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Abstract—Steel surface defect detection poses a significant
challenge in the steel industry, aiming to enhance product
quality and production efficiency. Traditional mechanical and
optical detection methods exhibit relatively low efficiency and
poor real-time performance in detecting acceptable defects
on the surface of steel strips. This paper proposes a new
model named Hyper-YOLO for steel surface defect detection
in steel strips. Firstly, the CSP module in the conventional
YOLO backbone network is replaced with the Ghost mod-
ule. The Ghost module, a lightweight convolutional module,
enhances model efficiency by reducing parameter count and
computational load while maintaining satisfactory performance.
Secondly, researchers replace the PAFPN module in YOLO
V5 in the bottleneck section with the Hyper FPN module.
Hyper FPN, an improved feature pyramid network module,
leverages features at different scales for multi-level feature
fusion, enhancing the model’s capability to detect targets at
various scales. Lastly, improvements are made in the loss
functions for both training and prediction stages. The α-CIoU
loss function is introduced during training to substitute the
original CIoU loss function, and the α-DIoU loss function is
utilized during prediction instead of the original DIoU loss
function. These enhanced loss functions effectively measure
the accuracy and position precision of target boxes, thereby
improving the detection performance of the model.

Through these enhancements, the Hyper YOLO model
achieves an overall performance improvement of 4.58% over
the baseline model. This indicates that Hyper YOLO performs
outstanding surface defect detection in steel strips, providing in-
novative insights for the YOLO V5 model. These improvements
not only elevate the accuracy and efficiency of the model but also
hold significant guidance for similar research and applications.

Index Terms—YOLO, Object Detection, Steel Defect Detec-
tion, Computer Vision

I. INTRODUCTION

STEEL Surface Defect Detection(SSDD) refers to the
process of detecting, identifying, and locating surface

defects or anomalies during steel production. These defects
include cracks, scratches, dents, and other issues that may
impact the quality and performance of the steel. Traditional
SSDD methods typically rely on human visual inspection,
which is inefficient and prone to missed detections or false
positives[1–3].

Object detection technology holds significant potential for
SSDD. By employing deep learning algorithms, models can

Manuscript received Feb 9, 2024; revised 7 July, 2024.
Guinan Wu is a Postgraduate of School of Electronic Information

Engineering, University of Science and Technology Liaoning, Anshan,
Liaoning, China. (e-mail: 2608942251@qq.com).

Qinghong Wu* is a Professor of School of Electronic Information Engi-
neering, University of Science and Technology Liaoning, Anshan, Liaoning,
China. (corresponding author to provide e-mail: aswqh@163.com).

be trained to automatically recognize and locate defects
on steel surfaces[4]. These models can learn from large
amounts of labelled data, improving detection accuracy and
robustness. Object detection technology can be combined
with traditional image processing methods to achieve more
precise detection results. For instance, preprocessing methods
can enhance image contrast and clarity before utilizing object
detection algorithms for detect localization and identification.
Furthermore, various object detection algorithms can be
compared and selected to determine the most suitable method
for SSDD.

Based on this objective, this paper proposes an improved
YOLO V5 model, referred to as Hyper-YOLO, which in-
cludes the following three main enhancements:

1) Lightweight modifications to the convolutional modules
in the backbone network significantly reduce mod-
ule parameters and further improve computational ef-
ficiency.

2) Introduction of an improved Feature Pyramid Network
(Hyper FPN) module in the bottleneck section, which
utilizes multi-level feature fusion from different scales
of feature maps to enhance the model’s ability to detect
objects of various scales.

3) New loss functions α-CIoU and α-DIoU are utilized
during the training and prediction phases. Compared
to the original CIOU and DIoU[5, 6], these new loss
functions better measure the accuracy and positional
precision of the bounding boxes, thereby improving the
model’s detection performance.

These enhancements enable the Hyper-YOLO model to
achieve a 4.37% performance improvement over the baseline
model, demonstrating its excellent detection capabilities in
SSDD. The improvements enhance the model’s accuracy and
efficiency and provide valuable insights for research and
applications in similar tasks.

II. RELATED WORK

A. YOLO V5

YOLO (You Only Look Once) V5[7] is a prominent object
detection algorithm representing the latest iteration in the
YOLO series. YOLO V5 transforms the object detection
task into a regression problem within a single neural net-
work, achieving rapid and accurate real-time object detection.
Compared to its predecessors, YOLO V5 exhibits notable
advancements in accuracy and speed[8, 9]. It adopts a
lightweight network structure with fewer parameters and
faster inference speed while maintaining high detection pre-
cision.
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A novel feature extraction module, termed "Focus," is
introduced in YOLO V5 to enhance the detection perfor-
mance for small targets. Additionally, YOLO V5 incorpo-
rates a feature fusion mechanism known as "PAFPN" that
contributes to improved detection outcomes for multiscale
targets. The model is designed with user-friendliness and
flexibility in mind. It offers pre-trained model weights that
support transfer learning across various computer vision
tasks. Furthermore, YOLO V5 is compatible with multiple
mainstream frameworks and programming languages, such
as PyTorch and TensorFlow, facilitating ease of integration
and utilization.

