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Abstract—End-to-end training has emerged as a prominent
trend in speech recognition, with Conformer models effectively
integrating Transformer and CNN architectures. However, their
complexity and high computational cost pose deployment chal-
lenges. To address these issues, we propose a multi-task Chinese
speech recognition method based on the Squeezeformer model.
We replace the FMCF structure in Conformer with an MF/CF
structure, leveraging the convolutional module as a local Multi-
Head Attention (MHA) module to enhance efficiency. Multi-
level down-sampling and up-sampling using a time-series U-Net
further reduce computational costs. By eliminating redundant
LayerNorm layers and employing depthwise separable convo-
lutions, we streamline the model, reduce parameters, and lower
deployment costs. An Adaptor Layer is integrated into the
MHSA module to mitigate the vanishing gradient problem, and
a ScaleVar Layer is added to enhance flexibility. Additionally,
the RealFormer module is introduced on the decoding side to
improve context understanding. Combining Connectionist Tem-
poral Classification (CTC) with attention-based encoding and
decoding models for multi-task learning improves performance
and accuracy. Experimental results show that the proposed
method reduces the parameters on AISHELL-1 dataset by 16%
and reduces the character error rate to 5.50%. At the same
time, it also shows good performance on AISHELL-2 dataset.

Index Terms—End-to-end, Automatic Speech Recognition,
Multi-task, Squeezeformer.

I. INTRODUCTION

THE components of traditional speech recognition sys-
tems typically include acoustic models, pronunciation

dictionaries, and language models. In contrast, end-to-end
speech recognition adopts a more streamlined approach,
learning directly from raw audio data to generate correspond-
ing text without the need for additional feature extraction or
alignment processes[1]. This simplified architecture makes
end-to-end speech recognition more efficient, flexible, and
adaptable to various speech scenarios and languages[2]. The
end-to-end Conformer model, which combines the strengths
of Convolutional Neural Networks (CNNs) and Transform-
ers, has achieved superior performance in speech recog-
nition tasks[3], [4]. However, it still has limitations and
room for improvement. For instance, the Conformer archi-
tecture uses larger convolutional kernels to better integrate
global information, whereas smaller convolutional kernels
are more effective for local processing capabilities of atten-
tion mechanisms[5]. Therefore, placing multi-head attention
and convolutional modules back-to-back (referred to as the
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MC structure) is not optimal[6], [7]. Moreover, the Con-
former architecture is more complex than the Transformer
architecture commonly used in natural language processing.
It incorporates various normalization schemes, activation
functions, and Macaron-like structures, contributing to its
complexity. This complexity poses challenges for effective
model deployment on dedicated hardware platforms. Hence,
it is crucial to improve the Conformer architecture to enhance
model efficiency, simplify the structure, and facilitate de-
ployment on specialized hardware. Achieving these improve-
ments would significantly advance the practical application
of end-to-end speech recognition technology.

In this paper, we propose a multi-task Chinese speech
recognition method based on the Squeezeformer model, an
optimized version of Conformer. Squeezeformer replaces
the FMCF (forward + multi-head attention + convolution
+ forward) structure of the Conformer with a Transformer-
style MF/CF (multi-head attention + forward/convolution +
forward) structure. This approach treats the convolutional
module as a local MHA module to fully leverage its advan-
tages in local modeling. By incorporating a time-series U-Net
that downsamples four times, then downsamples two times,
and finally upsamples two times, the computational cost of
the multi-head attention module on long sequences is signif-
icantly reduced. The activation function in the convolutional
module is unified to Swish, simplifying the model struc-
ture and reducing deployment costs. Additionally, redundant
LayerNorm is replaced with learnable LayerNorm after the
reduction layer and module, facilitating the reduction and
activation of output values while also reducing model pa-
rameters. Depth-separable convolution is utilized to more
efficiently subsample the input signal when downsampling
by a factor of two. When the Squeezeformer layer is com-
pressed, an Adaptor layer is added to the MHSA module to
prevent gradient vanishing, resulting in finer replication. The
convolutional module also incorporates a ScaleVar layer to
scale and bias the input, enhancing the model’s flexibility
and expressiveness. Furthermore, RealFormer is added to
the encoder, offering better context understanding and higher
quality generated results[8], [9]. For multi-task learning, we
combine Connectionist Temporal Classification (CTC) with
an attention-based encoding and decoding model[10], [11].
The forward-backward algorithm of CTC aligns the output
sequence with the input sequence in temporal order, while
the attention model’s alignment is not sequence-bound and
is data-driven, which can be challenging to train[12], [13],
[14]. By combining CTC and attention models, we can
harness the strengths of both approaches to enhance model
performance. The attention mechanism helps the model focus
on crucial information in the speech signal, improving the
accuracy of speech recognition by highlighting important
features. Meanwhile, CTC enhances the model’s ability to
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learn robust frame-level alignment of speech, addressing
the label alignment issue and improving overall recognition
performance[15], [16].

