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Abstract—The determinant formula for tensor Padé-type
approximation (TPTA) is proposed to compute the tensor
exponential function eAt, whereA represents an order-p (p ≥ 3)
tensor in n-dimensional Euclidean space. Furthermore, an error
formula for TPTA is also derived. It is demonstrated that
the determinant formula can be utilized to approximate any
arbitrary tensor function defined by a power series. Numerical
illustrations are presented to showcase the efficiency of the
determinant formula.

Index Terms—tensor Padé-type approximation, tensor expo-
nential function, determinant formula, error formula, power
series.

I. INTRODUCTION

CONSIDER the tensor exponential function of the fol-
lowing form

eAt =
∞∑
n=0

tn

n!
An, (1)

in which A ∈ Rn1×n2×···×np is a tensor with order p ≥ 2.
This kind of tensor exponential function has a wide range of
applications in quantum mechanics and materials mechanics
[1, 2]. For instance, the utilization of the exponential function
for second order tensors is commonly observed in numerical
integration techniques applied to rate equations Ẋ = AX
and single crystal model F = F eF p [3], where F e and F p

represent the elastic and plastic of the crystal, respectively.
More precisely, in the case of a solitary crystal possessing
nsyst slip systems in total, the plastic part, F p, is determined
by the subsequent differential equation

Ḟ pF p−1 =

nsyst∑
α=1

γ̇αsα0 ⊗mα
0 , (2)

where γ̇α represents the proportion of system α in the
overall non-elastic deformation rate. Both the slip and normal
directions of system α are represented by the sα0 and mα

0 ,
respectively. The tensor exponential function [4, 5] can
be employed to discretize the aforementioned equation (2)
implicitly. By employing this approach, we can acquire an
exponential estimation implicitly for equation (2) as follows

F pn+1 = exp

(
nsyst∑
α=1

∆γαsα0 ⊗mα
0

)
F pn .

Therefore, in order to calculate F pn+1 recursively, we have
to first calculate

exp

(
nsyst∑
α=1

∆γαsα0 ⊗mα
0

)
.
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For this issue, there exist several methods for computing
the above tensor exponential function represented by tensor
power series, For instance, Lu [6] proposed a method to
compute the second-order tensor exponential function as
follows

F (A) = eA =
∞∑
n=0

1

n!
An.

The method proposed in [6] demonstrates that F (A) can
be derived by taking the derivative of a function associated
with the eigenvalues of the second tensor A. However, this
approach requires calculating the eigenvalues of A, which
involves a considerable amount of computation for high-
dimensional problems [7, 8]. An alternative approach for
the computation of the exponential function of a second
tensor involves truncating infinite series [1]. The round-off
and termination criterion have a constraining impact on the
precision and efficiency of this approach. As F (A) is a
second-order tensor A’s isotropic function [9], it is possible
to express F (A) directly using polynomial expressions of A
[10, 11]. Recently, based on this observation, Gu and Liu [12]
proposed a new algorithm for computing the higher order
tensor exponential function represented by tensor power
series, i.e., tensor Padé-type approximation (TPTA). TPTA
is a rational expression with a tensor as its numerator and a
scalar as its denominator. Although it is highly effective for
high-order tensor power series, its computation is limited to
order (n− 1/n).

In this research, we propose an innovative numerical
approach to calculate the exponential function eAt associated
with a pth order tensor A with p ≥ 3. We demonstrate that
eAt can be approximated by a rational function featuring
a tensor numerator with degree m and a scalar denominator
with degree n, which remains non-zero at zero. Moreover, the
power series expansion of this rational function in ascending
powers of the variable aligns with the first m + 1 terms of
the series (1). This methodology draws inspiration from the
concept presented in [13] to simplify complex multivariable
systems with the use of tensor function. This function can be
expanded into a series of powers with coefficients in tensor
form. In this study, we have systematically expanded this
method to encompass power series associated with tensor
with order p ≥ 3.

