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Abstract—In recent years, remote sensing object detection
has become a research hotspot in computer vision tasks.
However, previous approaches for remote sensing object de-
tection often overlook the rich contextual information in im-
ages, which is crucial for accurately detecting occluded or
interconnected objects using convolutional neural networks. To
capture this contextual information, we propose a method called
the Large Kernel Disassembling (LKD) Attention Mechanism.
LKD breaks down large convolutional kernels to provide a
larger receptive field to the convolutional neural networks,
enabling them to capture rich contextual information in remote
sensing images and enhance their performance. We employ an
adaptive channel submodule and a deep convolutional spatial
submodule. The adaptive channel submodule helps the network
learn relationships between different channels, while the deep
convolutional spatial submodule aids in extracting rich spatial
features. We evaluate the proposed attention mechanism on
the DIOR dataset and compare it with several recent atten-
tion mechanisms on the SSDD dataset. Experimental results
demonstrate the superiority of LKD in terms of performance
over other methods, validating the effectiveness of the Large
Kernel Disassembling attention mechanism in remote sensing
object detection tasks.

Index Terms—Attention Mechanism, Remote Sensing Object
Detection, Convolutional Neural Network, Yolov8.

I. INTRODUCTION

REMOTE sensing object detection [1] is an application
domain in computer vision that focuses on identifying

and detecting various objects in remote sensing images,
such as ships and airplanes. Currently, convolutional neural
networks (CNNs) are widely applied in remote sensing object
detection tasks. For example, R-CNN [2], Faster R-CNN
[3], Transformer [4], and the YOLO [5], [6] series have
shown good performance in various computer vision tasks. In
recent years, the main research trend in remote sensing object
detection has been to generate accurate bounding boxes that
are suitable for the orientation of detected objects, rather
than using simple horizontal boxes. Therefore, most research
focuses on oriented bounding boxes for remote sensing
object detection. These oriented bounding boxes are mainly
implemented using specialized detection frameworks, such
as RoI Transformer [7], Oriented R-CNN [8], and Oriented
RepPoints [9].
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With the development of deep learning, CNNs have been
continuously improved and expanded. Researchers have pro-
posed various innovative network structures and optimization
techniques, such as residual connections, attention mech-
anisms [10], and depth-wise separable convolutions. The
introduction of these techniques has further enhanced the
performance of CNNs, achieving breakthrough results in
various visual tasks. Attention mechanisms in neural network
models guide the model to focus on important features,
thereby improving feature extraction capabilities. By using
attention mechanisms, neural network models can concen-
trate on the most informative and crucial features in an
image while suppressing less important ones. Our research
aims to leverage attention mechanisms to enhance the feature
extraction capability of convolutional neural networks in
remote sensing object detection tasks. To achieve this goal,
we designed a novel attention mechanism module called
”Large Kernel Disassembling (LKD) Attention Mechanism”
that expands the receptive field of convolutional neural net-
works by disassembling large convolutional kernels, thereby
capturing more contextual information in remote sensing
images. The LKD attention mechanism sequentially applies
spatial and channel submodules, allowing the model to better
learn spatial and channel information and fuse them through
convolutional operations to extract meaningful features.

II. RELATED WORK

A. Remote Sensing Object Detection Framework

R-CNN [2] can be regarded as the pioneering work in
utilizing deep learning for object detection. It first generates
candidate regions in an image and extracts features using a
deep network. Then, the features are fed into a classifier to
determine the object class, and finally, regression is used to
refine the positions of the candidate bounding boxes. High-
performance frameworks for remote sensing object detection
often rely on the R-CNN structure. Subsequently, several
variants were proposed, including Fast R-CNN [11] and
Faster R-CNN [3]. Fast R-CNN addressed the problem of
not being able to output bounding boxes and labels simul-
taneously, while Faster R-CNN solved the issue of selective
search inefficiency.

The YOLO series is a single-stage regression approach
based on deep learning, while R-CNN, Fast R-CNN, and
Faster R-CNN are two-stage classification methods. YOLO
is a fast and accurate object detection algorithm widely
used in computer vision. YOLO treats object detection as
a regression problem, solving it with an end-to-end network
that takes the original image as input and outputs the object
positions and categories.