This paper is organized as follows: Section 2 reviews re-
lated work; Section 3 describes the multi-task Squeezeformer
model for Chinese speech recognition; Section 4 presents the
dataset and analyzes the experimental results; and Section 5
summarizes the findings and conclusions.

II. RELATED WORK

A. End-to-end Speech Recognition
End-to-end speech recognition models directly map acous-

tic signals to tag sequences, eliminating the cumbersome
processes found in traditional methods, such as extract-
ing acoustic features from speech audio, conducting acous-
tic modeling, language modeling, and performing searches
based on Bayesian decision rules. This streamlined architec-
ture simplifies building and training, leading to revolutionary
advancements in speech recognition technology. A typical
end-to-end speech recognition model comprises three main
components: an encoder, an aligner, and a decoder. The
encoder converts the input speech sequence into a feature
sequence. The aligner ensures the alignment between the fea-
ture sequence and the language, while the decoder interprets
the final recognition result. This integrated approach enables
end-to-end speech recognition systems to more effectively
capture speech features, resulting in more accurate and
efficient recognition processes[17], [18].

1) The CTC-based end-to-end model effectively addresses
the hard alignment problem in speech recognition. In the
end-to-end LVCSR (Large Vocabulary Continuous Speech
Recognition) model, CTC (Connectionist Temporal Classi-
fication) overcomes data alignment challenges by directly
outputting the target transcription, thereby eliminating the
need for manual alignment of input and output sequences.
This approach modifies the network structure by adding an
extra output node to represent an additional class, thus pre-
serving the acoustic model’s structure and only fine-tuning
the output layer to meet new classification requirements.
The core component of CTC is its loss function, known
as the CTC loss function, which involves two stages: path
probability calculation and path aggregation. CTC facilitates
the inference of the target sequence by introducing a blank
label and intermediate conceptual paths.

A significant advantage of CTC is that it eliminates the
need to pre-determine the exact correspondence between
acoustic features and text labels, allowing the model to
automatically learn how to decode the input sequence and
infer the most likely text output. Li et al. designed a
novel ASR (Automatic Speech Recognition) approach using
bidirectional long short-term memory recurrent neural net-
works (LSTM-RNNs) combined with connectionist temporal
classification. This method directly transcribes graphemes,
producing results highly competitive with phoneme tran-
scription. Their findings indicate that increasing network
depth and the number of hidden units effectively improves
recognition performance. In their experiment, they designed
a network with three layers: a 78-dimensional feedforward
layer, an LSTM layer with 120 memory units, and another
LSTM layer with 27 memory units. Song et al. imple-
mented a system using two variants of phoneme recognition

neural networks, combining CNNs (Convolutional Neural
Networks) and RNNs for ASR, utilizing four CNN layers
in the model structure. Inspired by the advantages of CNN
and CTC methods, Zhang et al. proposed a model that
combines hierarchical CNNs with CTC directly, eliminating
the need for recurrent connections. This model employs ten
CNN layers and three fully connected layers, concluding
that model depth is proportional to recognition accuracy.
Research also focuses on the depth of CTC networks.
Amodei et al. designed a 9-layer network model with 7
recurrent layers, achieving accuracy that can surpass human
performance in some tasks. Similarly, Zweig et al. trained a
network model consisting of a nine-layer bidirectional LSTM
RNN, obtaining optimal results across different datasets.
In summary, while increasing the structure and depth of
network models can enhance recognition accuracy, it does
not necessarily mean that deeper, more complex networks
will achieve better results in all situations.