This paper is structured in the following manner. In Sec-
tion II, we provide some preliminaries. In Section III, we in-
troduce the definition of the tensor Padé-type approximation.
In Section IV, we deduce the determinate formula and error
formula for TPTA by using generalized linear functional. In
Section V, numerical examples are provided and examined.
Finally, we conclude the paper with final remarks in Section
VI.
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II. PRELIMINARIES

How to expand the tensor exponential function eAt into a
power series representation with respect to pth order tensors
is the primary problem in approximating the tensor exponen-
tial function. For order-2 symmetric tensor A, the Cayley-
Hamilton theorem [14] can be used to compute higher powers
of A. Nevertheless, this theorem does not hold true for
tensors with an order greater than 3. In this section, we will
employ the t-product [15], see also [16], of tensors to derive
higher pth order (p ≥ 3) tensor powers. Initially, we present
certain notations and fundamental definitions that will be
utilized subsequently.

Let
A = (ai1i2···ip) ∈ Rn1×n2×···×np

represent a pth order tensor A. It is commonly accepted that
a matrix can be classified as a tensor of the second order.
We use Ai ∈ Rn1×n2×···×np−1 to present the tensor with a
dimension of p− 1 that generated by fixing the pth index of
A at i, i = 1, · · · , np. For example, consider a fourth order
tensor

A = (ai1i2i3i4) ∈ R2×2×3×4,

then A1,A2,A3 and A4, which have the following form

Ai =

(
a111i a121i a112i a122i a113i a123i
a211i a221i a212i a222i a213i a223i

)
are four 2× 2× 3 tensors generated by fixing the 4th index
of A.

Definition 1. ([15]) Assume A ∈ Rn1×n2×···×np , then the
circulant tensor of A is defined as

circ(A) =


A1 Anp Anp−1 · · · A2

A2 A1 Anp
· · · A3

...
. . .

. . .
. . .

...
Anp Anp−1 · · · A2 A1

 ,

in which Ai ∈ Rn1×n2×···×np−1 , i = 1, 2, · · · , np.

Besides, we use the symbol unfold(·) to denote a func-
tion that transforms an n1 × n2 × · · · × np tensor into an
n1 × np × n2 × · · · × np−1 tensor using the following ap-
proach:

unfold(A) =


A1

A2

...
Anp

 .

Similarly, we use the symbol fold(·) to denote the function
that convert an n1 × np × n2 × · · · × np−1 tensor into an
n1 × n2 × · · · × np tensor, i.e., fold(unfold(A)) = A.

Following this, we shall present the t-product of two
tensors.

Definition 2. ([15]) For A ∈ Rn1×n2×···×np , B ∈
Rn2×l×n3···×np , the t-product of A and B is denoted by

A ∗ B = fold(circ(A) ∗ unfold(B)).

Remark 1. When A and B are second-order tensors, the
t-product can be substituted with conventional matrix multi-
plication.

Remark 2. By the definition of the t-product, we have Ak =
A ∗ A ∗ · · · ∗ A.

Remark 3. One notable attribute of the t-product is its
ability to maintain the order of multiplication result for
two tensors, unlike other tensor multiplications suggested
in [17]. This unique characteristic influenced our decision
to adopt the t-product as the preferred method for tensor
multiplication.

The tensor exponential function is a specialized mathe-
matical operation applied to tensors, similar in concept to
the conventional exponential function. It can be formulated
as follows.

Definition 3. Assume A ∈ Rn1×n2×···×np . The function eAt

or exp(At) represents the tensor exponential with respect to
t, which can be expressed as the following power series

eAt =
∞∑
k=0

1

k!
(At)k,

in which A0 is an n1 × n2 × · · · × np identity tensor I.

Definition 4. ([15]) An identity tensor with dimensions n×
n×l1×· · ·×lp−2 can be defined as follows: I1 is an (p−1)-th
order identity tensor with dimensions n×n× l1×· · ·× lp−3,
while Ij (for j = 2, 3, · · · , lp−2) represents an (p − 1)-th
order zero tensor.

