
A Novel Certificateless Signature-based Access
Control Scheme for Named In-network Computing

Service
Wanji Li, Qiangbin Liu, Yi Zhu

Abstract—Named in-network computing service (NICS) is
a potential computing paradigm emerged recently. Benefitted
from the characteristics of named addressing and routing, NICS
can be flexibly deployed on NDN router side and provide nearby
computing service to Internet users. But the NICS feature
of dynamic deployment also causes serious security risk of
access control. How to independently check out the subscription
relationship between requester and requested computing service
on NICS side become a challenge. To solve this problem, we
propose a novel certificateless signature-based access control
scheme (CS-ACS) in this paper. In CS-ACS, the entire user
public-private key pairs consist of two parts, user side and
source server side. Where, the user public-private key pairs
(server side) are generated according to the user ID, service
subscription relationship and subscription expiration time.
Based on this special design, when authorized user signs the
interest packet of invoking specific service using its private key,
the NICS can verify the signature then check out whether the
requester is a valid subscriber and the subscription is expired or
not. Simulation results show that, comparing with fundamental
solutions, CS-ACS can avoid extra secret key storage cost on
NICS side and markedly shorten authentication delay.

Index Terms—Named Data Networking, In-network Com-
puting, Access Control, Subscription Relationship Verification

I. INTRODUCTION

NAMED Data Networking (NDN)[1] is a famous candi-
date of next generation Internet architecture. Through

introducing the named routing and in-network caching, NDN
achieves effective distribution capability for static content.
But, with the development of ubiquitous intelligent applica-
tions, invoking computing service from Internet has become
a more urgent requirement of current Internet user than
fetching static content[2][3]. Facing the fast-growing com-
puting traffic pressure of network edge and cloud, recently,
deploying lightweight Virtual Machine (VM) on NDN router
side to provide named in-network computing service (NICS)
is emerging as a potential solution[4][5].

Manuscript received March 9, 2024; revised November 21, 2024. This
work was supported by in part by the National Natural Science Foun-
dation of China (62276116), Future Network Scientific Research Fund
Project of Jiangsu Province (FNSRFP-2021-YB-49) and the National Col-
lege Student Innovation and Entrepreneurship Training Program Project
(202410299052Z).

Wanji Li is a postgraduate student at School of Computer Science and
Communication Engineering, Jiangsu University, Zhenjiang, China (e-mail:
2677621559@qq.com).

Qiangbin Liu is an undergraduate student at School of Computer Science
and Communication Engineering, Jiangsu University, Zhenjiang, China (e-
mail: 2992824314@qq.com).

Yi Zhu is a Professor of School of Computer Science and Communication
Engineering, the Dean of Department of Communication Engineering,
Jiangsu University, Zhenjiang, China (e-mail: zhuyi@ujs.edu.cn).

Figure.1 shows a demonstration of virtualization-based
NICS, where the NDN router is a commercial server inte-
grating with the virtual NDN routing function [6](e.g., a VM
running the NDN Forwarding Daemon), each source server
runs several computing services while providing the VM or
container images of these services. According to the statistics
of received requests and current free resources, each NDN
router independently retrieves the required computing service
VM image or container image from source server or nearby
routers, then loads it as local computing service. When an
interest packet of invoking computing service arrives, the
router first checks whether the target service is running on
it or not. If existing, the interest packet will be forwarded to
corresponding computing service VM for further processing
locally; otherwise, the interest packet will be forwarded to
next router. Figure.2 further disclose the internal structure of
the virtualization-based NDN router. To provide the routing
function, one or more VMs are deployed on it to run the
NDN Forwarding Daemon. The rest resources can be used
to load the VMs of running the NICSs. The communications
between VMs is based on the Open vSwitch.

Obviously, the virtualization-based NICS allows the com-
puting service to be flexibly deployed and executed any-
where, the named addressing mechanism of NDN makes
the service discovery and VM migration to be easily than
TCP/IP architecture[7]. Benefitted from these characteristics,
NICS can help Internet users to obtain required comput-
ing service from nearby routers instead of visiting Cloud
servers, then markedly shorten the service invoking delay.
But NICS also causes several new security risks[8][9], one
important security issue is the access control which is also
the typical security topic of NDN[10]. Access control aims
at distinguishing the requester permission at router side, then
forbidding the unauthorized requester to obtain the resources.
For the scenario of static content distribution, access control
means who can fetch or consume the content cached in the
router. For the scenario of virtualization based NICS, the
access control means who can invoke the computing service
deployed in the router.

Figure 1 also shows the typical NICS invocation process,
including three “interest-data” interaction stages[11], where
the access control mechanism works on the first stage.

(1) Stage 1 (Initialization stage): When a NICS receives
the interest packet of invoking its computing service, it will
identify the invoker’s identification first. If the interest packet
comes from an authorized user, the NICS will reply with an
acknowledgement data packet with estimated task complete
time and result location name; Otherwise, the NICS will deny
this request.