2) An end-to-end model based on attention effectively
handles long-distance dependencies by introducing an atten-
tion mechanism at the decoder. This allows the model to
dynamically focus on different parts of the input sequence
while generating the output sequence. The structure consists
of three modules: the encoding network, decoding network,
and attention subnetwork.Both the encoding and decoding
networks utilize recurrent neural network (RNN) units. The
encoding network transforms input sequences into hidden
representations, typically composed of multiple layers of
RNNs (such as LSTM or GRU) and other layers (such as
convolutional neural networks or self-attention mechanisms)
to extract more abstract feature representations. The attention
subnetwork is a multi-layer perceptron with a single hidden
layer that receives the output of the encoding network and
the hidden state of the decoding network, calculates the
correlation score, and represents the relationship between the
two.The decoding network consists of a single-layer RNN
and a Maxout network. The output of the encoding network
is weighted and summed by the attention coefficients from
the attention subnetwork to generate the target vector. This
target vector is used to calculate the posterior probability of
each phoneme in the output sequence, enabling the decoder
to flexibly capture the semantic information of the input
sequence[19].

With the continuous pursuit of model performance, en-
coders in attention-based models have gradually evolved into
more complex structures to enhance their encoding capabil-
ities. Initially, encoders consisted of three layers, but they
have progressively developed into four, five, and six layers.
By incorporating technologies such as network-in-network,
batch normalization, residual networks, and convolutional
LSTM, encoder networks can now reach depths of up to
15 layers. On the Wall Street Journal dataset, this deep
encoder network achieved a word error rate (WER) of 10.53
percent, demonstrating excellent performance without the use
of dictionaries or language models.

B. Multi-tasking Speech Recognition

Multi-task learning is a machine learning approach that
aims to simultaneously learn multiple related tasks by shar-
ing knowledge, ultimately improving overall performance.
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In this approach, multiple tasks leverage the same model
and achieve parameter sharing, which allows for efficient
transmission and propagation of learned parameters. This
technique can reduce training time, enhance model accu-
racy, and improve generalization to new tasks. For instance,
in speech recognition, several tasks can share the same
speech feature extraction model, facilitating the transfer of
knowledge across tasks. This parameter sharing enhances the
performance of the speech recognition model by enabling
effective knowledge transfer.

The connection between multi-task learning and speech
recognition is primarily reflected in the following aspects:

1) Hierarchical multi-task learning leverages the corre-
lations between different speech recognition tasks, such as
voice command and voice translation. This approach en-
hances model performance by integrating subtasks of varying
difficulty or types into a unified network, enabling them to
share underlying features[20].

2) End-to-end multi-task learning facilitates knowledge
sharing across different speech recognition tasks, such as
speech feature extraction and various network layers. This
sharing of knowledge improves model generalization and
reduces training time.

3) Generalized multi-task learning promotes task gener-
alization across various speech recognition tasks, such as
extending knowledge from a speech command task to a
speech translation task. This generalization enhances model
performance and enables the model to adapt to a broader
range of application scenarios[21].

