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Abstract—Predicting the metastatic direction of primary
breast cancer (BC), thus assisting physicians in precise treat-
ment, strict follow-up, and effectively improving the prognosis.
The clinical data of 293,946 patients with primary BC diagnosed
between 2010 and 2015 were collected from the Surveillance,
Epidemiology, and End Results database. Multiple interpola-
tions and Multi-label Synthetic Minority Over-sampling Tech-
nique methods were used for data analysis, and machine learn-
ing model was established for multi-label classification. Finally,
Surgical information, lymph node status, distant metastasis,
tumor size, chemotherapy, histological type, and radiotherapy
had significant influence as inputs. Compared with the k-nearest
neighbor model, average accuracies of the decision tree and
random forest (RF) models increased from 88.84% to 93.59%
and 94.14%, respectively. Their average precision, recall rate,
F1 score, area under the receiver operating characteristic curve
and weighted-F1 increased from 87.24% to 95.85% and 94.74%,
87.73% to 90.40% and 91.76%, 87.07% to 92.16% and 93.45%,
97.11% to 99.53% and 99.95%, 82.13% to 89.44% and 90.48%,
respectively. In conclusion, the RF model, which showed the
best performance, can be used in multi-label prediction of BC
metastasis directions, and can assist physicians in diagnosing
and treating patients with primary BC.

Index Terms—Breast cancer, multi-label, metastasis direc-
tions, prediction, decision tree, random forest.

I. INTRODUCTION

W ITH advances in oncology medicine, the mortality
rate in cancer patients has decreased; however, during

follow-up, the rate of cancer metastasis in surviving cancer
patients is increasing [1]. Metastatic breast cancer (MBC) is
a heterogeneous disease. It has a variety of clinical mani-
festations, ranging from isolated metastases to diffuse and
multi-organ involvement [2]. As reported, cancer metastasis
rate in BC patients after diagnosis and rate of primary tumor
treatment are as high as 20-30%, and approximately 90% of
cancer-related deaths are attributed to metastasis [3]. After
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the first treatment of BC patients, the risk of metastasis has an
adverse effect on the patients, and is an important prognostic
factor. In patients with primary BC (cured either by partial
mastectomy, modified radical mastectomy, radiotherapy, or
chemotherapy), the average time to organ metastasis is 3.7
years after diagnosis, and the sites of metastasis are likely to
the bones (39.80%), lung (10.94%), liver (7.34%), or brain
(1.51%) [4]. However, the possibility of recovery after the
occurrence of MBC is extremely low, and the 5-year survival
rate is reduced from >80% [5] (according to the original
“global surveillance of cancer survival” [In 2015, the second
cycle of the Global Cancer Survival Surveillance could serve
as a metric of the effectiveness of health systems and inform
global cancer control policy]) to approximately 25% [6].
Therefore, it is crucial to determine whether organ metastasis
occurs in patients diagnosed with primary BC. If the direction
of metastasis can be accurately predicted, targeted treatment
can be carried out; Then, strict review of patients to avoid
improper treatment, in order to improve the prognosis of
patients.

Puppo et al. discussed the possibility of using miRNAs as
direct therapeutic targets or advanced therapies for BC bone
metastasis; also for their potential as predictive biomarkers
of bone metastasis for early diagnosis and better tailor-
ing of therapies for patients with cancer [7]. Studies have
demonstrated that serum miRNA profiling may serve as a
biomarker for eribulin responsiveness [A synthetic field soft
sponge analogue produced by Wei Cai, Japan, has a novel
mechanism of action and is approved for the treatment of BC
and liposarcoma] and for predicting the development of new
distant metastases in MBC [8]. Feng et al. used a lentivirus
vector-based shRNA technique to test the functional rele-
vance of cellular retinoic acid binding protein 2 (CRABP2)
knockdown in breast tumors [9]. They demonstrated that
CRABP2 could inhibit the invasion and metastasis of estro-
gen receptor-positive (ER+) BC by regulating the stability
of Lats1 in vitro and in vivo; and subsequently promote the
invasion and metastasis of estrogen receptor-negative (ER-
) BC, which provides a new idea for BC treatment. Early
research on MBC has mainly focused on innovations in
gene detection technology. Gene detection is used to detect
mutations in tumor cells. Biopsy or histopathological section
samples should be obtained. However, puncture biopsy has
some disadvantages, such as large surgical trauma, and is
unsuitable in patients with surgical contraindications [10].
As histopathological sections are obtained during surgery;
they are only suitable for intraoperative and postoperative
(formalin-soaked for 1-2 years) detection, not for preopera-
tive detection or long-term postoperative follow-up (2 years)
[10]. Although the recently popularized ”liquid biopsy” gene
detection method (the spread of advanced cancer cells to
the blood, which can be captured by gene detection) is
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non-invasive and of low-risk; however, it only produces a
small number of ctDNA targets, induce false-positive and
false-negative results, and is mostly suitable for patients
with advanced cancer [11]. Therefore, a new detection tech-
nology is urgently needed to replace such traumatic and
non-universal examinations, to provide a good reference for
patients’ clinical treatment and recovery of prognosis.