IAENG International Journal of Computer Science

Volume 52, Issue 1, January 2025, Pages 38-45

__

Fail access control

mechanism

Drop this packet

Pass

......

Users

Interest packet

Data packet

NDN Router

Service_A Service_A

1.Interest for asking service

Interest packet:/Service_A/request

1.Data-Ack of Interest

Data packet:/Service_A/request

Payload: Estimated completion time of the service

 Final Result Location:/Service_A/results/1

2.Interest for input parameters

Interest packet:/user1/inputs
2.Data containing input parameters

Data packet:/user1/inputs

3.Interest for Results

Interest packet:/Service_A/results/1
3.Data- Results

Data packet:/Service_A/results/1

Payload: Results

Estimated completion time

Legend

......

NDN Router

Service_B

Interest miss, forwarding

to the next hop

Forward

Forward

Forward

Forward

Forward

Fig. 1: Network Model of CS-ACS

 Open vSwitch

 Hypervisor

Virtual Routing

Function

NDN Forwarding

Daemon

Hardware

Kernel Space

User Space

NIC1 NIC2

Linux

vCPU vMemory vNIC

...

NICS-Container

VM

R T T T

NICS-Container

VM

R T

Operating System(OS)

Fig. 2: The Internal Structure of the Virtualization-based
NDN Router

(2) Stage 2 (Parameters retrieving stage): After identifying
the invoker’s permission, the NICS will actively send an
interest packet to retrieve the computing input parameters
from the authorized user, then the user replies with a data
packet containing required data.

(3) Stage 3 (Computing result return stage): The user
sets a timer according to the estimated complete time. Once
the timer expires, the user will produce an interest packet
using the result location name to fetch the final result. After
obtaining the result, this computing service invocation is
over.

From the above process, we can see the importance
of access control. To prevent the unauthorized users from
maliciously invoking computing service and occupying the
router’s resources, identifying the unauthorized users and
denying their requests is necessary for NICS. How to design
the access control scheme under NDN architecture, there are
two available solutions, one is to encrypt the fetched/retuned
data packet, another is to sign the requesting interest packet.

For the former solution, the fetched/retuned data packet
is always encrypted by the requester’s public key, then only

the user owning the corresponding private key can consume
this encrypted data. But this way isn’t suitable for NICS
scenario. Once the data packet is generated under NICS, it
means the NICS has already accepted the service invoking
request and executed the processing. If the service invoking
interest comes from the unauthorized user, the computing
resource of router has been occupied and wasted.

For the latter solution, it is a feasible way for NICS
scenario. In this way, the user of invoking computing service
will insert a signature in the interest packet during the initial-
ization stage. The edge router or distributed NICS will verify
the signature attached in this interest, then only the interest
passing the verification can enter the network or executing
the subsequent NICS processing. Current proposed schemes
of signing interest mainly focus on the edge verification. Xue
K et.al. proposed a scheme named SEAF[12], which check
the validity of received interest at the network edge, then
effectively reduce the data traffic in the network. Literature
[13] gave a similar design. But facing the NICS characteris-
tics of dynamically deployment and migration, edge router is
difficult to maintain the authorization relationships between
NICS and authorized users. Therefore, to implement interest
signature-based access control for NICS, it is better to verify
the signature in the location of deployed NICS.

Now we focus on the interest signature-based access
control scheme with verification in router side, the core
design is how to balance the verification delay and key
storage cost. Usually, the authorized user will sign the service
invoking interest using its private key, and if the requested
NICS owns the public keys of all authorized users, NICS
side can check the legality of received interest easily[14].
But unfortunately, attaching all authorized user’s public keys
to the VM or container image is not secure. Moreover, if
the number of authorized users is large, the image size will
become too heavy, then leading inconvenient deployment and
migration.

Another conventional way of checking the authorized users
for a specific NICS is to execute the authentication task by
source server[15]. When a NICS receives the service invok-
ing interest, it directly forwards the interest to corresponding
source server. According to the returned authentication result,
the NICS determines to accept the request or deny it.
This way avoids the information leakage risk of authorized

IAENG International Journal of Computer Science

Volume 52, Issue 1, January 2025, Pages 38-45

__

users and bulky image size of VM or container, but extra
transmission delay caused by source server authentication
will degrade the service invoking quality for authorized user.

To implement distributed authentication with low cost for
NICS, Certificateless Signature is a feasible way[16], which
is an improvement design of Identity Based Signature (IBS).
In the certificateless signature scheme, the user’s public
key is bound with its ID, so the NICS side just uses the
user ID to check the authenticity of requester and without
stores the authorized user’s public key again. But traditional
certificateless signature scheme cannot fine-grained identify
the subscription relationship between requester and its re-
quested computing service, and how to dynamically control
the access permission under distributed scenario is still a
challenge.