YOLO V5 has garnered widespread success in numer-
ous application domains, including autonomous driving,
intelligent surveillance, object recognition, and industrial
inspection[10–12]. Its swift inference speed and accurate
detection performance make it an ideal choice for real-time
applications. Moreover, its open-source nature allows re-
searchers and developers to undertake further improvements
and extensions based on the YOLO V5 foundation.

B. BiFPN

BiFPN is a feature fusion mechanism used for object
detection, initially proposed in the EfficientDet model and
widely adopted in subsequent object detection algorithms
[13].

The primary objective of BiFPN is to address the challenge
of multiscale feature fusion to enhance object detection
accuracy. In traditional feature pyramid networks, multiscale
features are typically fused upward or downward. However,
this unidirectional feature propagation may lead to informa-
tion loss or blurring, especially when dealing with small
targets [14, 15].

BiFPN achieves bidirectional feature propagation by in-
troducing skip connections and incorporating upward and
downward connections. It comprises a series of fusion layers,
each comprising an upsampling path and a downsampling
path. In the upsampling path, low-resolution feature maps
are enlarged through upsampling operations and fused with

high-resolution feature maps. In the downsampling path,
high-resolution feature maps are reduced through downsam-
pling operations and fused with low-resolution feature maps.
BiFPN effectively retains rich information from multiscale
features and merges them cohesively through this bidirec-
tional feature propagation.

Moreover, BiFPN introduces a mechanism called "Atten-
tion" to adaptively adjust the importance of feature maps.
This allows the network to automatically learn the weight
distribution of feature maps based on different targets and
scenes, enhancing focus on crucial targets [16].

BiFPN has demonstrated significant performance improve-
ments in object detection. By effectively fusing multiscale
features, it captures targets of varying sizes and provides
more accurate predictions of positions and categories. As
a result, BiFPN has been widely applied in various ob-
ject detection algorithms, including EfficientNet[17] and
YOLOv4[18].

In summary, BiFPN serves as a feature fusion mecha-
nism for object detection, leveraging bidirectional feature
propagation and adaptive attention mechanisms to effectively
merge multiscale features, thereby enhancing the accuracy
and robustness of object detection.

C. Ghost Net

GhostNet is a convolutional neural network proposed by
Huawei Noah’s Ark Lab. It constructs a lightweight net-
work suitable for hardware and mobile devices, exhibiting
superior performance compared to MobileNet [19]. Ghost
Net comprises a series of Ghost bottlenecks, with the Ghost
module as its foundational building block. The Ghost module
represents a novel neural network basic unit that generates
more feature maps using fewer parameters to enhance ef-
ficiency. Specifically, the Ghost module divides a regular
convolutional layer into two parts: the first part involves a
standard convolution but rigorously controls the number of
convolution kernels, while the second part applies a series of
simple linear operations to generate additional feature maps
known as “ghost” feature maps. These ghost feature maps are
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obtained through cost-effective operations from the original
feature maps [20, 21].

GhostNet is a lightweight neural network constructed
based on Ghost bottlenecks. In ImageNet classification tasks,
GhostNet achieves a Top-1 accuracy of 75.7% under similar
computational constraints, surpassing MobileNetV3’s accu-
racy of 75.2%. The design of GhostNet aims to address
the computational cost and performance challenges when
applying neural networks on mobile devices. Using the
Ghost module, GhostNet achieves efficient feature extraction,
enabling rapid inference on mobile devices[22].

III. METHODS

A. Overall Structure

In this paper, further enhancements are proposed for the
YOLO V5 model. The overall flow chart is shown in Fig.1
Firstly, the CSP module in the backbone network is replaced
with the Ghost module. The Ghost module, characterized by
its lightweight convolutional design, enhances the model’s
efficiency by reducing parameter quantity and computational
workload while maintaining satisfactory performance.

Secondly, researchers replace the PAFPN module in
YOLO V5 in the bottleneck section with the Hyper FPN.
Hyper FPN, an improved feature pyramid network module,
leverages feature maps of different scales for multi-level
feature fusion, thereby augmenting the model’s capability to
detect targets at various scales.

Lastly, improvements are introduced to the loss functions
during both the training and prediction phases. The α-CIoU
loss function is incorporated during training to replace the
original CIoU loss function, and the α-DIoU loss function
is utilized during prediction to replace the original DIoU
loss function. These refined loss functions better measure
target boxes’ accuracy and positional precision, enhancing
the model’s detection performance.