III. METHODS

A. Multi-task Chinese Squeezeformer Speech Recognition
Model

In this paper, we propose a multi-task Chinese Squeeze-
former speech recognition model, as shown in Figure 1. The
model is primarily composed of three main components.
First, acoustic features are downsampled for dimensional-
ity reduction through a depthwise separable convolutional
module. Then, the reduced-dimensional acoustic features
are transformed into hidden layer features by stacking 12
Squeezeformer modules. Finally, LAS and CTC are com-
bined to optimize the entire model, with Squeezeformer
being further optimized based on the Conformer model.
The Transformer-style MF/CF (multi-head attention + for-
ward/convolution + forward) structure replaces the FMCF
(forward + multi-head attention + convolution + forward)
structure in the Conformer, treating the convolutional module
as a local MHA module to fully leverage its advantages
in local modeling. By applying a time-series U-Net that
downsamples four times, then downsamples two more times,
and finally upsamples twice at the end of the model,
the computational cost of the multi-head attention module
on long sequences is significantly reduced. The activation
function in the convolutional module is unified to Swish,
simplifying the model structure and reducing deployment
costs. Additionally, redundant LayerNorm is replaced with
learnable LayerNorm after the reduction layer and module,
facilitating the reduction and activation of output values
while also reducing model parameters. Depth-separable con-
volution is employed to subsample the input signal more

Fig. 1. Speech recognition model of multi-task Chinese Squeezeformer
model

efficiently when downsampling by a factor of 2. When the
Squeezeformer layer is compressed, an Adaptor layer is
added to the MHSA module to prevent gradient vanishing
during data restoration, resulting in finer replication. The
convolutional module also incorporates a ScaleVar layer to
scale and bias the input, enhancing the model’s flexibility
and expressiveness. Furthermore, RealFormer is added to
the encoder, offering improved context understanding and
higher-quality generated results.

B. Squeezeformer Block

The Squeezeformer block is composed of a Multi-head
Self-Attention module, a Feed Forward module, and a Con-
volution module, with residual connections applied to each
module. The Macaron structure is replaced by an MF/CF
structure (self-attention + FFN + convolution module +
FFN), similar to the Transformer network, where the con-
volutional module functions as a local MHA module to
fully leverage its advantages in local modeling. Combined
with the time-series U-Net structure, which includes 4x
downsampling, followed by 2x downsampling, and 2x up-
sampling at the end of the model, the computational cost
of the multi-head attention module on long sequences is
reduced.Squeezeformer maintains a 4x downsampling rate,
similar to Conformer, up to the 7th block, after which it
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Fig. 2. Squeezeformer Block

undergoes additional 2x downsampling through a pooling
layer. The pooling layer uses depth-separable convolution
with a stride of 2 and a kernel size of 3 to merge adjacent
embedding vectors. However, 8x downsampling in the time
dimension can lead to unstable training. This instability may
arise because the decoder is responsible for mapping the
embedded vectors corresponding to speech frames to the
modeling units, requiring sufficient resolution to decode the
entire sequence. After 8x downsampling, the decoder may
lack the necessary resolution. Inspired by U-Net, Squeeze-
former restores resolution at the end of the network through
an upsampling layer. The upsampling module takes the 4x
and deeper 8x subsampled embedded vectors, combines
them through skip connections, and outputs the final 4x
subsampled embedded vectors.

Conformer uses the Swish activation function in most
modules but employs the Gated ar Unit (GLU) as the ac-
tivation function in the Convolution module. To simplify the
model structLineure and reduce deployment costs, Squeeze-
former uses the Swish activation function throughout the
entire model. Additionally, layer normalization is simplified
by replacing the previous Layer Norm (preLN) with a
learnable deflate layer, which both deflates and activates the
output values.

Scaling (x) =γ(x) +β (1)

Where,γ and β are learnable parameters with the same
dimension as the input value x. Squeezeformer applies Layer
Norm (postLN) after the module and learns to shrink the
Layer Norm (preLN) before the replacement module. This
approach ensures that the entire model only retains Layer
Norm (postLN) after the module. The second subsampling,
which involves an additional 2x subsampling on top of

the initial 4x, uses depthwise separable convolution to re-
duce computational complexity. The overall structure of the
Squeezeformer Block is illustrated in Figure 2.