Aiming at these problems, we propose a novel certifi-
cateless signature-based access control scheme (CS-ACS
for short) for NICS in this paper. In CS-ACS, the source
server generates a special partial public-private key pairs
to the authorized user according to three parameters: the
user ID, subscribed computing service name, and service
expiration time. Combining with the self-generated partial
public-private key pair, the authorized user gets the entire
secret keys. To access the subscribed service, the authorized
user signs the interest of invoking target service using its
private key, while inserting its public key and expiration
time into the interest packet. Based on our special signature
design, for NICS side, it only needs to host the system master
public key to check whether the requester is an authorized
user for requested service or not. Moreover, due to that the
service expiration time in our design is unforgeability, the
NICS can check out the invalid request once the subscribed
service expires. Simulation results show that, using our
scheme, NICS can independently identify the authorized
users for a specific service with excellent secret key storage
cost and reasonable authentication delay.

The remainder of the paper is organized as follows. The
network model and detailed designs are presented in Section
2. Section 3 evaluates our scheme through simulations and
gives the security analyses. In Section 4, we summarize this
paper.

II. THE DESIGN OF CS-ACS

A. Network Model

The network we designed in this paper is shown in
Figure.3, which consists of three entities, including source
server, NDN Router and user.

User NDN Router Source Server

Fig. 3: Network Model

Source Server. As the service provider, source server
runs specific named computing services, while encapsulating
these computing services into containers and releasing the

container images to the network. Furthermore, for a specific
computing service, the source server side manages the sub-
scription information of each authorized user, assigns and
withdraws the secret key to/from each authorized user.

NDN Router. NDN router provides named in-network
computing services through loading the container images
using its free resources. To forbid the unauthorized user to
invoke the computing service, the NDN router need to check
the subscription relationship between the received interest
packet and its requesting service.

User. Under CS-ACS, the user (terminal device) should
first subscribe the target computing service by registering
to source server. After obtaining legal identity, it can send
interest packet to invoke named computing service from
nearby NDN router or source server.

B. Detailed Description

The CS-ACS is designed based on elliptic curve cryptog-
raphy, the fundamental parameter settings and notations used
in CS-ACS are defined as follows: (1) We set p as a large
prime; (2) G is an additive group on an elliptic curve, P is its
generating element and q is its order; (3)H : {0, 1}∗ → Z∗

q

is one-way hash function based on SHA-1 algorithm, where
Z∗
q represents the remaining part of the integer Zq after the

0 is removed.
The running process of CS-ACS includes three stages as

shown in Figure.4.
Stage 1: Key generation and assignment
(1) System master public-private key pairs generation
In initialization stage, source server randomly selects the

system master private key kms ∈ Z∗
q ,which is used to

calculate the system master public key through formula
Ppub = kms ∗ P . Next, source server keeps kms privately
and exposes the system security parameters Pparams to all
users and NICS, here Pparams = {p, q, P, Ppub, H}.

(2) User public-private key pairs generation
According to the mechanism of certificateless signature,

the entire user public-private key pairs are composed of two
parts, server side and user side.

When user i begins to subscribe a specific service (e.g.
Service A), it first randomly selects a secret value xi ∈ Z∗

q

as its private key (user side), then uses Pparams to calculate
its public key (user side)Xi = xi ∗ P .

Next, user i sends an interest packet with Xi and its iden-
tity IDi to source server to subscribe the target computing
service.

After receiving this interest, the source server extracts the
subscribed service name, user identity and user public key
(user side) from it, assigns an expiration time ti and a random
number ri ∈ Z∗

q for this subscription,then generates the user
public-private key pairs (server side) (Ri, di)according to the
following calculation relationships. Ri = ri ∗ P

h1 = H (IDi ∥Ri∥Xi∥Service A∥ti)
di = ri + kms ∗ h1

(1)

Where kms is the system master private key, Ri is the
user public key (server side) and di is the user private key
(server side). In formula (1), we can find that Ri and di are
determined by IDi, Service A, and ti.This special design not
only binds the authorized user’s identity to the subscribed

IAENG International Journal of Computer Science

Volume 52, Issue 1, January 2025, Pages 38-45

__

User
Computing

services

Source

server

Calculate user's complete public-private key.

Sign interest packet prefix with private key.

Verify timestamp, subscription

period, and signature.

Generate partial keys on

the source server side

Upon successful verification, return

acknowledgment data packet.

Service Name User List

...

...