Through these enhancements, the Hyper YOLO model
achieves a performance improvement ranging from 3% to 5%
over the baseline model. This improvement suggests that, in
surface defect detection on steel strips, Hyper YOLO exhibits
outstanding detection performance and introduces innovative
perspectives to the YOLO V5 model. These improvements
elevate the model’s accuracy and efficiency and guide the
research and application of similar tasks.

B. Backbone

In YOLOv5, the default backbone network is CSPDark-
net53, a lightweight convolutional neural network structure.
CSPDarknet53 adopts the Cross Stage Partial (CSP) archi-
tecture, wherein the input is split into two branches. One
branch undergoes convolution operations, while the other
engages in skip connections, enhancing feature representa-
tion and model performance. This paper takes an alternative
approach by replacing the Ghost Module in the network

with the CSP Module. Firstly, GhostNet surpasses CSPNet
in both accuracy and speed. Its performance on the ImageNet
dataset exhibits superior classification accuracy compared
to CSPNet. Secondly, the Ghost Module possesses fewer
parameters and computational costs than the CSP Module
does . This implies that, under similar hardware conditions,
the Ghost Module can facilitate faster inference and achieve
commendable performance on resource-constrained devices.

Furthermore, the Ghost Module excels in model compres-
sion. It can achieve a more petite model size through low-
scale network pruning and quantization without significantly
compromising performance. Lastly, GhostNet demonstrates
notable generalization capabilities across various tasks and
datasets. It yields outstanding results in multiple computer
vision tasks, including image classification, object detection,
and semantic segmentation. The Ghost Module structure is
illustrated in Fig. 2.

C. Hyper FPN

In YOLO V5, the Neck module introduces multiscale
feature information within the Feature Pyramid Network
(FPN). Its structure is shown in Fig. 3. It merges fea-
ture maps from different hierarchical levels to facilitate
object detection and localization across various scales. While
YOLO V5 utilizes PAFPN, this paper replaces it with Hyper
FPN. Hyper FPN represents a further improvement based
on BiFPN, concurrently substituting the C3 module with
the GhostC3 module. Experimental evidence demonstrates
that Hyper FPN adopts a bidirectional feature propagation
mechanism, enabling more effective capture of feature in-
formation across different scales. This facilitates proficient
feature fusion among diverse features. Hyper FPN exhibits
superior performance in object detection tasks. It balances
feature representation across different scales, enhancing the
accuracy and recall of object detection.
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D. CA Block(Coordinate Attention Block)

This paper introduces a novel efficient attention mecha-
nism at the end of the backbone network to alleviate the
loss of spatial information caused by 2D global pooling.
Its structure is shown in Fig. 4. The channel attention is
first decomposed into two parallel processes (in the x and
y directions) during 1D feature encoding. This effectively
integrates spatial coordinate information into the generated
attention map. Subsequently, these two feature maps, en-
coding direction-specific information, are transformed into
two attention maps. Each attention map captures long-range
dependencies along a spatial direction of the input feature
map.

Consequently, the generated attention maps preserve posi-
tional information. These two attention maps are multiplied
with the input feature map to enhance its representational
capacity. This attention operation distinguishes spatial di-
rections and generates coordinate-aware feature maps. This
efficient attention mechanism enables better retention of po-
sitional information within the backbone network, enhancing
the model’s perception of spatial features. This is particularly
crucial for tasks demanding accurate spatial information,
such as object detection and image segmentation.
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Fig. 4. Overview of CA Block

E. IoU Loss

The loss function of Hyper-YOLOv5 consists of two main
components: classification loss and bounding box regression
loss. The bounding box regression loss utilizes different
variants of IoU to measure the matching degree between
predicted and target bounding boxes. These IoU variants
include:

1) GIoU Loss [23]: Builds upon IoU Loss to address the
issue when the boxes do not overlap.

2) DIoU Loss [24]: Extends IoU Loss and GIoU Loss by
considering the distance between the centre points of
the bounding boxes.

3) CIoU Loss: Further incorporates the aspect ratio and
scale information of the bounding boxes based on DIoU
Loss.

These loss functions are designed to improve the matching
accuracy of the bounding boxes and assist the model in better
localizing and predicting target objects. In Hyper-YOLOv5,
α-CIoU is employed as the IoU variant for the bounding
box regression loss, which comprehensively considers the
overlapping area, cases when the boxes do not overlap,
the distance between the centre points of the boxes, and

the aspect ratio and scale information of the boxes. The
calculation for α-CIoU is shown in Equations(1) to (8):

LIoU = 1− IoU (1)

Lα−IoU = 1− IoUα (2)

LGLOU = 1− IoU +
|C − (B ∪Bgt)|

|C|
(3)

Lα−GIoU = 1− loUα +

(
|C − (B ∪Bgt)|

|C|

)α

(4)

LDIoU = 1− IoU +
ρ2(b, bgt)

c2
(5)

Lα−DIoU = 1− IoUα +
ρ2α(b, bgt)

c2α
(6)