Holm et al. used multiple logistic regression analyses
to determine the outcome (ER status and lymph node in-
volvement) [12]; The Cox proportional risk model was also
used to estimate the risk ratio of distant metastasis. Cheng
et al. used the k-nearest neighbor (KNN) and selection
operator regression algorithm to train filtered and normalized
lattice radiomic features, to enable patients achieve better
early stratification, brain metastasis screening, and overall
prognosis [13]. Yang et al. constructed a nomogram for liver
metastasis based on multivariate logistic regression analysis
to facilitate the preventive treatment or monitoring of liver
metastasis [14]. The use of machine learning regression
models to predict the prognosis of BC metastasis is a
common clinical analysis method; however, such regression
models cannot process non-linear and highly correlated data.
Moreover, in clinical medical data, it is usually difficult for
attribute variables to be independent of one another. For
example, the primary tumor size (derived from the 7th edition
of the American Joint Committee on Cancer [AJCC T, 7th
Ed]), regional lymph node involvement (from AJCC N, 7th
Ed), and presence or absence of distant metastasis (AJCC
M, 7th Ed) all influence one another when determining
tumor staging [15], [16]. However, the decision tree (DT)
and random forest (RF) algorithms can effectively process
collinear variables and indirectly improve the accuracy and
recall rate of a model. Therefore, this type of algorithm is
suitable for cancer prediction research, in which variables
interact with each other.

Mercan et al. used four different multi-instance and multi-
label learning algorithms to perform sliding-level and roy
level predictions; In order to diagnose the pathological im-
ages of breast tissue, multi-class localization can be realized
[17]. Qu et al. implemented a multi-criterion mammographic
risk analysis system using multi-label fuzzy-rough feature
selection [18]. In practical applications, samples often con-
tain multiple tags. For example, a BC patient may develop
organ metastases in different directions after an initial treat-
ment; it is therefore inaccurate to classify the metastases
as one type. Therefore, to analyze the pathological data
more accurately, the classification of BC organ metastasis
should be described as a multi-label problem; that is, each
point in the training set is associated with multiple labels.
However, not all traditional machine learning algorithms
are suitable for multi-label classifications [19]. Only KNN,
DT, RF, et al. support multi-label classification. Because
genes could be associated with multiple molecular functions,
Fodeh et al. suggested that the gene ontology molecular
function annotation is a multi-label classification problem
with several classes; therefore, they used the KNN classifier
to carry out classification experiments, which performed
better [20]. Studies demonstrate that DT can capture the
relations between labels and analyze a set of rules to treat
multi-label problems [19]. Zhou et al. used the RF model
to predict four diabetic complications simultaneously (multi-

label classification problem) [21]. Therefore, in this study, the
KNN, DT, and RF algorithms were used to build a medical
prediction model, expand the multi-label classification, and
determine the factors with the greatest influence on the
direction of BC metastasis, to provide a theoretical basis for
clinicians’ diagnosis and treatment.

II. MATERIALS AND METHODS

A. Data collection

The Surveillance, Epidemiology, and End Results (SEER)
program, a clinical database funded by the National Cancer
Institute, collects data on cancer incidence and survival
from U.S. cancer registries [22]. In recent years, the use
of machine learning and statistical methods to study the
prognosis of cancer information based on the SEER database
has become an important medical auxiliary approach.

Clinical data of 293,946 patients with primary BC were
collected from SEER database and organized on BC metas-
tasis from 2010 to 2015. The inclusion criteria were as
follows: (1) female sex, (2) aged 20 to 80 years at diagnosis,
(3) diagnosed between 2010 and 2015, (4) primary BC,
(5) single tumor. Exclusion criteria were as follows: (1)
diagnosis by autopsy or using a death certificate, (2) survival
record of 0 or unknown, (3) incomplete clinicopathological
data.

Variable selection: Independent variables included 21 clin-
icopathological features. Categorical and continuous vari-
ables are presented in Tables I and II, respectively. The
dependent variables were MetsTotal, MetsBone, MetsLung,
MetsLiver, and MetsBrain. These six fields were dichoto-
mous variables, and their attribute characteristics are shown
in Table III.

B. Data preparation

Data preprocessing was to simplify the data to meet the
modeling requirements as much as possible. First, of an
overall data size of 7,642,596 (293,946 * [21 + 5]), 161,695
(approximately 2.12%) were missing. Low loss rate (<30%),
it is recommended to use multiple interpolation methods.
Because these methods are simple, convenient, and easy to
operate, they have little impact on the analysis results [23],
[24]. To maintain the authenticity of the samples, missing
values were imputed by multiple interpolations.

Surgical information (RX Summ-Surg Prim Site, Surg-
Prim) initially had 47 categories, which were too detailed and
insufficiently representative. These were then divided into
dichotomous variables (SurgPrim=1, surgery; SurgPrim=1,
no surgery).

The initial age at diagnosis (Age recoded with <1-year
olds) ranged from 1 to 103 years. However, in terms of
clinical practice, patients aged 1-20 years have a low proba-
bility (<0.1%) and a good prognosis; whereas patients aged
81-103 years are less likely to be cured and have a low
representation. Considering the data balance and applicability
of the model, only those aged 20 to 80 years were retained.
The primary tumor size (derived AJCC T, 7th Ed), a cate-
gorical variable, includes T0, T1, T2, T3, and T4 categories,
at increasing levels of severity [25]. BC data also include
smaller categories, such as T1 subdivided into T1a, T1b,
T1c, T1mic, and T1NOS. To reduce the complexity of the
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TABLE I
SELECTION FIELDS OF INDEPENDENT VARIABLES

(CATEGORICAL)