1) MHA Module: The Adapter layer is added to the atten-
tion module, which features a simple structure, as illustrated
in Figure 4. It projects the input down to a smaller dimension,
passes it through a nonlinear activation function, and then
projects it back up to the original dimension. Additionally,
a residual connection is established between the input and
output of the entire Adapter layer. Introducing the Adapter
layer to the attention module in speech recognition tasks
offers several benefits. From a structural perspective, the
Adapter layer adds additional training modules, allowing
the model to ”adapt” to specific downstream tasks using a
small set of parameters. First, the simple structure of the
Adapter layer effectively reduces the computational burden
by lowering and then restoring the dimensionality of features.
The use of nonlinear activation functions further enhances
the model’s representational capacity. Second, this structure
enables the model to flexibly adjust the feature extraction
process according to the specific task requirements, thereby
better capturing the diversity of speech signals and improving
generalization. Additionally, the inclusion of residual con-
nections not only accelerates training convergence but also
enhances model stability. The overall structure of the MHA
module is shown in Figure 3.

2) Convolution Module: The convolution module utilizes
ScaleVar layers, post-norm residuals, pointwise convolu-
tion, depthwise separable convolution, and Swish activation
functions (Scaled Exponential Linear Unit with Squared
Highway). The ScaleVar layer, by learning the scaling and
bias of the data, enables the model to better adapt to the
characteristics and distribution of the input data, thereby
enhancing performance, generalization ability, and training
stability. The structure of the convolutional module is illus-
trated in Figure 5.

C. Connected Temporal Classification (CTC) Model

As an end-to-end speech recognition model, the CTC
(Connectionist Temporal Classification) model achieves its
modeling objectives by optimizing the target function rather
than adjusting the model itself. Given the inherent instability
of speech and its typical representation in frames, there are
often far more audio features in the input than corresponding
outputs in speech recognition. To address this many-to-few
relationship, a straightforward solution is to remove duplicate
input sequences.

Suppose there is an input sequence x = (x1, x2, . . . , xT ),
the goal is to generate a target sequence aligned with
the input sequence, where T is the length of the y =
(y1, y2, . . . , yu) input sequence and U is the length of the
target sequence. The goal of the CTC loss function is to
maximize the conditional probability of generating the target
sequence y for a given input sequence x. Therefore. You
need to define a mapping function π: x → y ∪ {blank} that
maps the input sequence to the target sequence along with
whitespace. Next, we define the set B of all possible aligned
sequences, which contains all possible sequences obtained by
inserting whitespace. Therefore, the goal is to find an optimal
alignment sequence π∗. Make it match the target sequence y.
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Fig. 3. MHA Moduel

Fig. 4. Adapter Layer

αt(s) is used to represent the forward probability when the
target sequence y1, y2, . . . , ys is generated in time step t. The
forward probability is calculated by dynamic programming
algorithm and updated by recursive relation.

αt(s) =
∑

π:|π|=s

αt−1 (Πt−1) · P (ys | xt) (2)

Where at−1(πt−1) represents the forward probability of
generating the subsequence πt−1 at time t-1, and P (ys|xt)
represents the probability from the input feature to the target
character ys. The backward algorithm, as opposed to the
forward algorithm, is used to calculate the probability of
the subsequent partial target sequence from the current time
step to the end of the sequence. In the calculation process,
the characters, whitespace, and possibly repeated characters
in the target sequence are also considered, and all possible
aligned sequences are summed. As shown in formula (3),
a dynamic programming algorithm is used to calculate the

backward probability, and a recursive relationship is used to
update the backward probability.

βt(s) =
∑

Π:|Π|=U−s βt+1 (Πt+1) · P (Πt+1 | xt+1) · p (blank | xt) (3)

Where βt(s) represents the backward probability of gen-
erating target sequence ys+1, ys+2, . . . , yU from features t+1
to t at time step T, βt+1(πt+1) represents the backward
probability of generating subsequence πt+1 at time step
t+1, P (πt+1|xt+1) the probability of generating subsequence
πt+1 from input features, and P (blank|xt) the probability
of generating whitespace from input features. In CTC, the
output sequence generated by the model contains characters,
whitespace, and possibly duplicate characters from the target
sequence. With alignment, we can map the model output
sequence back to the target sequence. The alignment process
is usually based on the results of the forward and backward
algorithms, as well as the output probability distribution of
the model. By comparing the forward and backward proba-
bilities, as well as the model output probability distribution,
we can determine the most likely alignment to map the model
output sequence back to the target sequence. For the input
sequence x, the probability of the alignment sequence can
be calculated from the forward probability and backward
probability:

P (π|x) = αT (|π|) · β1(|π|) (4)

Where αT (|π|) is the forward probability of generating the
target sequence at the last time step, and is the backward
probability of generating the target sequence π at the first
time step. Finally, the CTC loss function can be calculated
by summing the probabilities of all possible alignment se-
quences:
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Fig. 5. Convolution Module

CTCLoss(x, y) = −ln
∑
x∈B

P (π|x) (5)

D. Attention-based Encoding and Decoding Model

LAS (Label-Attentional Sequence-to-Sequence) is a
sequence-to-sequence (Seq2Seq) model designed for speech
recognition tasks. Unlike traditional speech recognition sys-
tems based on deep neural networks, LAS incorporates an
attention mechanism that allows the model to dynamically fo-
cus on different parts of the input sequence while generating
the output sequence. This article also introduces RealFormer
into LAS, integrating the Attention Score into the Softmax
layer by incorporating the Attention Score from the previous
layer, as shown in Equation 6.

ResidualAttention(Q′,K ′, V ′, P rev′) = Softmax(Q
′kT

√
dk

+ prev′)V ′ (6)

This enhancement helps the model better understand the
relationships within the input data, improves the model’s
focus on different parts, and enables it to capture important
information more effectively, resulting in more accurate
predictions. The structure of the LAS model is shown in
Figure 6.

Assume that the input sequence X = (x1, x2, . . . , xT )
and the target sequence Y = (y1, y2, . . . , yU ) are given.
The probability that the model generates symbol yt in the m
target sequence at each time step t is P (yt|ŷ < t,X), where
ŷ < t represents all symbols up to the seventh position in the
sequence generated by the model. The goal is to maximize
the conditional probability of a given sequence of targets.

First, we assume that each symbol in the target sequence is
generated independently, that is, given the input sequence
X and the model-generated sequence Ŷ , each symbol is
generated independently of each other. Therefore, we can
write the conditional probability of a given target sequence as
a multiplication of the probability of generating each symbol:

P (Y |Ŷ , X) =
u∏

t=1

P (yt|ŷ < t,X) (7)

For each time step t, the goal is to compute the conditional
probability P (yt|ŷ < t,X) of the model generating symbol
yt in the target sequence. This probability can be obtained
through the output layer of the model, for example by using
the softmax function to convert the model output into a
probability distribution. Next, the log-likelihood loss function
is defined as the negative log-probability of the sequence
generated by the model given the target sequence. Log-
likelihood loss is defined as follows:

loss = −lnP (Y |Ŷ , X) (8)

Expanding the logarithmic likelihood loss according to
formula 7, we get:

Loss = − ln
∑U

t=1 p(yt|ŷ < t,X) = −
∑U

t=1 lnP (yt|ŷ < t,X) (9)

Finally, we train the model by minimizing the loss function
to make the model’s predictions as close to the target
sequence as possible. Optimization algorithms like gradient
descent are typically used to achieve this goal.
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Fig. 6. LAS Model

E. Ctc-attention Joint Model

The CTC model and attention-based encoder-decoder
model each have their strengths and limitations. The CTC
model assumes independence among the posterior proba-
bilities of the output sequence, which leads to relatively
weak modeling of correlations between symbols. Conse-
quently, a language model is often required to further en-
hance performance. In contrast, the attention-based encoder-
decoder model can perform data-driven alignment learning
and effectively model long-distance dependencies in context.
However, without the monotonicity constraints present in
CTC, attention-based models are more susceptible to noise
interference, and their complexity increases significantly
with sequence length, making training more challenging.
To address these limitations, this paper proposes a CTC-
attention joint model based on the concept of multi-task
learning (MTL). The CTC-attention joint model combines
the strengths of both the CTC and attention-based models,
allowing them to complement each other. The CTC model
provides output probabilities under the independence as-
sumption, while the attention-based model excels at handling
long-distance dependencies. Joint learning effectively inte-
grates the advantages of both models, enhancing sequence
modeling capabilities.