_Service A

_Service B

(, ,)j j jID r t

(, ,)k k kID r t

(, ,)l l lID r t

(, ,)i i iID r t

Name: /Service_A /IDi /request

:{ , , }ki i iPayload P t S
interest

interest
:{ , }i iPayload ID X

data
:{ , , }i i iPayload R d t

data

Send interest packages to subscribe to a certain service Name:/producer/service_A/subscribe

Fig. 4: The running process of CS-ACS

service, but also associates the validity of user key with the
expiration time. Next, the source server returns a data packet
with Ri, di and ti to user i, which is encrypted with Xi.

Once user i receives this data packet, it firstly judges the
legitimacy of Ri, di and ti by the equation di ∗ P = Ri +
Ppub∗H (IDi ∥Ri∥Xi∥Service A∥ti). If the equation holds,
user i further combines the received (Ri, di) with its local
(Xi, xi) to obtain the entire public-private key pairs. Finally,
its private key is Ski = (xi,, di) and its public key is Pki =
(Xi, Ri).

Stage 2: Signing the interest packet of invoking NICS
If user i want to invoke Service A, it generates an interest

packet with name prefix “/Service A/IDi/request”. Within
this interest packet, user public key Pki = (Xi, Ri), service
expiration time ti and a signature Si are attached. The
signature rule of Si is shown in formula (2).{

h2 = H (IDi ∥Ri∥ Service A∥T)
Si = di + xi ∗ h2

(2)

Where, T is a timestamp which is used to prevent the
replay attack. Obviously, Si is signed by the private key of
user i, which is used to prove user i owns valid subscription
relationship.

Stage 3: Signature verification in NICS side
For any deployed NICS of Service A, it only holds the

system master public key Ppub. When it receives the invoking
interest packet, it extracts the information of (Xi, Ri), IDi, T
and ti from it, then verifies the signature using the following
steps.

(1) Checking the timestamp T. If T is not equal to current
time, the interest packet is discarded.

(2) Checking the expiration time ti. If ti is earlier than
current time, the interest packet is discarded.

(3) Checking the signature Si using formula (3). If Si∗P =
Ri+Ppub ∗h1+Xi ∗h2 is held, it is proved that this request
for Service A is valid, current NICS of Service A will further
process this invoking request; otherwise, the interest packet
is discarded. h1 = H (IDi ∥Ri∥Xi∥Service A∥ti)

h2 = H (IDi ∥Ri∥ Service A∥T)
Si ∗ P = Ri + Ppub ∗ h1 +Xi ∗ h2

(3)

The aforementioned mechanism of CS-ACS provides an
effective way for NICS to check the subscription relationship
of requester and requested service. To achieve the distributed
independent verification ability, the NICS only needs to hold
the system master public key Ppub, so CS-ACS is very
friendly for NICS side.

From the security aspect, CS-ACS is secure.
(1) The user public-private key pairs aren’t tampered. Due

to that the system master private key kms is hidden to the
user, user cannot tamper its public-private key pairs (server
side) (Ri,di) .

(2) The sensitive information associated with user iden-
tification and subscription service aren’t tampered. Due to
that the user private key (server side) is determined by
user identity IDi , subscribed service name Service A and
assigned expiration time ti, if the user viciously changes
any above sensitive information, the signature signed by its
unforgeable private key cannot pass the NICS side verifica-
tion. For example, once ti is expired, the authorized user
must re-subscribe the computing service and obtain a new
user public-private key pairs (server side) from source server.
Otherwise, if the user modifies the expiration time ti locally,
the NICS side will use the received fake expired time to
calculate h1 of formula (3), then the signature verification
will fail. This design is benefitted to NICS to control the
user permission.

(3) The signature can defend the replay attack. Due to
the signature Si is generated from the concatenated string
h2 which consists of timestamp T, the NICS side will use
current time to check the received signature according to
formula (3). So, even if a valid signature is hijacked by the
unauthorized user to invoke one computing service, it cannot
pass the verification of NICS side.

III. PERFORMANCE EVALUATION

In this section, we use ndnSIM (version 2.3)[17] to eval-
uate the performance of CS-ACS from four aspects, average
hit probability of NICS, average NICS invocation delay, the
storage cost on NICS side, and the average authentication de-
lay. The comparison schemes selected in our simulations are

IAENG International Journal of Computer Science

Volume 52, Issue 1, January 2025, Pages 38-45

__

......

Users

......

......

100Mbps

25Mbps

25Mbps

25Mbps

25Mbps
50Mbps

50Mbps

......

......

......

......

Source Server

First layer Second layer Third layer Fourth layer

NDN Routers

R1

R2

R3

R4

R5

R6

R7
Root

Fig. 5: Simulation Topology

two fundamental solutions mentioned in section 1, we name
them as ECDSA Docker and ECDSA Server respectively.
Both two comparison schemes adopt elliptic curve digital
signature algorithm (ECDSA) as their signature algorithm,
but the former verifies the requester identity on NICS side
(NICS container stores the public keys of all authorized
users), the latter doesn’t execute the authentication work on
NICS side and just forwards the interest to source server.