Categorical variables
name

Short
form Definitions

Number
of cate-
gories

Race recode (White,
Black, Other) Race Race 3

Age recoded with
<1-year olds Age Age at diagnosis 6

Year of diagnosis YD Year of diagnosis 6
Marital status at

diagnosis Marital Marital status 2

Laterality Laterality Unilateral/bilateral
(breast cancer) 3

Primary Site PrimarySiteSite of primary lesion 10
Chemotherapy recode

(yes, no/unk) Chemotherapy Chemotherapy 2

Radiation recoded Radiation Radiation 2
Grade Grade Histological grading 3

Histologic Type
ICD-O-3 Histologic Histological type 54

CS lymph nodes LymphNodesLymph node points 34
Regional nodes

examined RNE Region node
examined 59

Regional nodes positive RNP Region node positive 47
Derived AJCC T, 7th ed AJCCT Primary tumor size 5

Derived AJCC N, 7th ed AJCCN Regional lymph node
involvement 4

Derived AJCC M, 7th ed AJCCM Presence of distant
metastasis 2

Derived HER2 Recode HER2

Human epidermal
growth factor

receptor (HER2)
status

2

ER Status Recode Breast
Cancer ER Estrogen status 2

PR Status Recode Breast
Cancer PR Progesterone state 2

RX Summ-Surg Prim
Site SurgPrim Surgical information 2

TABLE II
SELECTION FIELDS OF INDEPENDENT VARIABLES

(CONTINUOUS)

Continuous variables names Short form Definition Range

CS tumor size TumorSize Tumor size 0-998

TABLE III
DEPENDENT VARIABLE SELECTION FIELDS (CATEGORICAL)

Categorical variables
name

Short
form Definition Number of

categories

CS mets at dx
(2004-2015) MetsTotal Whether metastasis

occurred (total) 2

SEER Combined
Mets at DX-bone MetsBone

Whether bone
metastases have

occurred
2

SEER Combined
Mets at DX-lung MetsLungWhether lung metastases

have occurred 2

SEER Combined
Mets at DX-liver MetsLiverWhether liver metastases

have occurred 2

SEER Combined
Mets at DX-brain MetsBrain

Whether brain
metastases have

occurred
2

modeling analysis, the study combined the smaller categories

and retained only five categories. Similarly, regional lymph-
node involvement (derived AJCC, 7th ed) retained N0, N1,
N2, and N3 after the combination. The presence or absence
of distant metastasis (derived AJCC M, 7th Ed) retained M0
and M1 after the combination.

C. Multi-label Synthetic Minority Over-sampling Technique
(MLSMOTE)

In multi-label classification scenarios, the number of dis-
tribution instances associated with one class is much lower
compared to that of another class, resulting in data imbal-
ance. MLSMOTE can effectively deal with data imbalances
in multi-label classification by sampling. The specific steps
are as follows [26], [27]:

Step 1: Selection of a few instances
Calculation of the imbalance ratio LRPL(j) for each

label:

LRPL(j) =

arg max
L|L1|

j′=L1

(

∑|N|
i=1

h(j′, Yi))

(

∑|N|
i=1

h(j, Yi))

h(j, Yi) =

(
1, j ∈ Yi; 0, j /∈ Yi

)
(1)

L and N indicate the number of labels and instances,
respectively.

Calculation of the average imbalance rate MIR:

MIR =
1

|L|

L|L|∑
i=L1

LRPL(i) (2)

Each label of LRPL(i) > MIR is regarded as a tail
label, and the label data are regarded as the minority of the
instance data.

Step 2: Generation of feature vectors: with Synthetic
Minority Over-sampling Technique (SMOTE), oversampling
generates the feature vectors for the new-generation data of
the tail tag.

Step 3: The label set is generated by calculating the
frequency of occurrence of each label in the reference and
neighbouring data points using the ranking method. When
the frequency of the label appearance exceeds half of the
considered instances, it is considered to fall into the target
label set.

D. Improved parameterisation methods

1) Traditional cross-grid methods: The traditional cross-
grid consists of two steps: cross-validation and grid search.
First k-fold cross-validation divides the transfer direction
data into training and validation sample sets, where the
training samples are divided into k-1 equal parts and only
1 validation sample is retained. The cross-validation step is
repeated k times using the evaluation metrics as a measure to
ensure that each sample is sampled and validated once; and
the mean value of the k-fold validation results is calculated
to estimate the predictive ability of the model. Repeating the
validation step multiple times can effectively improve the
model generalisation ability and avoid overfitting. The grid
search requires manual setting of the parameter dictionary,
cyclically calling the cross-validation method to evaluate
the model parameters, and finally selecting the optimal
parameters to create the model to achieve the pruning effect.
k-fold cross-grid method can be used for KNN, DT, and RF
to adjust the hyper-parameters.