Obviously, the above tensor power series always converges
for all A and t as k increase, so the exponential function in
relation to the variable t is well-defined.

The tensor exponential function defined in Definition 3
satisfies the following key property, which will be utilized in
the next section.

Property 1. If A∗B = B ∗A, then eAt ∗ eBt = eBt ∗ eAt =
e(A+B)t.

Proof .

eAt ∗ eBt =
( ∞∑
k=0

(At)k

k!

)
∗
( ∞∑
k=0

(Bt)k

k!

)
=
∞∑
m=0

m∑
k=0

(At)k

k!
∗ (Bt)m−k

(m− k)!
. (3)

Since
1

m!
Ckm =

1

m!
· m!

k!(m− k)!
=

1

k!
· 1

(m− k)!
,

we can obtain

(At)k

k!
∗ (Bt)m−k

(m− k)!
=

1

m!
Ckm(At)k ∗ (Bt)m−k.

Furthermore, based on the assumption that A ∗ B = B ∗ A
and Binomial theorem, we can further simplify the above
relation as follows

m∑
k=0

(At)k

k!
∗ (Bt)m−k

(m− k)!
=

m∑
k=0

1

m!
Ckm(At)k ∗ (Bt)m−k

=
1

m!

m∑
k=0

Ckm(At)k ∗ (Bt)m−k

=
1

m!
(At+ Bt)m.
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Substituting the above formula into the relation (3), we have

eAt∗eBt =
∞∑
m=0

1

m!
(At+Bt)m = e(A+B)t = eBt∗eAt. 2

Just like the definition of matrix norm, the norm of a tensor
A ∈ Rn1×n2×···×np is defined as [18]

‖A‖ =

√√√√ n1∑
i1=1

n2∑
i2=1

· · ·
np∑
ip=1

a2i1i2···ip . (4)

Consequently, the inner product of two same dimension
tensors A, B∈ Rn1×n2×···×np is the sum of the products
of their entries, i.e.,

(A,B) =

n1∑
i1=1

n2∑
i2=1

· · ·
np∑
ip=1

ai1i2···ipbi1i2···ip .

Then, based on (4), it holds that (A,A) = ‖A‖2.

III. TENSOR PADé-TYPE APPROXIMATION

In this section, we will directly extend the definition of
(n− 1/n) order TPTA [12] to the case of (m/n).

Consider a power series f(x) with coefficients in tensor
form:

f(x) = A0 +A1x+A2x
2 + · · ·+Anxn + · · · , (5)

where Ai ∈ Rn1×n2×···×np and x ∈ R. Let P represent the
collection of scalar polynomials in a single real variable with
coefficients from the field of real numbers R.

Consider φ(q) : P → Rn1×n2×···×np as a linear operator
of a generalized nature on P, with respect to t, defined as

φ(q)(ti) = Aq+i, i = 0, 1, 2, · · · . (6)

Next, we consider the polynomial Wq(x) associated to
vn(x) = b0 + b1x+ · · ·+ bnx

n with bn 6= 0 as follows

Wq(x) = φ(q)
(
vn(x)− vn(t)

x− t

)
, q = m− n+ 1. (7)

Furthermore, based on the definitions (6) and (7), and by
defining

ṽn(x) = xnvn(x−1),

W̃q(x) = xn−1Wq(x
−1), (8)

and

Pmn(x) = ṽn(x)
m−n∑
i=0

Aixi+xm−n+1W̃q(x), m ≥ n, (9)

we have the ability to acquire the subsequent statement.

Theorem 1. Let ṽn(0) 6= 0, then

Pmn(x)/ṽn(x)− f(x) = O(xm+1).

Proof . Assume that

fm−n+1(x) =
∞∑
j=0

Am−n+1+jx
j ,

then, through direct mathematical calculations, we have

xm−n+1fm−n+1(x) = f(x)−
m−n∑
i=0

Aixi. (10)

Expanding (7) and substituting it into (8), we can obtain

W̃q(x) =
n−1∑
q=0

(
q∑
i=0

bn−q+iAm−n+1+i

)
xq.