The simulation settings are as follows.
(1) Network topology is shown in Figure.5, which consists

of 4 users, 7 NDN routers and 1 source server.
(2) The source server provides 10 classes computing

services, the popularity of computing services obeying Zipf
distribution where the service class 1 owns highest popular-
ity. In simulation, we adopt three Zipf distribution parameters
(α = 0.8, 1, 1.2) to disclose the affecting from the service
popularity.

(3) For each NDN router, its computation resource is
limited. We assume that one router only loads maximum 3 or
7 computing service container simultaneously (the container
of a specific service can be repeatedly deployed).

(4) The delay of each hop is set as 10 ms. For achieving
the fair evaluation, in simulations, we set the public key size
is 160 bits in three schemes.

From the network performance with NICS deployment,
Figure 6-Figure 8 show the NICS hit probability and average
invocation delay in the network. In the simulation experi-
ments of Figure 6 and Figure 7, we set the NICS invoking
rate as 100 times/second; in the simulation experiments of
Figure 8, we change the NICS invoking rate from 8000
times/second to 12000 times/second.

Obviously, with the increasing of deployed NICS number,
the hit probabilities of all classes are improved, especially
for the NICS of high popularity, as shown in Figure 6. On
the other hand, for the routers located at the second layer
and the third layer, the NICS of high popularity running on
them achieve low hit probability than that of low popularity.
This phenomenon is totally different from the routers of first
layer. The reason is that when the NICS invoking rate is low,

the major NICS invoking requests will be satisfied in the first
layer and only the rest unhit requests will be forwarded to
the second and the third layers. Figure 7 show the average hit
probability of four layers, the simulation result also disclose
the effect of the popularity, deployed NICS number and the
router location.

Figure 8 gives the NICS invocation delay with the in-
creasing invoking rate. As shown in Figure 8, due to that the
each NICS task will consume a specific time to execute, the
processing capacity of each router is limited, it is different
from static content hit event. So, when the invoking rate from
users become high, more invoking requests will be forwarded
to next hop to execute, then leading to the rapid increased
invoking time.

The results of Figure 6-Figure 8 show that more de-
ployed NICSs will promote the network performance, high
popularity NICS will achieve more hit probability in the
network. But the network processing capacity exists the
upper limitation, if the invoking rate become very high, most
requests will be forwarded to the source server to execute.

From the security aspect, Table 1 gives the storage cost
on NICS side under three schemes. For ECDSA Docker,
it needs to store all public keys of authorized users. If
we assume n is the authorized user number, the storage
cost of ECDSA Docker shows linear relationship with n.
For ECDSA Server, due to that it doesn’t execute local
verification, its storage cost is zero. For CS-ACS, it only
needs to host the system master public key, so its storage
cost just equals to the size of elliptic curve public key and
has negligible influence on the container running NICS.

TABLE I: Storage Cost on NICS Side.

Scheme ECDSA Server ECDSA Docker CS-ACS

Storage Cost(bit) None 160n 160

Figure.9-Figure.13 show the simulation results of average
invocation delay under three schemes, where the invoca-
tion delay is defined as the total time from generating the
interest signature to receiving the NICS acknowledgement

IAENG International Journal of Computer Science

Volume 52, Issue 1, January 2025, Pages 38-45

__

1 3 5 7 90 2 4 6 8 1 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

Hi
t p

rob
ab

ilit
y

S e r v i c e C l a s s I D
R 1

 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 0 . 8
 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 1
 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 1 . 2
 N u m b e r o f C o n t a i n e r s = 5 , Z i p f p a r a m e t e r = 0 . 8
 N u m b e r o f C o n t a i n e r s = 7 , Z i p f p a r a m e t e r = 0 . 8

� � 	 � �
 � � �

� � � � �
 � � �

� � � � �
 � � � �

� � � � �
 � � �
 � � � � �
 � �

� � � � �
 � � � �

� � � � �
 � � �

1 3 5 7 90 2 4 6 8 1 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

Hi
t p

rob
ab

ilit
y

S e r v i c e C l a s s I D
R 2

 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 0 . 8
 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 1
 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 1 . 2
 N u m b e r o f C o n t a i n e r s = 5 , Z i p f p a r a m e t e r = 0 . 8
 N u m b e r o f C o n t a i n e r s = 7 , Z i p f p a r a m e t e r = 0 . 8

� � 	 � �
 � � �

� � � � �
 � � �

� � � � �
 � � � � � � �
 � � �

1 3 5 7 90 2 4 6 8 1 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

Hi
t p

rob
ab

ilit
y

S e r v i c e C l a s s I D
R 3

 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 0 . 8
 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 1
 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 1 . 2
 N u m b e r o f C o n t a i n e r s = 5 , Z i p f p a r a m e t e r = 0 . 8
 N u m b e r o f C o n t a i n e r s = 7 , Z i p f p a r a m e t e r = 0 . 8