In recent years, several variants of the R-CNN framework
have been proposed. The two-stage RoI Transformer [7] uses
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fully connected layers in the first stage to generate rotated
candidate horizontal anchor boxes. It then extracts features
within these boxes for further regression and classification.
Oriented RCNN [8] introduces a novel box encoding system
to address the training loss instability caused by the peri-
odicity of rotation angles. Oriented RepPoints [9] proposes
an adaptive point learning approach to capture the geometric
information of arbitrarily oriented objects.

B. Attention Mechanism

Currently, there have been several studies focusing on
the performance of attention mechanisms in image detection
tasks. Squeeze-and-Excitation Networks [12] (SENet) trans-
form the feature maps of each channel into channel descrip-
tors using global average pooling. Then, a fully connected
layer applies a non-linear transformation to these channel
descriptors, generating a weight vector as the excitation
values for each channel. Finally, these excitation values are
multiplied with the original feature maps to obtain weighted
feature maps. SENet is computationally efficient and capable
of effectively extracting global features, but it does not
explicitly consider spatial correlations.

Convolutional Block Attention Module [13] (CBAM) se-
quentially places channel and spatial sub-modules. The chan-
nel attention module is used to compute the importance of
each channel, enabling better differentiation between features
in different channels. The spatial attention module calculates
the importance of each pixel in the spatial domain, allowing
better capture of the spatial structure in the image. However,
CBAM can only capture local information and lacks the
ability to capture long-range dependencies.

Coordinate Attention [14] (CA) incorporates positional
information into channel attention, allowing mobile networks
to access information from a broader area while minimizing
computational overhead. To preserve positional details, CA
decomposes channel attention into two parallel 1D feature
encodings instead of using 2D global pooling. This ap-
proach efficiently integrates spatial coordinate information.
The CA mechanism considers inter-channel relationships
alongside positional details, enhancing the accuracy of local-
izing and recognizing target regions by capturing direction
and position-sensitive information across channels.

Global Attention Mechanism [15] (GAM) is similar to
CBAM as it also utilizes both channel attention and spatial
attention mechanisms. In the channel attention, the input
feature map undergoes max pooling and average pooling,
followed by separate MLP processing, and finally passed
through a sigmoid activation. In the spatial attention, the
feature map is max pooled and average pooled, stacked
together, convolved, and then passed through a sigmoid
activation function.

Recent work has proposed the use of large convolutional
kernels to capture feature maps. Large Kernel Attention [16]
(LKA) incorporates local spatial convolution, spatial long-
range convolution, and channel convolution. LKA combines
the advantages of convolution and self-attention, including
local structural information, long-range dependencies, and
adaptability. It also avoids the drawbacks of ignoring adapt-
ability in the channel dimension. Large Selective Kernel
[17] (LSK) introduces a large selective kernel network that

TABLE I
THEORETICAL EFFICIENCY COMPARISON OF TWO REPRESENTATIVE
EXAMPLES WITH 64 CHANNELS.K: CONVOLUTION KERNEL SIZE, D:

DILATION RATE.

RF (k, d)sequence Params FLOPs

23 (23, 1) 0.213M 8.9G

23 (5, 1) → (7, 3) 0.143M 8.2G

29 (29, 1) 0.288M 9.8G

29 (5, 1) → (7, 4) 0.143M 8.2G

29 (3, 1) → (5, 2) → (7, 3) 0.179M 9.6G

dynamically adjusts its large spatial receptive field, allowing
for better distance estimation of various objects in remote
sensing imagery.

III. LARGE KERNEL DISASSEMBLING ATTENTION
MECHANISM

Our work focuses on designing an attention mechanism
module that enhances the receptive field of the neural
network model and captures more contextual information
in remote sensing imagery. We adopt a sequential spatial
channel attention mechanism, which is the opposite of the
order used in CBAM and GAM, and we have redesigned
the sub-modules. The process is illustrated in Figure 1
and formalized in equations. Given the input feature map
F1 ∈ Rc×h×w, the intermediate state F2 and the output result
F3 are defined as follows:

F2 = Ms (F1)⊗ F1 (1)

F3 = Mc (F2)⊗ F2 (2)

Where Ms and Mc are spatial and channel attention maps,
respectively, and ⊗ denotes element-wise multiplication.