IAENG International Journal of Computer Science

Volume 52, Issue 1, January 2025, Pages 1-10

 
______________________________________________________________________________________ 



2) Improved Fully Automated Cross Grid Methods: The
traditional cross-grid method requires technicians to repeat-
edly adjust the interval of the parameter array, move left
and right tentatively to observe the evaluation results, and
search for the model hyperparameters. However, in practical
application, it is difficult for medical practitioners or novice
technicians to control the interval adjustment rule, and re-
peated adjustments will delay medical treatment and research
and development time, so we consider to increase the fully-
automatic features of the algorithm. The pseudo-code of the
improved fully-automatic cross-network algorithm is shown
in Algorithm I: firstly, steps 2-4 are added on the basis
of the traditional algorithm, and the outer loop and flag
markers are added to allow the algorithm to repeatedly
perform the evaluation operation when flag==1. Adding steps
9-19 includes two if conditions that keep the previous auc1
evaluation result and the current loop auc2 for comparison;
and once auc2>auc1 occurs, change the flag flag←1 and
update auc1←auc2 to adjust the parameter ranges and go
to the next loop. If auc is reduced or unchanged then
flag==0, jump out of the loop and end the algorithm. It
should be noted that the improved fully automated cross-grid
algorithm only adds fully automated features to avoid manual
parameter tuning and does not change the parameter selection
or evaluation results of the model. The KNN, DT and RF
models in the study are all adjusted for hyperparameters by
the fully automatic 10-fold cross-grid, which can effectively
improve the efficiency of model operation.

E. Modeling method

1) KNN: The KNN algorithm generally uses the majority
voting method; that is, the majority classes of K neighbors
of the input instance, to determine the class of the input
instance [28]. To obtain the closest training data in the
test data, the test range interval was calculated for each
training data, which can be Euclidean, Mahalobins distance,
Cosine, City block, Chebychev, Correlation (corr), Hamming,
Jaccard, Minkowski, Seuclidean and Spearman [29], [30].

Selection of the K value: The K value determines the
complexity and generalization ability of the model. The
higher the K value, the lower the model complexity, the
stronger the generalization ability, and the greater the training
error [30]. The K value is generally <20, and this study
adopted the cross verification method [31] to obtain the
appropriate K value.

2) DT: The structure of the DT is shown in Fig. 1. The DT
is divided into several branch nodes (classification attributes
of the bifurcation path table) by the root node, and the data
are classified into leaf nodes according to the size of the
attribute values to complete the decision classification [32].
DT is used for multi-label classification, which assigns a
series of labels to a specific sample and trains a classifier
for each label. An extended estimator is then generated to
evaluate a series of objective functions, which are trained on
a separate prediction matrix to predict a series of response
[19]. The model uses 10-fold cross-validation and grid search
to optimize the model. k-fold cross-validation was used to
divide the training samples into k parts, with one part as
the data for model validation and the remaining k-1 part
for training [31], [32]. Finally, all samples were verified

Algorithm I: Improved fully automated cross grid

Input: dictionary paramGrid with arrays of criteria, maxDepth,
minSamplesplit parameters
Output: dictionary: {criterion: best parameter in array, maxDepth:
best parameter in array, minSamplesplit: best parameter in array}
1. define a tree object tree
2. flag←1, n←1
3. while flag==1 do
4. flag←0
5. define the grid search model GridSearchCV, passing in the
dictionary paramGrid, the object tree, the evaluation metric roc auc
and the number of cross-validations 10;
6. train the grid search model and use the grid search model for
prediction and validation;
7.p=optimal dictionary parameters for grid search under the current
paramGrid: {criterion: optimal parameter i in the array, maxDepth:
optimal parameter j in the array, minSamplesplit: optimal parameter
m in the array};
8. bringing p into the tree model for training
9. auc2←tree results of the model evaluation
10. if n==1 then
11. auc1←tree results of the model evaluation
12. else if auc2>auc1 then
13. flag←1, auc1←auc2
14. else
15. output p
16. end if
17. update paramGrid←{criterion: [’entropy’, ’gini’], maxDepth:
[j-2, j-1, j, j+1, j+2], minSamplesplit: [m-2, m-1, m, m+1, m+2]};
18. n++
19. end while

Fig. 1. DT structure

once, and the k times results were averaged into a single
estimated value. This improved the generalizability of the
model and prevented overfitting. The grid search presets
several parameter combinations, using cross validation to
evaluate each group of parameters, select the best parameters
to establish the model, and achieve the pruning effect [33].

3) RF: The RF algorithm uses the bootstrap method to
randomly sample N new self-help sample sets and create N
regression trees, and is a robust classifier for the training and
samples prediction, using multiple DTs. As shown in Fig. 2,
each DT is used to make a judgment according to its own
state and to vote, to select the final classification result, which
overcomes the shortcoming of easy overfitting of a single-
family DT [34]. The model also uses 10-fold cross-validation
and grid search to adjust for the over-fitted parameters for
multi-label classification.
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Fig. 2. RF structure

F. Model evaluation indicators

In machine learning, the accuracy, precision, recall, F1
score, area under the curve (AUC) and weighted−F1 are
commonly used to measure the correct classification ability
of two-class classifiers. The values of the first four indicators
ranged between [0 and 1]. The larger the value, the better
the model effect. The formula used is as follows [35], [36],
[37], [38]:

accuracy =
TP + TN

(TP + FN + FP + TN)
(3)

precision =
TP

(TP + FP )
(4)

recall =
TP

(TP + FN)
(5)

F1 =
2(precision · recall)
(precision+ recall)

(6)

weighted−F1 =

n∑
i=1

Fiwi (7)

where TP , TN , FP , and FN denotes the number of
correctly predicted positive and negative, and incorrectly
predicted positive and negative cases, respectively. The F1
score, which considers both the accuracy and recall rates
of the classification model, can be regarded as a weighted
average of the model accuracy and recall rates [37]. The
AUC value [between 0.5, 1] represents the probability of
judging a sample as having a positive score, and is greater
than a negative sample score [37]. The larger the value, the
better the model prediction performance. The weighted−F1

takes into account the number of samples in each category
as a proportion of the total sample, and can ignore data
imbalances to some extent [39].