� � 	 � �
 � � �

� � � � �
 � � �

� � � � �
 � � � �

� � � � �
 � � � � � � �
 � � �

1 3 5 7 90 2 4 6 8 1 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

Hi
t p

rob
ab

ilit
y

S e r v i c e C l a s s I D
R 4

 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 0 . 8
 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 1
 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 1 . 2
 N u m b e r o f C o n t a i n e r s = 5 , Z i p f p a r a m e t e r = 0 . 8
 N u m b e r o f C o n t a i n e r s = 7 , Z i p f p a r a m e t e r = 0 . 8
� � 	 � �
 � � �

� � � � �
 � � �

� � � � �
 � � � �

� � � � �
 � �
� � � � �
 � � �

1 3 5 7 90 2 4 6 8 1 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

Hi
t p

rob
ab

ilit
y

S e r v i c e C l a s s I D
R 5

 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 0 . 8
 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 1
 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 1 . 2
 N u m b e r o f C o n t a i n e r s = 5 , Z i p f p a r a m e t e r = 0 . 8
 N u m b e r o f C o n t a i n e r s = 7 , Z i p f p a r a m e t e r = 0 . 8

� � 	 � �
 � � �

� � � � �
 � � �
� � � � �
 � �

� � � � �
 � � �

� � � � �
 � � � �

� � � � �
 � �
1 3 5 7 90 2 4 6 8 1 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

Hi
t p

rob
ab

ilit
y

S e r v i c e C l a s s I D
R 6

 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 0 . 8
 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 1
 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 1 . 2
 N u m b e r o f C o n t a i n e r s = 5 , Z i p f p a r a m e t e r = 0 . 8
 N u m b e r o f C o n t a i n e r s = 7 , Z i p f p a r a m e t e r = 0 . 8

� � 	 � �
 � � �

� � � � �
 � � �

� � � � �
 � � � �

� � � � �
 � � �

1 3 5 7 90 2 4 6 8 1 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

Hi
t p

rob
ab

ilit
y

S e r v i c e C l a s s I D
R 7

 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 0 . 8
 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 1
 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 1 . 2
 N u m b e r o f C o n t a i n e r s = 5 , Z i p f p a r a m e t e r = 0 . 8
 N u m b e r o f C o n t a i n e r s = 7 , Z i p f p a r a m e t e r = 0 . 8

� � � � �
 � � � �
� � � � �
 � � �

� � 	 � �
 � � �

� � � � �
 � � �

� � � � �
 � �

� � � � �
 � � �

1 3 5 7 90 2 4 6 8 1 00 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Hi
t p

rob
ab

ilit
y

S e r v i c e C l a s s I D
R o o t

 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 0 . 8
 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 1
 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 1 . 2
 N u m b e r o f C o n t a i n e r s = 5 , Z i p f p a r a m e t e r = 0 . 8
 N u m b e r o f C o n t a i n e r s = 7 , Z i p f p a r a m e t e r = 0 . 8

� � 	 � �
 � � �

� � � � �
 � � �

� � � � �
 � � � �

� � � � �
 � � �

� � � � �
 � �

Fig. 6: Computing service hit probability on each router

IAENG International Journal of Computer Science

Volume 52, Issue 1, January 2025, Pages 38-45

__

0 1 2 3 4 5 6 7 8 9 1 0 1 10 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Hi
t p

rob
ab

ilit
y

S e r v i c e C l a s s I D
F i r s t L a y e r

 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 0 . 8
 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 1
 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 1 . 2
 N u m b e r o f C o n t a i n e r s = 5 , Z i p f p a r a m e t e r = 0 . 8
 N u m b e r o f C o n t a i n e r s = 7 , Z i p f p a r a m e t e r = 0 . 8

� � 	 � �
 � � �

� � � � �
 � � �

� � � � �
 � � �
 � � � � �
 � �

� � � � �
 � � � �

� � 	 � �
 � � �

� � � � �
 � �
0 1 2 3 4 5 6 7 8 9 1 0 1 10 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Hi
t p

rob
ab

ilit
y

S e r v i c e C l a s s I D
S e c o n d L a y e r

 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 0 . 8
 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 1
 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 1 . 2
 N u m b e r o f C o n t a i n e r s = 5 , Z i p f p a r a m e t e r = 0 . 8
 N u m b e r o f C o n t a i n e r s = 7 , Z i p f p a r a m e t e r = 0 . 8

� � 	 � �
 � � �

� � � � �
 � � �

� � � � �
 � � �

� � � � �
 � � � �

0 1 2 3 4 5 6 7 8 9 1 0 1 10 . 0

0 . 2

0 . 4

Hi
t p

rob
ab

ilit
y

S e r v i c e C l a s s I D
T h i r d L a y e r

 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 0 . 8
 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 1
 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 1 . 2
 N u m b e r o f C o n t a i n e r s = 5 , Z i p f p a r a m e t e r = 0 . 8
 N u m b e r o f C o n t a i n e r s = 7 , Z i p f p a r a m e t e r = 0 . 8