LCIoU = 1− IoU +
ρ2(b, bgt)

c2
+ βv (7)

Lα−CIoU = 1− loUα +
ρ2α(b, bgt)

c2α
+ (βv)α (8)

Where C in LDIoU denotes the most minor convex shape
enclosing B and Bgt; b and bgt in LDIoU denote central
points of B and Bgt with ρ() being the Euclidean distance
and c being the diagonal length of the smallest enclosing
box; and in LDIoU .

v =
4

π2
(arctan

W gt

hgt
− arctan

W

h
)2 (9)

β =
ν

(1− IoU) + v
(10)

They give us the family of power IoU losses for box
regression with their original versions recovered at α =
1. Note that the above α-IoU generalization can be easily
extended to more complex loss functions that have multiple
IoU or penalty terms.

IV. EXPERIMENT SETTING

A. Datasets

Multiple mainstream metal surface defect datasets were
selected for the experiments to evaluate the performance of
the proposed Hyper YOLO better in detecting defects on
steel surfaces. These datasets are NEU-DET, DAGM 2007,
and SEVERSTAL Steel Defect Detection. Below is a brief
introduction to these datasets:

1) NEU-DET (NEU Surface Defect Database): The NEU-
DET dataset was collected by Northeastern University
and is intended for surface defect detection, particularly
in industrial metal surfaces. It comprises six typical sur-
face defect categories: Roll Marks, Patches, Scratches,
Inclusion, Cracking, and Pitted Surface. Each defect
category contains 300 images, totalling 1800 images.
All images are grayscale with dimensions of 200x200
pixels. This dataset is primarily used to research and
evaluate the performance of various surface defect de-
tection algorithms.

2) DAGM 2007 (Deutsche Arbeitsgemeinschaft für Mus-
tererkennung): The German Association for Pattern
Recognition organized the DAGM 2007 dataset as part
of a defect detection competition. The purpose of this
dataset is to evaluate the performance of automated

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1321-1330

 
______________________________________________________________________________________ 



visual inspection systems in detecting different indus-
trial defects. It includes synthetically generated tex-
ture images with predefined defect areas and various
industrial scene defect images. Each dataset category
includes multiple subsets containing defect and non-
defect images. These images are used to train and test
pattern recognition algorithms, assessing their ability to
detect and locate defects.

3) SEVERSTAL Steel Defect Detection: The SEVER-
STAL Steel Defect Detection dataset, provided by the
Severstal company, is used for detecting defects on steel
surfaces. This dataset includes images taken during the
steel manufacturing process, annotated with different
types of defects such as Scratches, Dents, Linear, and
Point defects. The images vary in resolution and size
and come with detailed annotations used for training
and evaluating surface defect detection models. The
SEVERSTAL dataset is widely utilized in deep learning
and computer vision research to enhance quality control
and automated detection in steel manufacturing.

Each of these datasets presents unique challenges and
complexities. They play a significant role in industrial surface
defect detection research, contributing to advancing related
algorithms and technologies.

B. Training Environment and Detail
The experimental hardware setup in this paper consisted

of an Intel(R) Xeon(R) Bronze 3104 CPU @ 1.70GHz
processor, 128GB of memory, and two NVIDIA GeForce
GTX TITAN XP graphics processors. The operating system
used was Ubuntu 22.04. The experiments used the detection
2.28 deep learning framework based on PyTorch 1.3.

During the data preprocessing stage, the following tech-
niques were applied: RandomFlip, Normalize, Random Crop,
and Simple Copy Paste. The Adam optimizer was utilized for
the training stage with a learning rate 0.0002, a batch size
of 16, and a weight decay 0.05. The model was trained for
100 epochs, incorporating the EMA training technique. The
FP16 precision format accelerated the training process, and
the input image size was set to 224 × 224 pixels.

C. Evaluation Metrics
In the experimental section evaluating the Hyper-YOLO

model, metrics such as Precision, Recall, F1 Score, and
mAP are employed to assess the model’s classification per-
formance alongside FLOPs and FPS to gauge its practicality.
Before formally describing the metrics mentioned above, it is
essential to introduce some preliminary concepts, as depicted
in Table 1, pertinent to classification tasks, which include:

1) True Positives (TP): The number of positive samples
correctly predicted by the model.

2) True Negatives (TN): The number of negative samples
correctly predicted by the model.

3) False Positives (FP): The number of negative samples
incorrectly predicted as positive by the model.

4) False Negatives (FN): The number of positive samples
incorrectly predicted as negative by the model.

By elucidating these preliminary concepts, understanding
the evaluation metrics becomes more accessible. The fol-
lowing elucidation provides an introduction to the evaluation
mentioned above metrics:

1) Precision: Precision represents the proportion of sam-
ples predicted by the classifier as positive instances that
genuinely belong to the positive class. It is calculated
as TP divided by the sum of TP and FP. The calculation
process is shown in Equation (11).