By using the multi-task training method, we take the
optimization objective of the CTC model as an additional
training task, and conduct joint training together with the
optimization objective of the LAS model. This is equivalent
to introducing two different training objectives of CTC and
LAS into the whole model, making them share the same
encoder, and conducting joint training according to their
respective objective functions in the decoding stage. In this
way, the training of the entire model can benefit from the
way the CTC model learns the monotonic alignment between
inputs and outputs. The final loss function is a weighted sum
of the losses of the two models to consider the contributions
of the CTC and LAS models in the training process. Its loss
function is expressed as:

LMLT = λLCTC + (1− λ)LLAS (10)

Where, λ is the hyperparameter used to control the weight

of the two tasks, 0 ≤ λ ≤ 1.

IV. EXPERIMENTS AND ANALYSIS

A. Dataset

In this study, we used two publicly available AISHELL-
1 and AISHELL-2 datasets, high-quality Mandarin speech
recognition corpus recorded in a quiet indoor environment.
The AISHELL-1 dataset is widely utilized in the voice
community across various fields, including smart homes,
autonomous driving, industrial production, and more. The
dataset has a total duration of 178 hours, making it of
moderate size. It was recorded at a sampling rate of 16 kHz,
in mono, with 16-bit resolution, and is stored in WAV format.
The AISHEll-2 dataset builds on its predecessor and provides
a vast resource for training deep learning models, with more
than 20,000 audio samples. Additionally, we divided the
dataset into training, validation, and test sets in an 8:1:1 ratio.

B. Model Parameter Configuration

In this experiment, 80-dimensional FBank (Filter bank)
feature is used as the input of the model. The frame window
size is 25ms and frame shift size is 10ms in the frame
dividing stage. The acoustic features in the data set are
extracted by Kaldi tool. The data set is also enhanced by
variable-speed factors of 0.9x and 1.1x.The input dimension
of Squeezeformer module is 256 dimensions, and 4 self-
attention heads are set to learn rich feature extraction pat-
terns.Adam optimizer was used to optimize the parameters,
and Noam learning rate was used to train the model better.

In this paper, 60 epochs are trained on AISHELL-1 and
AISHELL-2 Chinese speech datasets. Four NIVDIAA100-
SXM4-40G Gpus were used in all experiments.

C. Evaluation Index

In this paper, characters are used as the fundamental unit,
and the evaluation metric adopted is the Character Error Rate
(CER). The calculation formula for this metric is as follows:

CER =
I + S +D

N
(11)

In the formula, I, S, and D represent the number of
inserted, substituted, and deleted characters, respectively,
while N represents the number of actual label characters.

D. Acoustic Feature Selection

In this paper, FBank spectral features and Mel frequency
cepstrum coefficients are employed as candidate acoustic
features for comparative experiments, aiming to select ap-
propriate acoustic features to achieve superior model recog-
nition. To simulate the nonlinear perception characteristics
of audio signals by the human ear, FBank successively
conducts operations on the original speech signal, such as
pre-accentuation, framing, addition of the Hamming window,
Fourier transform, squaring of the spectrum amplitude, and
application of the Mel filter bank to obtain the logarithmic
power spectrum of the corresponding frequency band. MFCC
performs an additional Discrete Cosine Transform (DCT) op-
eration based on FBank. This paper extracted 80-dimensional
FBank and MFCC features from the dataset, and the baseline
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TABLE I
COMPARISON OF ACOUSTIC CHARACTERISTICS BETWEEN FBANK AND

MFCC

Acoustic characteristics CER(%)

MFCC 7.44

FBank 5.51

model was trained with the two acoustic features in a non-
pre-training mode. The experimental results are presented in
Table 1. It can be observed from Table 1 that the experimental
effect of FBank acoustic features is significantly superior to
that of MFCC acoustic features. This is because the acoustic
characteristics of FBank are more consistent with the essence
of the sound signal in fitting the reception characteristics of
the human ear. The MFCC feature is the result of the discrete
cosine transform of the FBank feature, which increases the
time consumption and computational cost and also loses
some nonlinear components in the original speech signal.
Therefore, in this experiment, the FBank feature is adopted
as the acoustic feature of this paper.