� � � � �
 � � �
 � � � � �
 � � �
� � � � �
 � � � �

� � 	 � �
 � � �

� � � � �
 � �
0 1 2 3 4 5 6 7 8 9 1 0 1 10 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

Hi
t p

rob
ab

ilit
y

S e r v i c e C l a s s I D
F o u r t h L a y e r

 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 0 . 8
 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 1
 N u m b e r o f C o n t a i n e r s = 3 , Z i p f p a r a m e t e r = 1 . 2
 N u m b e r o f C o n t a i n e r s = 5 , Z i p f p a r a m e t e r = 0 . 8
 N u m b e r o f C o n t a i n e r s = 7 , Z i p f p a r a m e t e r = 0 . 8

� � 	 � �
 � � �

� � � � �
 � � �

� � � � �
 � � �

� � � � �
 � � � �

� � � � �
 � �

Fig. 7: Computing service hit probability in different layers

0 1 2 3 4 5 6 7 8 9 1 0 1 1
4 0
4 5
5 0
5 5
6 0
6 5
7 0
7 5

Av
era

ge
Inv

oca
tio

n D
ela

y(m
s)

S e r v i c e C l a s s I D

 8 0 0 0
 1 0 0 0 0
 1 2 0 0 0

1 2 0 0 0

1 0 0 0 0

8 0 0 0

Fig. 8: The service invocation delay at different
request rates

0 1 2 3 4 5 6 7 8 9 1 0 1 1
0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

Hit
 pr

oba
bil

ity

S e r v i c e C l a s s I D

 F i r s t l a y e r
 S e c o n d l a y e r
 T h i r d l a y e r
 F o u r t h l a y e r

F i r s t l a y e r

S e c o n d l a y e r

T h i r d l a y e r

F o u r t h l a y e r

Fig. 9: Computing service hit probability in
different layers

0 . 7 6 5 2
0 . 7 1 1 8

0 . 6 2 7 1
0 . 5 5 2 7 0 . 5 4 3 6

0 . 4 6 5 7 0 . 4 5 5 5

0 . 3 4 7 4 0 . 3 4 4 8 0 . 3 5 6 8

1 2 3 4 5 6 7 8 9 1 0
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8

Hit
 pr

oba
bil

ity

S e r v i c e C l a s s I D
Fig. 10: Total in-network hit probability of top

10 classes

4 1 . 4 4
4 7 . 0 5

5 2 . 1 6
5 7 . 0 8 5 8 . 2 6 1 . 4 3 6 2 . 7 3

6 8 . 3 2 6 7 . 5 9 6 6 . 3 80 . 3 0 7 8

0 . 1 5 5 8

0 . 1 1 2 3
0 . 0 8 6 2 0 . 0 7 9 9

0 . 0 6 5 7 0 . 0 6 1 3
0 . 0 4 8 5 0 . 0 3 9 9 0 . 0 4 2 7

1 2 3 4 5 6 7 8 9 1 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0

De
lay

(m
s)

S e r v i c e C l a s s I D
1 2 3 4 5 6 7 8 9 1 00 . 0

0 . 1

0 . 2

0 . 3

Re
que

st p
rob

abi
lity

S e r v i c e C l a s s I D

Fig. 11: Average RTT of top 10 classes

IAENG International Journal of Computer Science

Volume 52, Issue 1, January 2025, Pages 38-45

__

3 . 2 3 . 2 3 . 52 . 8 2 . 8 2 . 6

8 0

2 0

4 9 . 3

E C D S A S e r v e r E C D S A D o c k e r C S - A C S0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

Sig
nin

g t
im

e(m
s)

 S i g n i n g t i m e
 V e r i f i c a t i o n t i m e
 R T T

Fig. 12: Average signing, verification time and
RTT.

8 2 . 6

2 3 . 6

5 2 . 2

E C D S A S e r v e r E C D S A D o c k e r C S - A C S0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

Av
era

ge
Inv

oca
tio

n D
ela

y(m
s)

Fig. 13: Total authentication delay.

data. It consists of three parts, average signing time, average
verification time, round trip time (RTT) between user and
hit NICS location. The results are counted by 3000 random
simulations.

Figure.9 gives the computing service hit probability in
different layers. Similar to the cached content hit event, the
computing service with high popularity is also easy to hit
in the routers close to user. As shown in Figure 9, for the
computing service of class 1, around 65% invoking requests
are satisfied in the first layer routers, the rest requests are
scatteringly satisfied in the second to fourth layers. Figure 10
gives the total in-network hit probability of top 10 classes,
obviously higher in-network hit probability is, lower RTT
between user and hit NICS location is. Figure 11 clearly
shows the average RTT of top 10 classes, for the class 1 and
class 10, there is around 25ms RTT difference. Figure.12 and
Figure.13 further show the comparison of average invocation
delay.