Precision =
TP

TP + FP
(11)

2) Recall: Recall represents the proportion of actual pos-
itive samples correctly identified as positive by the
classifier. It is calculated as TP divided by the sum of TP
and FN. The calculation process is shown in Equation
(12).

Recall =
TP

TP + FN
(12)

3) F1 Score: F1 Score represents a metric that combines
Precision and Recall, representing their harmonic mean,
thereby serving as an evaluation measure of the classi-
fier’s performance. The calculation process is shown in
Equation (13).

F1 = 2× Precision× Recall

Precision + Recall
(13)

4) mAP (mean Average Precision): mAP represents the
evaluation of performance metrics for tasks such as
retrieval or object detection; it represents the average
precision under the Precision-Recall curve. In classifi-
cation tasks, each class is typically regarded as a binary
classification problem, where Precision and Recall for
each class are computed and then averaged. A higher
mAP value indicates better performance of the classifier
across various classes. Different IoU thresholds are
employed when calculating mAP to assess the accuracy
of detection results. IoU refers to overlap between the
detection box and the ground truth annotation box. The
suffix digits of mAP, such as mAP50 and mAP75, indi-
cate the IoU thresholds utilized during mAP calculation.
The calculation process is shown in Equation (14).

mAP =
1

n

n∑
i−1

∫ 1

0

P (R)dR (14)

5) FLOPs (Floating Point Operations Per Second): FLOPs
represent a metric used to measure the computational
complexity of deep learning models, representing the
number of floating-point operations required by the
model during inference or training. FLOPs are com-
monly utilized to describe models’ computational re-
source requirements, aiding in assessing model com-
plexity, which is crucial for model selection and opti-
mization in resource-constrained environments such as
mobile devices and embedded systems.

6) FPS (Frames Per Second): FPS represents a metric used
to measure the inference speed of a model, representing
the number of frames processed by the model per
second when handling images or videos. In practical
applications, FPS is often employed to evaluate the
performance of models in real-time or near real-time
scenarios, such as real-time video analysis and au-
tonomous driving applications.
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D. Baseline

In the performance comparison section, the experiments
in this paper are divided into two parts: a comparison of
the Backbone and a comparison of the overall model. For
the Backbone comparison, the current mainstream Backbone
networks were selected as the baseline models, specifically:

1) FPN(Feature Pyramid Network)[25]: FPN is a backbone
network used for object detection tasks, capable of
extracting information from feature maps at different
scales. It constructs a feature pyramid through bottom-
up and top-down pathways, effectively combining mul-
tiscale information and enhancing the detection perfor-
mance of small objects.

2) PAFPN(Path Aggregation Feature Pyramid
Network)[26]: PAFPN is an improvement over
FPN, further enhancing the information flow between
features. It introduces additional path aggregation
modules and increased lateral connections, improving
feature representation capabilities and suitability for
complex object detection tasks.

3) BiFPN(Bidirectional Feature Pyramid Network): BiFPN
is an optimization of the feature pyramid network,
focusing on the efficiency and performance of feature
fusion. It employs a learnable bidirectional feature fu-
sion approach and reduces computational complexity
through simplified network design, making it suitable
for real-time object detection tasks.

Besides the Backbone comparison, this paper compares
Hyper-YOLO with several mainstream object detection mod-
els. The following are brief introductions of these models:

1) YOLO V3 (You Only Look Once Version 3): YOLOv3
is the third version of the YOLO series, a real-time
object detection model. It uses a deeper Darknet as the
backbone network, adopts multiscale predictions, and
introduces residual connections, improving detection
accuracy and speed.

2) YOLO V4: YOLOv4 is the fourth version of the YOLO
series, a high-performance real-time object detection
model. It introduces CSPDarknet53 as the backbone
network, uses the Mish activation function, applies

data augmentation strategies, and significantly enhances
detection accuracy and speed.

3) YOLO V5: YOLOv5 is a new version of the YOLO
series Ultralytics developed. YOLOv5 improves perfor-
mance and speed through streamlined network architec-
ture and optimized training strategies. Its simplicity and
lightweight nature characterize it, making it suitable for
deployment on mobile and embedded devices.

4) PPYOLO (PaddlePaddle YOLO): PPYOLO is a high-
performance object detection model based on the Pad-
dlePaddle framework. PPYOLO incorporates innovative
designs, such as IoU Loss and Matrix NMS, to achieve
high inference speed while maintaining high accuracy.

V. RESULT AND ANALYSIS

Three sets of experiments were conducted to validate
the performance of the Hyper YOLO in SSDD tasks. The
experimental results are presented in Tables I to III and Fig.
5 to Fig. 7. All values in the tables are the averages of five
independent experiments, with the best results highlighted in
bold and the second-best results underlined.