E. Comparative Experiment And Result Analysis

Table 1 presents the recognition results on the pub-
lic AISHELL-1 and AISHELL-2 datasets across different
baselines using the same settings. The experimental results
demonstrate that the Squeezeformer baseline model proposed
in this paper outperforms others, particularly in FBank fea-
tures, by enhancing the fusion between the attention mecha-
nism and convolutional layers and optimizing the integration
of these modules at different levels. The recognition accuracy
of the Squeezeformer model is 28% higher than that of the
previous Conformer model, highlighting its advantages in
speech recognition tasks.

This paper employs a multi-task learning model architec-
ture, with an equal ratio of CTC and ATT tasks (1:1). The
model consists of a six-layer neural network designed for
speech recognition tasks. The attention mechanism enables
the model to focus more effectively on the crucial parts of the
input, thereby enhancing recognition accuracy. The character
error rate (CER) was lower when Squeezeformer used only
the attention mechanism (ATT), but the improvement was
not as pronounced as when both the attention mechanism and
Connectionist Temporal Classification (CTC) were utilized.
CTC allows the model to learn alignment and segmentation
of input sequences during training. Although models using
only CTC performed slightly worse, CTC played a positive
role in boosting model performance when combined with
ATT. When Squeezeformer used both ATT and CTC, the
CER was significantly reduced, reaching an optimal level
of 5.50%. This indicates that the combined effect of the
attention mechanism and CTC can effectively enhance the
performance of the Squeezeformer model in speech recog-
nition tasks. The specific experimental results are presented
in Table 2.

As shown in Table 3, the Squeezeformer + CTC configura-
tion has the smallest number of parameters, at only 19.03M.
Both the Squeezeformer + multitasking and Squeezeformer +
ATT configurations have 30.69M parameters. This indicates

that our model offers a distinct advantage in terms of
parameter efficiency. Compared to LSTM and Conformer,
the number of parameters is significantly reduced, and when
compared to Squeezeformer + ATT, our model achieves
improved accuracy while maintaining the same number of
parameters.

V. CONCLUSION

In this paper, we propose a multi-task Chinese speech
recognition method based on the Squeezeformer model,
optimizing the existing Conformer model to enhance perfor-
mance and efficiency. By replacing the FMCF structure in
Conformer with the MF/CF structure in a Transformer style,
we fully leverage the convolutional module’s strengths in
local modeling while employing sequential U-Net for multi-
level downsampling and upsampling, effectively reducing
computational costs. Additionally, by unifying activation
functions and simplifying the model structure through the
replacement of redundant LayerNorm and other normaliza-
tion schemes, we reduce deployment costs and improve the
model’s practicality and deployability. The introduction of
a ScaleVar Layer to the convolutional module enhances the
model’s flexibility and expressiveness, while the addition of
an Adaptor Layer to the MHSA module prevents gradient
vanishing and refines the results. On the decoding side, the
RealFormer module significantly improves context under-
standing and the quality of generated results. Crucially, we
combine CTC and attention-based encoding and decoding
models for multi-task learning, effectively leveraging their
strengths to significantly boost the model’s performance and
speech recognition accuracy. Experimental results demon-
strate that the proposed method outperforms the Conformer
model on the AISHELL-1 dataset, reducing the number
of parameters by 16% and lowering the character error
rate (CER) to 5.50%, showcasing superior performance in
Chinese speech recognition tasks. This research not only
advances speech recognition accuracy through structural op-
timization and multi-task learning but also offers a more
efficient and cost-effective solution for practical applications.
Future work may explore further optimizations and broader
applications of this approach to other speech recognition
scenarios.
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