III. RESULTS

A. Model prediction process

In this study, three machine learning algorithms were
used to analyze primary BC data obtained from the SEER
database. After data selection and transformation, over-
sampling and balancing, cyclic parameter tuning, model
construction, and multi-label classification, the prediction
process were completed as shown in Fig. 3.

TABLE IV
DIRECTION OF METASTASIS

Metastatic site
The total
sample

size

Total
propor-
tion (%)

Percentage
of metastasis
direction (%)

Not metastasis
(metsTotal=0) 282,369 96.0615 /

Bone metastasis
(unidirectional) 7,456 2.5365 34.6629

Lung metastasis
(unidirectional) 3,367 1.1454 15.6532

Liver metastasis
(unidirectional) 2,871 0.9767 13.3473

Bone + lung 1,841 0.6263 8.5588
Bone + liver 1,647 0.5603 7.6569
Lung + liver 964 0.3280 4.4816

Brain metastases
(unidirectional) 808 0.2749 3.7564

Bone + lung + liver 671 0.2283 3.1195
Bone + brain 511 0.1738 2.3756
Lung + brain 373 0.1269 1.7341
Liver + brain 261 0.0888 1.2134

Bone + lung + brain 248 0.0844 1.1530
Bone + liver + brain 199 0.0678 0.9252
Lung + liver + brain 162 0.0551 0.7531

Bone + lung + liver +
brain 131 0.0446 0.6090

B. Direction of metastasis

The original data were analyzed to detect metastasis before
model construction, and the direction of metastasis was
obtained, as shown in Table IV.

C. Construction of the prediction model

After mice package was interpolated several times,
MLSMOTE was used to oversample the balanced sample
data. The train test split function was used to create a 7/3
(70% as a training set and 30% as a verification set) data-
balancing split [35]. Twenty-one BC attribute fields in the
data collected were used as model predictive variables, while
MetsTotal, MetsBone, MetsLung, MetsLiver, MetsBrain at-
tributes were used as binary multi-label result variables. A
variety of machine learning methods (KNN, DT, and RF)
were used to construct the model, and the performance of
the classifier in the validation set was evaluated based on the
accuracy, precision, recall, F1 score, AUC and weighted−F1

indicators. Finally, the optimal prediction model and main
attributes affecting the direction of BC metastasis were
selected and derived.

When patients with primary BC participate in treatment,
physicians can choose the prediction model with the best
evaluation effect, input the specific attribute field values of
patients (influencing factors of metastasis direction) in the
order of importance; and obtain the output results to predict
the signs of cancer metastasis in patients. If the model
predicts MetsTotal=1 (metastasis), physicians can perform
modified radical mastectomy; and the possible direction of
metastasis could be monitored during follow-up (whether
MetsBone, MetsLung, MetsLiver, MetsBrain are 1, in which
case, close follow-up should be conducted for cancers at spe-
cific sites). If MetsTotal=0 (no metastasis), axillary dissection
with periodic screening is recommended as the primary
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Fig. 3. The modeling process

follow-up strategy. The actual surgical treatment and follow-
up plan were based on the actual condition of the patients
and the experience of the physicians, and the results of the
study only serve as an auxiliary reference.

D. Parameter tuning results under improved fully automated
cross grid

The improved fully automated cross grid algorithm ad-
justed the size of the super-parameter based on the model
indicators (accuracy, precision, recall, F1 score, AUC and
weighted−F1). After repeated circulation adjustment, the
maximum depth range of the DT was selected [6-11], the
index range of the split dataset [entropy, gini], and the
minimum number of split leaf samples [4, 8, 12, 16, 20,
24] were indicated. An exhaustive search was used to select
the optimal parameters for (max depth: 9; criterion: entropy;
min samples split: 16).

Similarly, the RF also underwent multiple tuning. Finally,
the criterion (split data set metrics) was entropy, max depth
(the maximum depth of each DT) was 9, min samples split
(minimum split sample size of leaves per tree) was 18, and
n estimators (number of DTs) was 11.

E. Analysis of model results

In this study, DT and RF were used to train real-world
datasets, and the importance scores of the attributes affecting
the direction of metastasis were obtained, as shown in Table
V. Surgical information (SurgPrim) and lymph node status
(RNP, RNE) had a greater influence on organ metastasis in
primary BC. The existence of distant metastasis (AJCCM),

tumor size (TumorSize), chemotherapy (Chemotherapy), his-
tologic type (Histologic), radiation (Radiation), and age at
diagnosis (Age) showed good characteristic expressions for
the probability of organ metastasis in primary BC. These
indicate a good reference for the organ metastasis study in
patients with primary BC.