A. Spatial Attention Module

In the spatial attention module, in order to capture contex-
tual information between objects of different scales in remote
sensing images, we believe it is necessary to construct a
series of multiple long-range contexts. Therefore, we propose
to decompose the larger convolutional kernel into a series
of depth-wise separable convolutions, where the size of the
convolutional kernel and the dilation rate gradually increase.
Specifically, the definition of the size k, dilation rate d,
and receptive field RF of the i-th depth-wise separable
convolution in the series of long-range contexts is as follows:

ki−1 ≤ ki; d1 = 1, di−1 < di ≤ RFi−1 (3)

RF1 = k1, RFi = di(ki − 1) +RFi−1 (4)

Increasing the size of the convolutional kernel and the
dilation rate allows for a rapid expansion of the receptive
field. We set an upper limit on the dilation rate to ensure
that dilated convolutions do not introduce gaps between
feature maps. For example, in Table 1, we decompose a
large convolutional kernel into 2 or 3 depth-wise separable
convolutions, which theoretically have receptive field sizes
of 23 and 29, respectively.

This design has two advantages. Firstly, disassemblinga
large convolutional kernel allows us to generate multiple
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Fig. 1. The overview of LKD. The module has two sequential sub-modules: spatial and channel.

features with different receptive field sizes, enabling us
to capture richer contextual information. Secondly, using
multiple depth-wise separable convolutions is more efficient
than using a single large convolutional kernel. The data in
Table 1 shows that, under the same theoretical receptive
field, our decomposition significantly reduces the number of
parameters of the model, alleviating the training burden. In
Figure 2, we illustrate the workflow of the spatial attention
module, demonstrating intuitively how the disassemble large
convolutional kernel sequence collects the receptive fields of
different objects.

For the input feature F, we utilize a series of depth-wise
separable convolutions with varying receptive field sizes,
Convi

dw(·) representing depth-wise separable convolutions
with convolution kernels ki and dilation rates di:

U0 = F,Ui+1 = Convdwi (Ui) (5)

Assuming there are N disassemble convolutional kernels,
each kernel is further processed through a 1×1 convolutional
layer, denoted as Conv1×1(·):

Ũι = Conv1×1(Ui), i ∈ [1, N ] (6)

To enhance the network’s ability to focus on the most
relevant contextual information, we concatenate the features
obtained from different convolutional kernels:

Ũ = Cat(Ũ1, Ũ2) (7)

For each spatial attention map Ũ , we apply the Sigmoid
activation function to obtain the spatial mask of the disas-
semble large convolutional kernel:

SM = Sigmod(Ũ) (8)

The features obtained from the disassemble large convolu-
tional kernel sequence are weighted with the spatial mask and
fused through the Convolutional layer (Conv(·)) to obtain the
attention feature S:

S = Conv(

N∑
i=1

(SM · Ũ)) (9)

The final output of the spatial attention module is the
element-wise multiplication between the input feature F and

the attention feature S, similar to some previous methods[18],
[19]:

Y = F ⊗ S (10)

B. Channel Attention Module

Building upon the spatial attention module, we have incor-
porated a channel attention module that allows for capturing
encoding information across channels. The entire workflow
of the channel attention module is depicted in Figure 3.

In the channel attention module, we first utilize global
average pooling to compress the features, which allows us
to condense the global channel information into channel
descriptors while addressing inter-channel dependencies:

X = GAP (Y ) (11)

To leverage the channel information obtained through the
pooling operation, we perform the following operations to
fully capture the dependencies among channels. In order to
capture these dependencies effectively, we employ a simple
gate mechanism with a Sigmoid function. We introduce a
fully connected layer on top of the ReLU non-linear function
to parameterize the gate mechanism:

X̃ = Relu(Fc(X)) (12)

Next is an additional fully connected layer that increases
the dimensionality, which is used to transform the features
back to the original channel dimension:

X̌ = Fc(X̃) (13)

The obtained features are weighted using the Sigmoid
function to obtain the attention weight vector S on the
channel dimension:

S = Sigmod(X̌) (14)

The original input Y is element-wise multiplied with the
obtained weight vector S to obtain the final weighted feature
Z, which is then outputted:

Z = S ⊗ Y (15)
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IV. EXPERIMENTS

A. Datesets

DIOR [20] is a large-scale benchmark dataset for optical
remote sensing image object detection, consisting of 23,463
remote sensing images. It comprises 190,288 instances of 20
object categories: airplane, airport, baseball field, basketball
court, bridge, chimney, dam, highway service area, highway
toll station, harbor, golf course, ground track field, overpass,
ship, stadium, storage tank, tennis court, train station, vehi-
cle, and windmill. The images in the dataset have a size of
800×800 pixels and spatial resolutions ranging from 0.5m
to 30m.

