratches, and patches, providing 

strong supporting evidence for the effectiveness of the 

proposed enhancement measures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(a) YOLOv8s 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                             (b) CMS-YOLOv8s 

 
Fig. 11. P-R curve on the NEU-DET dataset 

 

TABLE I 
THE P-R CURVES RESULTS ON NEU-DET DATASET 

Class 

 

YOLOv8s 

 

CMS-YOLOv8s 

 

Crazing 0.318 0.513 

Inclusion 0.715 0.774 

Patches 0.861 0.883 

Pitted_surface 0.790 0.785 

Roll-in_scale 0.616 0.601 

scratches 0.728 0.867 

 

E. Compare Test Results 

Fig. 12 presents a comparative analysis of test results on 

the NEU-CET dataset. Three images were carefully chosen 

for this comparison: the top image is the test results of the  
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Fig. 12. The detection results on NEU-DET datasets 

 

original baseline model and the bottom image is the test 

results of the improved model. 

Upon scrutinizing Fig. 12, the improved network model 

has improved in various indicators. It demonstrates 

heightened accuracy and recall, resulting in increased 

confidence levels and, consequently, more effective overall 

detection performance. These enhanced capabilities also 

empower the model to better cater to metal surface defect 

detection and related domains. Moreover, the third set of 

images illustrates that the improved model effectively 

addresses crucial issues in metal defect detection, such as 

mitigating false negatives. 

The robustness of the improved network model is further 

supported by detection results from diverse datasets, 

affirming its substantial progress and a commendable degree 

of applicability. By consistently demonstrating excellent 

performance across multiple data sets, the model enhances its 

reliability and applicability. 
 

F.  Ablation Experiment 

To verify the improvement of the YOLOv8s model 

proposed in this paper, we conducted a series of experiments 

on the NEU-DET dataset to evaluate its performance The 

experimental results are presented in Table Ⅱ. This paper 

introduces three enhancements to the YOLOv8s algorithm. 

To illustrate the beneficial effects of each module on the 

original algorithm, the following ablation experiments were 

conducted: 

1. Solely integrating the CBAM attention mechanism into 

the model. 

2. Exclusively replacing the SPPF module of the original 

algorithm with the SPPFCSPC module. 

3. Adding a small target detection head solely to the end of 

the model's head. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysis of the table indicates a significant improvement 

in the enhanced network model compared to the original 

model, resulting in a notable 3.3% increase in mAP for the 

NEU-DET dataset. These findings suggest that with each 

modification, there is a rise in the network's mAP values, 

underscoring the efficacy of the proposed enhancements. 
TABLE Ⅱ 

ABLATION EXPERIMENTS RESULTS ON NEU-DET DATASET  

 

G. Compared with Other Models 

In order to verify the effectiveness of this method in the 

detection of steel surface defects, this paper tests the 

algorithm on the NEU-DET dataset. The evaluation entails 

comprehensive comparisons with algorithms including 

YOLOv5s, YOLOv7, Fast RCNN, YOLOv8, etc., across 

parameters such as mAP, floating-point operations per second 

(FLOP), inference speed, and other metrics. Detailed results 

are provided in Table III for reference. 
Upon analyzing the data presented in Table III, it becomes 

apparent that our proposed model outperforms other algorithms 

significantly, excelling in both accuracy and inference speed.  
Despite CMS-YOLOv8s having a larger parameter count than 

YOLOv8, it showcases a noteworthy 3.3% improvement in 
detection accuracy, accompanied by a substantial increase in 

inference speed. The experimental results suggest that even with 

a marginal increase in model parameters, the object recognition 

CBAM HEAD SPPFCSPC      mAP 

× × × 67.1% 

√ × × 68.7% 

× √ × 68.2% 

× × √ 68.8% 

√ √ × 69.1% 

× √ √ 69.5% 

√ × √ 69.9% 

√ √ √ 70.4% 
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capabilities and speed of the model may not necessarily be 

adversely affected. In comparison to other mainstream 

algorithms, such as Faster R-CNN and YOLOv5s, CMS-

YOLOv8s also has significant advantages in terms of detection 

accuracy. These findings underscore the effectiveness and 

efficiency of our proposed model, positioning it as a robust 

solution in the realm of object detection algorithms. 

 
TABLE Ⅲ 

     COMPARED WITH OTHER MODELS 

Model Name mAP(%) Inference(ms) Flops(G) 

YOLOv5s 66.1 5.8 23.8 

Faster R-CNN 65.3 6.1 13.3 

YOLOv7 63.9 15.3 35.3 

YOLOv8 67.1 18.3 32.6 

CMS-YOLOv8s 70.4 23.2 37.2 

 

V. CONCLUSION 

Building upon the YOLOv8s algorithm, this paper 

introduces an enhanced metal surface defect detection 

algorithm, referred to as CMS-YOLOv8s, which surpasses 

existing mainstream object detection algorithms. Key 

improvements include the integration of a lightweight 

attention mechanism CBAM, facilitating attention operations 

in both spatial and channel dimensions. This enhancement 

amplifies the model's emphasis on relevant information and 

enhances its feature extraction capabilities. Moreover, a small 

object detection head is integrated to enhance the model's 

ability to detect small targets, enabling the network to identify 

objects across different scales and thus improving overall 

detection effectiveness The introduction of the SPPFCSPC 

module expands the model's receptive field, fortifying its 

robustness and further amplifying its detection performance 

and resilience. Through this series of refinements, the 

proposed CMS-YOLOv8s algorithm makes significant 

strides in metal surface defect detection, notably enhancing 

accuracy, performance, and versatility. 
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