The prediction results of KNN, DT, and RF are listed in
Tables VI and VII. For evaluation indexes, the highest score
of the RF of the six labels occurred in the accuracy index,
with an average score of 94.14%, higher than that of DT (av-
erage score of 93.59%) and KNN (average score of 88.84%).
Among the precision index evaluation results, DT scored the
highest except with the lung metastasis label, with an average
score of 95.85%, which was 1.11% and 8.61% higher than
for RF and KNN, respectively. In the recall index evaluation
results, DT had the best effect in predicting total, lung, and
brain metastases; RF had the highest score except for lung
metastasis; while the RF model had the highest average score
(91.76%). Among the F1 score evaluation results, DT had the
best effect in predicting total, bone, and brain metastases;
RF had the highest score except for bone metastasis; while
the RF model had the highest average score (93.45%). In
the AUC index evaluation results, RF scored the highest,
except for the total metastasis label, with an average score
of 99.95%, which was 0.42% and 2.84% higher compared
to those of DT and KNN, respectively. RF’s weighted−F1

metrics increased by 1.04% and 8.35% compared to DT
and KNN, respectively. Generally, RF performed well in
the evaluation of the six indicators, followed by DT and
KNN. This is because KNN, based on the regression analysis,
cannot process highly correlated and non-linear data, and the
correlation between BC data variables was high; therefore,
the prediction effect of the model was not ideal. Although
the DT algorithm could deal with the highly correlated data
and the prediction result was significantly improved, a single
tree is easy to fit; therefore, the strong classifier RF algorithm
composed of multiple DTs, showed the best effect.

Receiver Operating Characteristic (ROC) prediction curves
of bone, lung, liver, and brain metastases of the three machine
learning algorithms are shown in Figs. 4. Among the four y
tag predictions, the RF curves were the closest to the upper-
left corner, showing the best performance.

IV. DISCUSSION

In this study, multi-label prediction of the metastatic
direction of primary BC patients from 2010 to 2015 based on
the SEER database was examined. Three machine learning
methods (KNN, DT, and RF) were used to construct the
models. The evaluation index value of the model was high;
this can effectively assist the doctors in early diagnosis and
treatment. MLSMOTE and machine learning were used to
balance the data and present the model data relationship.
Class imbalance is a common actual classification problem,
and most machine learning algorithms undertake data balance
as the premise of practice. Therefore, class imbalance can in-
troduce great challenges to the prediction task. The oversam-
pling method can effectively overcome the problem of data
imbalance by overemphasizing the positive proportional data
(repeating the positive proportional data but not introducing
more data into the model) and by enhancing the impact of the
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Fig. 4. ROC curve of BC metastases. Panel a shows ROC curve of bone metastasis. Panel b shows ROC curve of lung metastasis. Panel c shows ROC
curve of liver metastasis. Panel d shows ROC curve of brain metastasis.

positive proportional noise on the model [37]. The study pre-
processed data MetsTotal label (1:0=3.94:96.06), MetsBone
label (1:0=2.54:97.46), MetsLung label (1:0=1.15:98.85),
MetsLiver label (1:0=0.98:99.02), and MetsBrain label
(1:0=0.27:98.75) were all out of proportion. However, the
common oversampling method, such as the SMOTE, cannot
deal with the multi-label problems; thus the need to introduce
the optimized MLSMOTE, to process the imbalanced data
[26], [27]. Therefore, in characteristic engineering, use of the
MLSMOTE to balance multi-label problem data, can provide
a reference for machine learning engineers.

The model evaluation in this study was based on accuracy,
precision, recall, F1 score, AUC, and weighted−F1, to
measure the multi-label classification ability of the machine
learning methods. The average accuracy of the RF and DT

models was 93.59% and 94.14%, average precision was
95.85% and 94.74%, average recall was 90.40% and 91.76%,
average F1 score was 92.16% and 93.45%, average AUC
was 99.53% and 99.95%, weighted−F1 was 89.44% and
99.48%, respectively. The prediction effect was better than
that of deep learning or image processing methods, which
have become popular in recent years. Zheng et al. reported
deep learning radiomics of conventional ultrasound and shear
wave elastography of BC, to predict axillary lymph node
(ALN) status preoperatively in patients with early stage BC
[40]. With an AUC of 90.50%, this was lower than the
99.95% for RF reported in this study. Liu et al. extracted
quantitative imaging features from T2-weighted, diffusion-
weighted, and contrast-enhanced T1-weighted images prior
to each patient’s NAC, to predict the pathological complete
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TABLE V
ATTRIBUTE SCORE TABLE

Variable Decision tree (%) Random forest (%)

Race 0.1472 0.4251
Age 0.2314 1.0150
YD <0.001 0.2530

Marital <0.001 0.3773
Laterality <0.001 0.4259

PrimarySite <0.001 0.6785
Chemotherapy 0.1760 4.2529

Radiation 1.7076 1.2061
Grade <0.001 0.5128

Histologic 0.4685 2.2678
LymphNodes 0.2574 0.9863

RNE 0.4382 11.5141
RNP 0.3337 3.9956

AJCCT 0.1810 0.5863
AJCCN 0.1682 0.4259
AJCCM 0.4790 5.5254
HER2 <0.001 0.7984

ER <0.001 0.6518
PR <0.001 0.7374

SurgPrim 95.0756 58.8750
TumorSize 0.3357 4.4688

TABLE VI
MACHINE LEARNING CLASSIFICATION PERFORMANCE

COMPARISON

Multi-label y Accuracy (%) Precision (%)
KNN DT RF KNN DT RF

Class 0 (MetsTotal) 100.00 100.00 100.00 100.00 100.00 100.00
Class 1 (MetsBone) 79.56 90.61 90.61 81.02 97.14 90.98
Class 2 (MetsLung) 79.56 86.74 87.29 78.69 82.11 87.62
Class 3 (MetsLiver) 85.08 90.61 92.82 76.47 100.00 95.12
Class 4 (MetsBrain) 100.00 100.00 100.00 100.00 100.00 100.00

Ave 88.84 93.59 94.14 87.24 95.85 94.74

response preconditioning of NAC for BC, based on the
proposed multi-parameter magnetic resonance imaging radio-
metrics [41]. The AUC assessment result of 86% was lower
than the 99.95% for RF model in this study. Muhammad et
al. created a multilayer feed-forward neural network model
based on proportional conjugate gradient backpropagation;
and used salivary amino acid bioaccurate labelling of gastric
cancer with an average accuracy of 92.27%, but still lower
than the 94.14% in this study [42].