SSDD [21] is a synthetic aperture radar (SAR) dataset
specifically designed for ship detection. It consists of 1,160
images and 2,456 ship instances, with an average of 2.12
ships per image. The dataset was created by the Department
of Electronic and Information Engineering at the Naval
Aeronautical University. SSDD dataset is the first publicly
available dataset dedicated to ship object detection based on
SAR images.

DOTA [25] is a large-scale dataset designed for object
detection in aerial images. It serves to develop and eval-
uate detectors for objects captured by various sensors and
platforms. The images range in size from 800×800 to
20,000×20,000 pixels, depicting objects of diverse scales,
orientations, and shapes. Currently, DOTA has three versions.
DOTA-v1.0 includes 15 common categories with 2,806 im-
ages and 188,282 instances.

TABLE II
ABLATION OF SPATIAL AND CHANNEL ATTENTION MODULES

Architecture Parameters FLOPs mAP50 mAP50-95

Yolov8 3.01M 8.1G 84.76% 60.84%

Yolov8+sp 3.15M 8.2G 85.67% 61.44%

Yolov8+ch 3.02M 8.1G 84.83% 60.72%

Yolov8(sp+ch) 3.16M 8.2G 85.84% 61.54%

Yolov8(ch+sp) 3.16M 8.2G 85.37% 61.25%

B. Ablation Study

We conducted ablation experiments using YOLOv8 on the
DIOR dataset to evaluate the contributions of the spatial
attention module and the channel attention module sepa-
rately. Additionally, we experimented with different orders
of placement between these modules.

To better understand the contributions of the spatial and
channel attention modules, we conducted ablation experi-
ments by separately adding each module. For instance, ’sp’
denotes the addition of only the spatial attention module,
while ’ch’ denotes the addition of only the channel attention
module. The results are presented in Table 2. We observed
performance improvements in these experiments, indicating
that both the spatial and channel attention modules contribute
to enhancing performance. Moreover, the order of placement
also influences the experimental outcomes, and we found that
the best results were achieved when the spatial and channel
attention modules were placed in a specific sequence.
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TABLE III
EVALUATION STUDY OF LARGE CONVOLUTION KERNEL DISASSEMBLY

(k1, d1) (k2, d2) (k3, d3) Parameters mAP50

(23, 1) - - 0.213M 85.2%

(5, 1) (7, 3) - 0.143M 85.84%

(29, 1) - - 0.288M 85.13%

(5, 1) (7, 4) - 0.143M 85.60%

(3, 1) (5, 2) (7, 3) 0.179M 85.30%

TABLE IV
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE DIOR

DATASET.

Architecture Parameters FLOPs mAP50 mAP50-95

Yolov8 3.01M 8.1G 84.76% 60.84%

Yolov8+SE 3.02M 8.1G 84.83% 60.72%

Yolov8+CA 3.01M 8.1G 84.72% 60.51%

Yolov8+CBAM 3.08M 8.1G 85% 60.58%

Yolov8+GAM 3.85M 8.8G 84.99% 60.92%

Yolov8+LKA 3.09M 8.2G 85.71% 61.20%

Yolov8+LSK 3.13M 8.2G 85.60% 61.22%

Yolov8+LKD 3.16M 8.2G 85.84% 61.25%

C. Evaluation Study

In the spatial attention module, under the same theoret-
ical receptive field, we demonstrated the effectiveness of
disassemblinglarge convolutional kernels and showed that
the performance and parameter efficiency are better com-
pared to using a single large convolutional kernel. This
validates the effectiveness of our decomposition approach.
The determination of the number of disassembled kernels
in the LKD module is crucial, and we follow Formula
4 to configure the disassembled kernels. We experimented
with different numbers of disassembled kernels when the
theoretical receptive fields were 23 and 29, and the results are
shown in Table 3. Under the theoretical receptive field of 23,
disassemblingthe large convolutional kernel into two depth-
wise separable convolutions achieved the best performance
and had fewer parameters compared to the single large
convolutional kernel.