Expanding ṽn(x)fm−n+1(x) directly yields

ṽn(x)fm−n+1(x) = xnvn(x−1)

 ∞∑
j=0

Am−n+1+jx
j


=

(
n∑
i=0

bix
n−i

) ∞∑
j=0

Am−n+1+jx
j


=
∞∑
q=0

(
q∑
i=0

bn−q+iAm−n+1+i

)
xq.

Therefore, it can be inferred from equations (9) and (10) that

ṽn(x)f(x)− Pmn(x)

= ṽn(x)

(
m−n∑
i=0

Aixi + xm−n+1fm−n+1(x)

)

− ṽ(x)
m−n∑
i=0

Aixi + xm−n+1W̃q(x)

= xm−n+1
(
ṽn(z)fm−n+1 − W̃q(x)

)
= xm−n+1

{ ∞∑
q=n

(

q∑
i=0

bn−q+iAm−n+1+i)x
q

}
= O(xm+1). 2

Therefore, Rm,n(x) = Pmn(x)/ṽn(x) can be used as
an estimation of the tensor series f(x) defined in (5). It is
referred to as an (m/n)-order tensor Padé-type approxima-
tion [12] for the provided series (5), and it is denoted as
(m/n)f (x).

Remark 4. If Ai, i = 1, 2, · · · are second tensors, then the
TPTA automatically reduces to matrix Padé-type approxima-
tion, see also [13, 19].

Remark 5. The generating polynomial vn(x) of (m/n)f (x)
can be freely selected.

IV. ERROR FORMULA AND DETERMINANT FORMULA FOR
TPTA

On the basis of the definition of (m/n)f (x), we can
further provide its error formula and determinant formula,
while the (n − 1/n) order TPTA does not have these two
formulas, which is also the main contribution of this article.
The determinant formula can simplify the calculation of
(m/n)f (x), while the error formula determines suitable
values for m and n based on the desired level of accuracy
for a specific problem.

A. Error formula for TPTA

For given m and n, using the definition of generalized lin-
ear functional φ(q), we can get the following error expression
of (m/n)f (x) for tensor power series f(x).

Theorem 2. Let ṽn(0) 6= 0, then for given m and n

f(x)− (m/n)f (x) =
xm+1

ṽn(x)
φ(m−n+1)

(
vn(t)

1− tx

)
.

IAENG International Journal of Computer Science

Volume 51, Issue 9, September 2024, Pages 1331-1336

 
______________________________________________________________________________________ 



Proof . As φ(m−n+1) solely operates on t within P, we can
deduced from relations (8) and (9) that

Pmn(x)

= ṽn(x)
m−n∑
i=0

Aixi + xm−n+1W̃q(x)

= ṽn(x)
m−n∑
i=0

Aixi

+ φ(m−n+1)

(
xm+1vn(x−1)− xm+1vn(t)

1− tx

)
= ṽn(x)

[
m−n∑
i=0

Aixi + xm−n+1φ(m−n+1)

(
1

1− tx

)]

− xm+1φ(m−n+1)

(
vn(t)

1− tx

)
= ṽn(x)f(x)− xm+1φ(m−n+1)

(
vn(t)

1− tx

)
.

Then it immediately holds

f(x)−Pmn(x)/ṽn(x) =
xm+1

ṽn(x)
φ(m−n+1)

(
vn(t)

1− tx

)
. 2

B. Determinant formula for TPTA

Substituting the fact that

(1− tx)−1 = 1 + tx+ (tx)2 + · · ·+ (tx)n + · · · ,

into the above error formula, we can easily obtain

f(x)− (m/n)f (x)

=
xm+1

ṽn(x)
φ(m−n+1)

(
vn(t)

1− tx

)
=
xm+1

ṽn(x)
φ(m−n+1)(vn(t)

+ vn(t)tx+ vn(t)t2x2 + · · · )