A. Comparative Performance Analysis of Hyper FPN

In Experiment 1, the primary focus was on comparing the
performance of different backbones in detection models, with
YOLO V5 being consistently used as the detector. Specific
experimental data are presented in Tables I, demonstrating
that Hyper FPN achieved either the best or second-best
results across almost all metrics and datasets. BiFPN ex-
hibited the best performance among all the baseline models
and is therefore referred to as the optimal baseline model.
To visually present the performance of Hyper FPN, various
metrics were plotted proportionally to the optimal baseline
(set as 100), as illustrated in Fig. 5.

Specifically, in the NEU-DET dataset, Hyper FPN
achieved the best results in Precision, Recall, F1, mAP,
mAP50, and mAP75, improving over the optimal baseline
model by 2.50%, 3.53%, 3.07%, 5.73%, 6.58%, and 7.94%,
respectively. For the FPS metric, Hyper FPN obtained the
second-best result, showing a 2.43% deficit compared to the

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT DETECTION MODELS’ BACKBONE COMPONENTS

Datasets Backbone
Metrics

Precision Recall F1 mAP mAP50 mAP75 FPS FLOPs

NEU-DET

FPN 0.754 0.753 0.753 0.572 0.742 0.402 48.00 3.5
PAFPN 0.795 0.755 0.785 0.620 0.783 0.456 40.00 3.8

BiFPN 0.801 0.765 0.782 0.628 0.790 0.466 41.00 4.0

Hyper FPN 0.821 0.792 0.806 0.664 0.842 0.503 40.00 4.3

DAGM 2007

FPN 0.844 0.839 0.843 0.641 0.831 0.45 48.00 3.9
PAFPN 0.890 0.845 0.879 0.694 0.877 0.511 39.00 4.2

BiFPN 0.897 0.856 0.876 0.745 0.885 0.522 36.00 4.5

Hyper FPN 0.920 0.887 0.903 0.739 0.943 0.563 35.00 4.8

SEVERSTAL

FPN 0.658 0.657 0.657 0.499 0.648 0.351 41.00 3.1
PAFPN 0.694 0.659 0.685 0.541 0.684 0.398 35.00 3.3

BiFPN 0.700 0.697 0.683 0.548 0.690 0.407 36.00 3.5

Hyper FPN 0.717 0.688 0.696 0.580 0.735 0.439 35.00 3.8
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Fig. 5. Proportional Evaluation Metrics of HyperFPN Based on the Optimal Baseline Model

optimal baseline, and in the FLOPs metric, it had a 7.5%
deficit. In the DAGM 2007 dataset, Hyper FPN achieved the
best results in Precision, Recall, F1, mAP50, and mAP75,
with improvements of 2.56%, 3.62%, 3.08%, 6.57%, and
7.85%, respectively, over the optimal baseline. It attained the
second-best result in the mAP metric, trailing the optimal
baseline by 0.80%. The FPS and FLOPs metrics showed
deficits of 2.17% and 6.67%, respectively, compared to the
optimal baseline. In the SEVERSTAL dataset, Hyper FPN
achieved the best results in Precision, F1, mAP, mAP50,
and mAP75, with improvements of 2.39%, 1.90%, 5.84%,
6.52%, and 7.86%, respectively, over the optimal baseline.
It achieved the second-best result in the Recall metric, with
a 1.30% deficit compared to the optimal baseline. The FPS
and FLOPs metrics showed deficits of 2.78% and 8.57%,
respectively, compared to the optimal baseline.

Across the three datasets, Hyper FPN achieved the best re-
sults in Precision and Recall metrics five times, with average
improvements of 2.48% and 1.95%, respectively, over the op-
timal baseline. Higher Precision indicates that most positive
predictions were correct, meaning the model produced fewer
FP. Higher Recall indicates that the model identified the most
positive samples, meaning fewer FN. Correspondingly, the
F1 Score was also high, with an average improvement of
2.68% over the optimal baseline. This suggests that Hyper
FPN achieved a good balance in classification, improving
one metric without sacrificing another, further validating its
overall superior performance. The improvements in these
three metrics are mainly attributed to the bidirectional fea-
ture propagation mechanism of the GhostC3 module, which
effectively integrates different features.

In terms of mAP, Hyper FPN showed a 3.59% improve-
ment over the second-best result. Notably, at IoU thresholds
of 0.5 and 0.75, Hyper FPN outperformed the second-best
model by 6.56% and 7.88%, respectively, in mAP50 and
mAP75. A higher mAP50 indicates the model can accurately
detect objects under the relatively lenient condition of IoU
≥ 0.5, meaning it can effectively identify most objects while
allowing some localization errors. A higher mAP75 indicates
the model can accurately detect objects under the stricter
condition of IoU ≥ 0.75, meaning it not only identifies
objects but also locates their boundaries more precisely.
High values in both mAP50 and mAP75 reflect the model’s
overall excellent performance in detection tasks, identifying
and detecting most objects. Furthermore, the model’s ability
to maintain high performance under different IoU thresholds
indicates robustness and stability, implying it is less affected

by threshold variations. This robustness is mainly attributed
to adding the CA Block module after the Backbone, an
efficient attention mechanism that better preserves positional
information within the Backbone network, enhancing the
model’s spatial feature perception, which is crucial for image
segmentation tasks.