Early studies have focused on the gene detection tech-
nology innovation on BC metastasis studies. To the best
of our knowledge, this is the first machine-learning-based
approach to predict the direction of organ metastasis in BC.
By constructing a multi-label classification model, this study
findings can be used to identify the relationship between
characteristic attributes and prognosis of organ metastasis
and assist doctors in diagnosis and treatment, which has
theoretical and medical significance. Currently, gene detec-
tion technology is often used in clinical medicine to identify
mutated genes, assist in monitoring disease metastasis, and
guide treatment selection [43]. Cancer cell samples obtained
during genetic testing are mostly from surgical pathological
sections, and biopsy and ”liquid biopsies”. The method of

obtaining surgical pathological sections is unsuitable for
preoperative detection or long-term postoperative follow-up
(2 years later) [10]. Puncture biopsy is highly invasive and
risky, and ”liquid biopsy” is most suitable for patients with
advanced cancer [10], [11]. Kim et al. reported an unusual
case of a patient that was pathologically described as a
primary hypercellular parathyroid lesion with characteristic
changes on fine-needle aspiration (FNA) biopsy [44]. These
results suggest that FNA can enhance the similarity between
malignant tumors, with challenging diagnoses. Therefore,
there is an urgent need for new tests to replace such invasive
and non-universal tests. Arefan et al. constructed a machine
learning classifier to distinguish positive and negative ALN
status of BC and achieved high classification performance,
showing convenience, non-invasive, universal, and repeatable
advantages [45]. Therefore, since the analysis of routine
clinicopathological features of BC patients using a machine
learning algorithm is non-invasive and universal, it can assist
in the assessment of patients level of severity and provide a
reference for clinical practice.

Although our study performed well in identifying the di-
rection of BC metastasis, it has some limitations. (1) Among
independent variables, Ki-67, patients’ psychologic, family,
and other factors are important and affect the direction of
BC metastasis; however, the SEER database does not contain
information on these important factors [46]. With dependent
variables, the attribute value of the lymphatic metastasis vari-
able was missing, resulting in only six types of y values [47].
(2) Dong et al. found that BC and thyroid cancer (TC) tend
to occur heterochronously or synchronously [48]. Because
both glands are regulated by the hypothalamic-pituitary axis,
the correlation between the two is an important consideration
in cancer research. However, in the prediction of cancer cell
metastasis direction in this study, the potential correlation
between BC and other cancers was not considered, such
as whether the probability of cancer cell metastasis would
be higher in simultaneous first-stage BC patients with TC.
This requires the collection of relevant data on cancer types
by a physician, using their commonalities and differences in
prognostic factors to assess the association. At present, the
authors showed that the prognostic factors of BC and TC are
highly similar and may be associated. In future, a controlled
experiment will be conducted based on the data of patients
with first-episode BC alone and TC combined with first-
episode BC, to analyze the direction and influencing factors
of cancer cell metastasis and explore whether TC has an
impact on the prognosis of first-episode BC metastasis. (3)
In this study, only the internal validation method of cross val-
idation was adopted. Although the repeatability of the model
was effectively verified, its generalization and portability
are yet unverified. It is necessary to simultaneously adopt
both internal and external verifications. Based on the good
performance of the internal verification of the development
model, external verifications such as spatial, domain, and
period verifications should be performed.

This study, based on the first primary BC diagnosis and
treatment of patients, was conducted to predict the direction
of future cancer metastasis, and to assist in the formulation
of treatment and follow-up plans. However, in actual medical
scenarios, when BC patients are diagnosed and undergo treat-
ment, metastasis may occur, and BC may not be the primary
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TABLE VII
MACHINE LEARNING CLASSIFICATION PERFORMANCE COMPARISON

Multi-label y Recall (%) F1 Score (%) AUC (%)
KNN DT RF KNN DT RF KNN DT RF

Class 0 (MetsTotal) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Class 1 (MetsBone) 90.98 87.93 97.39 85.71 92.31 91.29 95.10 99.79 99.85
Class 2 (MetsLung) 89.71 98.06 90.00 83.84 88.99 91.87 99.75 99.62 100.00
Class 3 (MetsLiver) 57.78 66.00 71.43 65.82 79.52 84.09 90.84 98.53 100.00
Class 4 (MetsBrain) 100.00 100.00 100.00 100.00 100.00 100.00 99.87 99.71 99.89