=
xm+1

ṽn(x)
(φ(m−n+1)(vn(t))

+ φ(m−n+1)(vn(t)t)x

+ φ(m−n+1)(vn(t)t2)x2 + · · · ). (11)

If we enforce vn(t) satisfies φ(m−n+1)(vn(t)) = 0, the
first term of (11) vanishes, resulting in an approximation
order of m+2. Additionally, if we set φ(m−n+1)(tvn(t)) = 0,
then the second term of (11) disappears as well, leading to
an approximation order of m+ 3 and so forth. It should be
noted that a rational function is essentially defined by its
numerator and denominator with a multiplying factor [20].
It indicates that (m/n)f (x) relies on n constants. Therefore,
the polynomial vn(t) satisfies

φ(m−n+1)(vn(t)tk) = 0, k = 0, 1, 2, · · · , n− 1. (12)

The determination of the Hankel matrix with respect to the
series f(x) is denoted as

det(Hn(Am−n+1))

=

∣∣∣∣∣∣∣∣∣
(Am−n+1,Am−n+1) · · · (Am,Am−n+1)
(Am−n+2,Am−n+2) · · · (Am+1,Am−n+2)

...
. . .

...
(Am,Am) · · · (Am+n−1,Am)

∣∣∣∣∣∣∣∣∣ .

Then, we can conclude the following determinant formula
for TPTA.

Theorem 3. Assume det(Hn(Am−n+1)) 6= 0, then

(m/n)f (x) = Pmn(x)/qmn(x),

here,

Pmn(x) =

∣∣∣∣ Hn(Am−n+1) ~α
~ηT

∑m
i=0Aixi

∣∣∣∣ ,
qmn(x) =

∣∣∣∣ Hn(Am−n+1) ~α
~ξT 1

∣∣∣∣ , (13)

with

~α = ((Am+1,Am−n+1), · · · , (Am+n,Am))T ,

~ηT =

(
m∑
i=n

Ai−nxi,
m∑

i=n−1
Ai−n+1x

i, · · · ,
m∑
i=1

Ai−1xi
)
,

~ξT = (xn, xn−1, · · · , x).

Proof . From conditions (12), we know that,
φ(m−n+1)(b0 + b1t+ · · ·+ bnt

n) = 0,
φ(m−n+1)(b0t+ b1t

2 + · · ·+ bnt
n+1) = 0,

· · · · · · · · ·
φ(m−n+1)(b0t

n−1 + b1t
n + · · ·+ bnt

2n−1) = 0.

By using the generalized linear functional on φ(q)(ti) defined
in (6), we can further obtain

b0Am−n+1 + b1Am−n+2 + · · ·+ bnAm = 0,
b0Am−n+2 + b1Am−n+3 + · · ·+ bnAm+1 = 0,

· · · · · · · · ·
b0Am + b1Am+1 + · · ·+ bnAm+n = 0.

Taking the inner product of the above n equations with
Am−n+1, · · · ,Am+n, respectively yields

b0(Am−n+1,Am−n+1) + · · ·+ bn(Am−n+1,Am) = 0,
b0(Am−n+2,Am−n+2) + · · ·+ bn(Am−n+2,Am+1) = 0,

· · · · · · · · ·
b0(Am+n,Am) + · · ·+ bn(Am+n,Am+n) = 0.

By setting bn = 1 and employing Cramer’s rule, the values
of b0, · · · , bn−1 can be uniquely determined. Then, by means
of (8), qmn(x) is holds. Now, we prove the quantity Pmn(x).
By calculating ṽn(x)f(x), we can obtain

ṽn(x)f(x) = a0 + a1x+ · · ·+ amx
m +O(xm+1)

= (b0 + b1x+ · · ·+ bnx
n)

(
m∑
i=0

Aixi
)

+O(xm+1)

and

Pmn(x) = b0A0 + (b0A1 + b1A0)x+ · · ·
+ (b0Am + b1Am−1 + · · ·+ bnAm−n)xm

=

(
m∑
i=0

Aixi
)
b0 +

(
m∑
i=1

Ai−1xi
)
b1 + · · ·

+

(
m∑
i=n

Ai−nxi
)
bn.
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Hence, the determinant expression for Pmn(x) in (13) is
established by utilizing the formula of qmn(x). 2

Example 1. Consider a 2× 2× 2× 2 tensor A of the form

A =

(
1 0 0 1

3 0 1
3

1
3 0

0 1
3

1
3 0 1

3 0 0 1

)
.