The main drawbacks are in the FPS and FLOPs metrics.
Hyper FPN shows an average deficit of 16.67% in FPS
compared to the best result; however, since the model with
the best FPS performance has significant accuracy deficits,
this difference is not meaningful. Compared to the optimal
baseline model, Hyper FPN averages only one frame less,
indicating similar performance in image processing speed,
still achieving real-time detection. Although Hyper FPN has
an average FLOPs deficit of 7.82% compared to the optimal
baseline, indicating a need for more computational resources,
considering its accuracy improvements and the FPS deficit
of only one frame, the additional resource consumption is
acceptable.

In summary, as the Backbone of the detector, Hyper FPN
outperforms mainstream models and lays a solid foundation
for the Hyper YOLO model.

B. Comparative Performance Analysis of Hyper YOLO

Based on Experiment 1, Experiment 2 utilized the best-
performing Hyper FPN as the Backbone and employed
various YOLO networks as detectors. The specific experi-
mental data are presented in Table II. Hyper YOLO achieved
the best or second-best results across nearly all evaluation
metrics on three datasets. YOLO V5 demonstrated the best
performance among the baseline models and is referred to as
the optimal baseline model for comparative purposes. Like
the previous experiment, the performance metrics are plotted
as percentages relative to the optimal baseline model (set as
100), as illustrated in Fig. 6.

Specifically, in the NEU-DET dataset, Hyper YOLO
achieved the best results in Precision, F1, mAP, mAP50,
and mAP75, with improvements of 3.27%, 2.06%, 3.87%,
5.23%, and 10.31% over the optimal baseline model, re-
spectively. It obtained the second-best result in the Recall
metric, with a 0.89% improvement over the optimal baseline.
The FPS and FLOPs metrics showed deficits of 4.44% and
13.16%, respectively, compared to the optimal model. In
the DAGM 2007 dataset, Hyper YOLO achieved the best
results in Precision, Recall, F1, mAP, mAP50, and mAP75,
with improvements of 1.11%, 4.88%, 2.99%, 3.83%, 5.25%,
and 10.31% over the optimal baseline model, respectively.
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TABLE II
PERFORMANCE COMPARISON OF DIFFERENT YOLO NETWORKS AND HYPER YOLO

Datasets Detector
Metrics

Precision Recall F1 mAP mAP50 mAP75 FPS FLOPs

NEU-DET

YOLO V3 0.721 0.723 0.721999 0.541 0.682 0.400 52.00 3.2
PPYOLO 0.762 0.763 0.762 0.586 0.743 0.429 50.00 3.8

YOLO V4 0.782 0.794 0.788 0.611 0.771 0.450 40.00 4.0

YOLO V5 0.795 0.785 0.790 0.620 0.783 0.456 45.00 3.8

Hyper YOLO 0.821 0.792 0.806 0.644 0.824 0.503 43.00 4.3

DAGM 2007

YOLO V3 0.708 0.709 0.708 0.605 0.763 0.448 48.00 3.6
PPYOLO 0.733 0.744 0.738 0.656 0.832 0.480 46.00 4.3

YOLO V4 0.746 0.753 0.749 0.684 0.864 0.504 42.00 4.5

YOLO V5 0.794 0.779 0.786 0.694 0.877 0.511 41.00 4.3

Hyper YOLO 0.803 0.817 0.810 0.721 0.923 0.563 40.00 4.6

SEVERSTAL

YOLO V3 0.727 0.709 0.718 0.503 0.539 0.473 50.00 2.9
PPYOLO 0.762 0.733 0.747 0.510 0.546 0.502 47.00 3.3

YOLO V4 0.786 0.755 0.770 0.532 0.533 0.529 45.00 3.5

YOLO V5 0.790 0.782 0.786 0.557 0.603 0.498 46.00 3.4

Hyper YOLO 0.828 0.830 0.829 0.546 0.593 0.560 44.00 3.6

The FPS and FLOPs metrics showed deficits of 2.44% and
6.98%, respectively, compared to the optimal model. In the
SEVERSTAL dataset, Hyper YOLO achieved the best results
in Precision, Recall, F1, and mAP75, with improvements of
4.81%, 6.14%, 5.43%, and 12.45% over the optimal baseline
model, respectively. It obtained the second-best results in the
mAP and mAP50 metrics, with deficits of 1.97% and 1.66%,
respectively, compared to the optimal baseline, indicating
similar performance levels. The FPS and FLOPs metrics
showed deficits of 5.88% and 4.35%, respectively, compared
to the optimal baseline model.