D. Main Results

1) Results on DIOR: We evaluated the performance of
LKD, along with six other attention mechanisms, using the
YOLOv8 model on the DIOR remote sensing image dataset.
The results in Table 4 demonstrate that our LKD outperforms
the other methods in terms of performance.

To ensure fairness, our model training was conducted in
the same manner. The experiments were performed on two
NVIDIA GeForce RTX 3090 GPUs, with a total of 100
epochs. The batch size was set to 32, and we utilized the
SGD optimizer with an initial learning rate of 0.01, a final
learning rate of 0.00001, a momentum of 0.937, and a weight
decay of 5e-4. We employed a warm-up phase of 3 epochs
with a warm-up momentum of 0.8.

We performed feature visualization analysis using Eigen
CAM [22] on several attention modules, and the results
are shown in Figure 4. In the figure, we can observe
that disassembling the large convolutional kernel allows the
model’s attention to focus more on the objects of interest.

Input

image

Yolov8

SE

CA

CBAM

GAM

LKA

LSK

LKD

Fig. 4. Feature visualization with Eigen CAM.

This demonstrates the effectiveness of our LKD attention
module.

2) Results on SSDD: With the assistance of the MM-
Rotate [23] open-source toolkit, we conducted detection
experiments on the SSDD [21] dataset with rotated remote
sensing images. MMRotate decouples the task of rotated
bounding box detection into various modular components.
By combining different modular components, we can easily
construct customized algorithms for rotated bounding box
detection.

We utilized ResNet50 [24] as the backbone network for
our model. The rotation method was defined as ”le135”. We
selected Oriented RepPoints as the detector, with the FPN
serving as the neck. The batch size was set to 2, and we
conducted experiments for a total of 40 epochs. The main
results of the experiments are presented in Table 5. In the
results, we can observe that our LKD attention module im-
proves the accuracy of remote sensing image detection tasks,
even when using different models, datasets, and detection
methods. We conducted tests on the experimental results,
and the visualization of the effects is shown in Figure 5.

3) Results on DOTAv1.0: We compare our LKD with
the other methods on the DOTAv1.0 dataset, as reported in
Table 6. Our LKD achieve state-of-the-art performance with
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TABLE V
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE SSDD DATASET.(”INSHORE” REPRESENTS THE AREA CLOSE TO THE COASTLINE,

”OFFSHORE” REFERS TO THE AREA FAR FROM THE COASTLINE, AND ”ALL” REPRESENTS A COMBINATION OF BOTH.)

Architecture Parameters FLOPs mAP(Inshore) mAP(Offshore)) mAP(All))
ResNet50 36.6M 66.86G 45.77% 75.80% 66.88%

ResNet50+SE 39.11M 66.9G 49.71% 76.26% 68.04%
ResNet50+CBAM 56.54M 66.93G 49.78% 76.68% 71.41%
ResNet50+LKA 57.63M 94.22G 46.64% 76.95% 67.82%
ResNet50+LKD 60.34M 96.8G 50.76% 78.69% 72.89%

ResNet50

ResNet50

+SE

ResNet50

+CBAM

ResNet50

+LKA

ResNet50

+LKD

Fig. 5. The visualization of the results on the SSDD dataset.

TABLE VI
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE DOTAV1.0

DATASET.

Architecture Parameters FLOPs mAP50 mAP50-95
Yolov8 3.08M 8.3G 74.4% 56.8%

Yolov8+SE 3.09M 8.4G 76.9% 58.3%
Yolov8+CBAM 3.15M 8.4G 77.3% 59.3%
Yolov8+LKA 3.17M 8.4G 77.39% 59.33%
Yolov8+LKD 3.23M 8.5G 77.74% 59.69%

mAP50 of 77.74% respectively.

V. CONCLUSION

In this work, we proposed the Large Kernel Disassembling
(LKD) Attention Mechanism and applied it to remote sensing
image detection tasks. The experimental results demonstrate
that LKD consistently improves the performance of neural
network models. We evaluated LKD on multiple remote
sensing image datasets, considering both horizontal and
rotated detection scenarios. The evaluation results show that
the LKD module outperforms other attention modules. In
future research, we plan to extend the application of the
LKD module to lightweight models such as EfficientNet and
VGG. Additionally, we intend to explore the potential of

applying the LKD module to other computer vision tasks.
Attention mechanisms have wide-ranging applications across
various tasks, and we believe the LKD module could play
an important role in other tasks as well.
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