Ave 87.73 90.40 91.76 87.07 92.16 93.45 97.11 99.53 99.95

TABLE VIII
MACHINE LEARNING CLASSIFICATION PERFORMANCE

COMPARISON

Evaluation KNN DT RF

weighted−F1 82.13% 89.44% 90.48%

cancer (i.e., when the primary site cannot be determined
despite standard diagnostic tests) [49]. The knowledge of
a patient’s primary cancer site is fundamental to medical
treatment; therefore, patients with unknown primary BC
site are significantly disadvantaged, and with poor survival
outcomes for most [50]. The development of reliable and
easily accessible diagnostic methods to predict the origin of
cancer tissues has become an important research topic in the
medical field. Zhao et al. developed an RNA-based classifier
called CUP-AI-DX that utilizes a 1D inception convolutional
neural network (1D-inception) model to infer the primary
tissue of the tumor [51]. The overall accuracy, based on
The Cancer Genome Atlas Project and International Cancer
Genome Consortium was 98.54% and 96.70%, respectively.
Therefore, our next research aims to use machine learning
methods to build a model to infer the origin of cancer tissues
in patients with unknown primary BC site, and fully consider
the potential correlation between BC and other cancers.
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F. Ongenae, B. F. De, T. F. De, K. Roelens, J. Decruyenaere, H. S. Van,
and T. Demeester, “Overly optimistic prediction results on imbalanced
data: a case study of flaws and benefits when applying over-sampling.”
Artif Intell Med, vol. 111, no. 1, pp. 101 987–101 997, 2021.

[40] X. Zheng, Z. Yao, Y. Huang, Y. Yu, Y. Wang, Y. Liu, R. Mao, F. Li,
Y. Xiao, Y. Wang, Y. Hu, J. Yu, and J. Zhou, “Deep learning radiomics
can predict axillary lymph node status in early-stage breast cancer.”
International Journal of Molecular Sciences, vol. 11, no. 1, pp. 1236–
1244, 2020.

[41] Z. Liu, Z. Li, J. Qu, R. Zhang, X. Zhou, L. Li, K. Sun, Z. Tang,
H. Jiang, H. Li, Q. Xiong, Y. Ding, X. Zhao, K. Wang, Z. Liu, and
J. Tian, “Radiomics of multiparametric mri for pretreatment prediction
of pathologic complete response to neoadjuvant chemotherapy in
breast cancer: A multicenter study.” Clin Cancer Res, vol. 25, no. 12,
pp. 3538–3547, 2019.

[42] M. A. Aslam, C. Xue, M. Liu, K. Wang, and D. Cui, “Classification
and prediction of gastric cancer from saliva diagnosis using artificial
neural network.” Engineering Letters, vol. 29, no. 1, pp. 10–24, 2020.

[43] M. Dameri, L. Ferrando, G. Cirmena, C. Vernieri, G. Pruneri,
A. Ballestrero, and G. Zoppoli, “Multi-gene testing overview with a
clinical perspective in metastatic triple-negative breast cancer.” Int J
Mol Sci, vol. 22, no. 13, pp. 7154–7177, 2021.

[44] J. Kim, G. Horowitz, M. Hong, M. Orsini, S. Asa, and K. Higgins,
“The dangers of parathyroid biopsy.” J Otolaryngol Head Neck Surg,
vol. 46, no. 1, pp. 4–7, 2017.

[45] D. Arefan, R. Chai, M. Sun, M. Zuley, and S. Wu, “Machine learning
prediction of axillary lymph node metastasis in breast cancer: 2d versus
3d radiomic features.” Int J Mol Sci, vol. 47, no. 12, pp. 6334–6342,
2020.

[46] Y. Yin, K. Zeng, M. Wu, Y. Ding, M. Zhao, and Q. Chen, “The levels
of ki-67 positive are positively associated with lymph node metastasis
in invasive ductal breast cancer.” Cell Biochem Biophys, vol. 70, no. 2,
pp. 1145–51, 2014.

[47] B. To, D. Isaac, and E. Andrechek, “Studying lymphatic metastasis in
breast cancer: Current models, strategies, and clinical perspectives.” J
Mammary Gland Biol Neoplasia, vol. 25, no. 3, pp. 191–203, 2020.

[48] L. Dong, J. Lu, B. Zhao, W. Wang, and Y. Zhao, “Review of the
possible association between thyroid and breast carcinoma.” World J
Surg Oncol, vol. 16, no. 1, pp. 130–136, 2018.

[49] X. Liu, L. Li, L. Peng, B. Wang, J. Lang, Q. Lu, X. Zhang, Y. Sun,
G. Tian, H. Zhang, and L. Zhou, “Predicting cancer tissue-of-origin by
a machine learning method using dna somatic mutation data.” Front
Genet, vol. 11, no. 1, pp. 674–684, 2020.

[50] D. Lu, J. Jiang, X. Liu, H. Wang, S. Feng, X. Shi, Z. Wang, Z. Chen,
X. Yan, H. Wu, and K. Cai, “Machine learning models to predict
primary sites of metastatic cervical carcinoma from unknown primary.”
Front Genet, vol. 11, no. 1, pp. 614 823–614 830, 2020.

[51] Y. Zhao, Z. Pan, S. Namburi, A. Pattison, A. Posner, S. Balachander,
C. Paisie, H. Reddi, J. Rueter, A. Gill, S. Fox, K. Raghav, W. Flynn,
R. Tothill, S. Li, R. Karuturi, and J. George, “Cup-ai-dx: A tool for
inferring cancer tissue of origin and molecular subtype using rna gene-
expression data and artificial intelligence.” EBioMedicine, vol. 61,
no. 1, pp. 103 030–103 043, 2020.

IAENG International Journal of Computer Science

Volume 52, Issue 1, January 2025, Pages 1-10

 
______________________________________________________________________________________ 