Hyper YOLO achieved the best results in the Precision and
Recall metrics five times across the three datasets, indicating
that most of its optimistic predictions were correct, resulting
in fewer false positives. The Hyper YOLO model also
identified almost all positive samples, resulting in fewer false
negatives. Correspondingly, the F1 Score, as the harmonic
mean of Precision and Recall, achieved the best results three
times, indicating that the Hyper YOLO model successfully
balanced Precision and Recall without sacrificing one for
the other. Furthermore, Hyper YOLO achieved the best
results multiple times in the mAP, mAP50, and mAP75
metrics, with improvements of 1.91%, 2.94%, and 11.02%,
respectively, over the second-best results. The mAP metric

comprehensively considers the model’s performance across
all categories, with a higher mAP indicating that the model
can detect objects with high Precision and Recall across
different categories. A higher mAP50 suggests the model
performs well when the overlap between the bounding box
and the target is high. Notably, the more stringent mAP75
metric showed an improvement of over 10% compared to
other models, indicating that the Hyper YOLO’s predicted
bounding boxes had a higher overlap with the actual bound-
ing boxes, reflecting superior performance under high overlap
requirements.

Similar to Experiment 1, the FPS value of Hyper YOLO
showed a significant deficit compared to the best and second-
best results; however, the model with the best FPS per-
formance had a substantial accuracy deficit, rendering it
incomparable. Therefore, the optimal baseline model was
used as a comparison. The results indicated Hyper YOLO
had an average FPS deficit of 3.74% compared to the optimal
baseline model, primarily due to the increased computational
load of the new IoU Loss function. This was also reflected in
the FLOPs metric, with an average deficit of 8.64% compared
to the optimal baseline model. However, this trade-off is
deemed acceptable, considering the significant improvements
in other metrics.
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Fig. 6. Proportional Evaluation Metrics of HyperYOLO Based on the Optimal Baseline Model
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TABLE III
PERFORMANCE COMPARISON OF LOSS FUNCTIONS USING HYPER YOLO MODEL

Loss
Function

Metrics
Precision Recall F1 mAP mAP50 mAP75 FPS FLOPs

CIoU 0.815 0.782 0.798 0.655 0.816 0.495 40.00 4.3
α-IoU 0.821 0.792 0.8062 0.664 0.824 0.430 40.00 4.3

C. Comparative Performance Analysis of Loss Functions

Additionally, this paper conducted a performance compar-
ison of loss functions, with the model uniformly employing
Hyper YOLO on NEU-DET dataset. The experimental results
are shown in Table III. The results indicate that the proposed
α-IoU outperforms the original CIoU, primarily due to
CIoU’s poor performance in handling small objects. How-
ever, SSDD tasks focus on detecting small objects[27]. Thus,
the proposed α-IoU can also be considered an optimization
method for small object detection.

Furthermore, introducing the CIoU loss function may lead
to a more unstable training process. Fig. 7 displays the
standard deviations of the five evaluation metrics for both
loss functions across five experiments. Since the F1 Score
is the harmonic mean of Precision and Recall, it is not
presented. It can be observed that the standard deviation of
α-IoU is more petite, indicating higher stability during the
training process.
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Fig. 7. Comparison of Standard Deviations of Two Loss
Functions

D. Summarize

Hyper YOLO demonstrates superior performance across
all evaluation metrics on the NEU-DET dataset, surpassing
current mainstream visual classification detection models
based on YOLO. This highlights its potential application
value in surface defect detection. The GhostC3 module in
Hyper FPN ensures that the Backbone component can better
capture feature information at different scales. In contrast,
the CA Block module effectively captures information bi-
directionally in the feature maps, mitigating positional infor-
mation loss caused by traditional 2D global pooling, which
is crucial for object detection tasks. The improved IoU loss
function makes the model more sensitive to small-sized

targets, thus enhancing its performance in defect detection
tasks.

VI. CONCLUSION

This paper addresses surface defect detection on steel
strips. We have substantially enhanced the conventional
YOLO object detection model by replacing the backbone
network’s CSP module to improve computational accuracy.
Additionally, optimizations have been applied to the PAFPN
module to heighten the model’s sensitivity towards small-
sized targets. These refinements collectively result in a
notable improvement in the model’s detection capabilities
across a diverse range of target sizes.

Furthermore, we have refined pertinent loss functions,
introducing a novel loss function termed α-CIoU. This new
loss function more accurately gauges the precision and
positional accuracy of bounding boxes, effectively enhancing
the model’s detection performance. The proposed detection
model in this paper achieves significant accuracy improve-
ments in surface defect detection on steel strips, thereby
contributing to the advancement of the steel industry.

Notably, the improvement methodologies and insights
proposed in this paper exhibit a high level of generality,
allowing for seamless transplantation onto analogous tasks.
This adaptability is poised to enhance efficiency in related
domains. The contributions made in this paper hold the
potential to positively impact industrial applications and
foster technological advancements in relevant fields.
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