Please seek the TPTA of type (3/3) for eAx.

Now we will apply determinant formula (13) of TPTA to
compute (3/3)eAx(x). Expanding eAx into the tensor power
series by means of t-product firstly, we can get

eAx =

(
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

)
+

(
1 0 0 1

3 0 1
3

1
3 0

0 1
3

1
3 0 1

3 0 0 1

)
x

+

(
2
3 0 0 4

9 0 4
9

4
9 0

0 2
3

4
9 0 4

9 0 0 4
9

)
x2

+ · · · .
Subsequently, we employ (4) to calculate Hn(Am−n+1) with
m = n = 3 and acquire

H3(A1) =


8
3

56
27

112
81

56
27

976
729

488
729

515
577

486
1093

535
3008

 .

Substituting it into (13), we can obtain

q33(x) =

∣∣∣∣∣∣∣∣∣∣

8
3

56
27

112
81

488
729

56
27

976
729

488
729

584
2189

515
577

486
1093

535
3008

151
2548

x3 x2 x 1

∣∣∣∣∣∣∣∣∣∣
=

23

13806
x3 − 1249

86337
x2 +

324

6697
x− 563

9118
and

P33(x) = (p11|p12|p13|p14)x3 + (p21|p22|p23|p24)x2

+ (p31|p32|p33|p34)x+ (p41|p42|p43|p44) ,

with

p11 =

( −46
13465 0

0 100
10779

)
, p12 =

(
0 −537

171034−537
171034 0

)
,

p13 =

(
0 −537

171034−537
171034 0

)
, p14 =

( −537
171034 0

0 −310
19579

)
,

p21 =

( −73
10068 0

0 −86
2117

)
, p22 =

(
0 −154

13609−154
13609 0

)
,

p23 =

(
0 −154

13609−154
13609 0

)
, p24 =

( −154
13609 0

0 21
1003

)
,

p31 =

( −125
9352 0
0 269

9677

)
, p32 =

(
0 −563

27354−563
27354 0

)
,

p33 =

(
0 −563

27354−563
27354 0

)
, p34 =

( −563
27354 0

0 −563
9118

)
,

p41 =

( −563
9118 0
0 −563

9118

)
, p42 = p43 = p44 =

(
0 0
0 0

)
.

It can be readily confirmed that

P33(x)− q33(x)eAx = O(x4),

thus we have

(3/3)eAx(x) = P33(x)/q33(x).

V. NUMERICAL EXPERIMENTS

Now we demonstrate the precision of the TPTA algorithm
in calculating the tensor exponential function through two
numerical examples. We take second-order tensor A from [6]
and compute eAt be means of (13) for specific values of t.
All experiments were performed using MATLAB R2022a on
an Intel(R) Core(TM) i5 CPU, @2.67 GHz 4.00 GB memory
(Windows 11).

Example 2. Consider a Jordan form

A =

 0.5 1 0
0 0.5 1
0 0 0.5

 ,

the tensor exponential function eAt =
∑∞
n=0

Antn

n! .

As the proposed method in [6], the exponential function

eAt =

 f(0.5t) f ′(0.5t) 1
2f
′′(0.5t)

0 f(0.5t) f ′(0.5t)
0 0 f(0.5t)

 ,

where f(x) = ex. We employed MATLAB function funm
to compute f(0.5t), f ′(0.5t) and f ′′(0.5t), the exact tensor
exponential eAt is derived by calculating a Taylor polynomial
of order 200 utilizing MATLAB’s Symbolic Math Toolbox
when t is a specific value. Figure 1 illustrates the Frobenius
norm-based relative error in base-10 logarithm between TP-
TA of different orders and the true solution with respect to
different t. We can derive the following observations based
on the curve presented in Figure 1.
• MATLAB’s function funm remains the most superior

code in overall performance.
• The TPTA algorithm has proven to be highly efficient

as well, since it can get very accurate value with only
a few items of power series expansion. More precisely,
(7/7)eAt is more accurate than funm in some points.
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Fig. 1. Relative errors versus t for MATLAB’s funm method
and (k/k)eAt(t) method for Example 2.

Example 3. Consider a tensor exponential function eAt =∑∞
n=0

Antn

n! by randomly selected third-order tensor as fol-
lows:

A =

 0.692 0.061 0.607 0.127 0.890 0.051
0.556 0.780 0.741 0.549 0.799 0.072
0.396 0.337 0.104 0.485 0.734 0.088

 .
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TABLE I: Numerical results of (k/k)eAt(1) by using deter-
minant formula with different k.

k (k/k)eAt (1)

3 (3/3)eA1t (1) =


3.7378586 2.3923452 2.0850578

3.3171278 5.5389109 2.7445894

2.2099211 2.6725809 2.2138140



(3/3)eA2t (1) =


1.8347122 3.398265 1.1709242

3.3869955 4.3226504 1.7445016

2.3237365 3.1926720 0.9297903



5 (5/5)eA1t (1) =


3.6374269 1.9165248 1.5728379

3.2657139 4.9379868 2.5381715

1.9143609 2.4630834 2.1161953



(5/5)eA2t (1) =


1.9456368 3.9479852 1.2055781

3.3374284 4.7641395 1.6892373

2.1059645 2.8561139 1.9614427



7 (7/7)eA1t (1) =


3.6592026 2.3405029 1.7387242

3.3153829 5.3506815 2.5267307

2.1217114 2.6484604 2.1923241



(7/7)eA2t (1) =


1.9299580 3.5269476 1.3478592

3.3414563 4.4923726 1.8912948

2.2381762 2.9804814 1.3265688



9 (9/9)eA1t (1) =


3.6592464 2.3407492 1.7387693

3.3154313 5.3509132 2.5267183

2.1217480 2.6484855 2.1925419



(9/9)eA2t (1) =


1.9299684 3.5267631 1.3478380

3.3414765 4.4922361 1.8913484

2.2381759 2.9805069 1.3263993



In order to verify the validity of the determinant formula
proposed in this article, we set an exact value eA =
(eA1 |eA2) and calculated it using MATLAB’s Symbolic
Math Toolbox as show below

eA1 =

 3.6592465 2.3407504 1.7387649
3.3154318 5.3509139 2.5267149
2.1217493 2.6484899 2.1925401

 ,

eA2 =

 1.9299693 3.5267634 1.3478442
3.3414779 4.4922379 1.8913536
2.2381769 2.9805050 1.3263996

 .

We utilize the determinant formula of TPTA to com-
pute (k/k)eAt(1) with different k and report the values of
(k/k)eAt(1) in Table I.

From this table, we can concluded that our algorithm is
feasible and effectiveness for some higher orders, such as
k = 9. For this case, there are already six decimal digits
equal to the exact values.

VI. CONCLUSION

In this paper, in order to compute the tensor exponential
function, we presented the error formula and determinant
formula of tensor padé-type approximant (TPTA). The deter-
minant formula is expressed as a tensor numerator divided by
a scalar denominator, facilitating the computation of TPTA

at any given order (m/n). This significantly broadens the
applicability of the (n − 1/n) algorithm proposed in [12].
The performance and effectiveness of determinant formula
for computing (m/n) order TPTA for tensor exponential
function have been investigated by two numerical experi-
ments. Generally speaking, the higher the order of TPTA, the
better the approximation effect, but at the same time, it will
also bring some instability, so determining an appropriate
and stable order for TPTA is a subject of further research.
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