From the results, we can see the time costs of CS-ACS
during signing and verification stage are both slightly higher
than other two schemes. The reason is that our design in-
creases the complexity of signing and verification algorithm.
But from the aspect of total authentication delay, CS-ACS
and ECDSA Docker execute local verification, avoid the
forwarding round trip time between source server and itself,
so they have distinct advantage over ECDSA Server. From
the aspect of storage cost on NICS side, the advantage of CS-
ACS and ECDSA Server are clear than ECDSA Docker. So,
CS-ACS owns the best overall performance.

IV. CONCLUSION

Facing the requirement of distributed authentication under
NICS scenario, we propose a novel certificateless signature-
based access control scheme in this paper. Based on a special
design of user public-private key pairs (server side), we
realize three features, including (1) NICS can verify the
signature embedded in the interest packet just using the
system master public key; (2) NICS can check out the
subscription relationship between requester and requested
computing service; (3) NICS can check out the subscription
relationship is expired or not. Simulation results show that,
comparing with two fundamental solutions, our scheme can
achieve excellent performance in both aspects of storage cost
and authentication delay.

REFERENCES

[1] Zhang L, Afanasyev A, Burke J, et al. Named Data Networking. ACM
SIGCOMM Computer Communication Review. 2014; 44(3): 66–73.

[2] Huang S, Chen R, Li Y, et al. Intelligent Eco Networking (IEN) III: A
Shared In-network Computing Infrastructure towards Future Internet.
In: 2020 3rd International Conference on Hot Information-Centric
Networking (HotICN); 2020: 47-52.

[3] Tong Sun, Chao Ma, Zechun Li, and Kun Yang. Cloud Computing-
based Parallel Deep Reinforcement Learning Energy Manage-
ment Strategy for Connected PHEVs. Engineering Letters. 2024;
32(6):1210-1220.

[4] Krol M, Psaras I. NFaaS: Named Function as a Service. In Proceedings
of the 4th ACM Conference on Information-Centric Networking (ICN
2017); 2017: 134-144.

[5] Saurabh Singhal, and Ashish Sharma. Mutative ACO based Load
Balancing in Cloud Computing. Engineering Letters. 2021; 29(4):
1297-1302.

[6] Fang P, Wolf T. Enabling Virtual Network Functions in Named
Data Networking. In: IEEE INFOCOM 2021-IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS); 2021:
1-6.

[7] Kondo D, Ansquer T, Tanigawa Y, Tode H. Resource Discovery
for Edge Computing over Named Data Networking. In: Proceedings
International Computer Software and Applications Conference. 2021:
552-559.

[8] Odun-Ayo I, Omoregbe N, Udemezue B. Cloud and mobile computing
- Issues and developments. Lecture Notes in Engineering and Com-
puter Science. 2018: 363-368.

[9] Isaac Odun-Ayo, Olasupo Ajayi, and Sanjay Misra. Cloud Computing
Security: Issues and Developments. Lecture Notes in Engineering and
Computer Science. 2018: 175-181.

[10] Krol M, Marxer C, Grewe D, Psaras I, Tschudin C. Open Security Is-
sues for Edge Named Function Environments. IEEE Communications
Magazine. 2018; 56(11): 69-75.

[11] Meirovitch D, Zhang L. NSC–Named Service Calls, or a Remote
Procedure Call for NDN. tech. rep., NDN Project, Technical Report
NDN-0074; UCLA Computer Science Department: 2021.

[12] Xue K, He P, Zhang X, et al. A Secure, Efficient, and Accountable
Edge-Based Access Control Framework for Information Centric Net-
works. In IEEE/ACM Transactions on Networking. 2019; 27(3): 1220-
1233.

[13] Tourani R, Stubbs R, Misra S. TACTIC: Tag-Based Access ConTrol
Framework for the Information-Centric Wireless Edge Networks.
2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS). 2018: 456-466.

[14] Tao Y, Zhu Y. An interest-based access control scheme via edge
verification in Named Data Networking. International Journal of
Communication Systems 2022; 35(10).

[15] Zhang Z, Yu Y, Afanasyev A, Burke J, Zhang L. NAC: Name-Based
Access Control in Named Data Networking. In: Proceedings of the
4th ACM Conference on Information-Centric Networking (ICN 2017);
2017: 186-187.

[16] Barbosa M, Farshim P. Certificateless Signcryption. In: Proceedings
of the 2008 ACM Symposium on Information, Computer and Com-
munications Security; 2008: 369–372.

[17] Mastorakis S, Afanasyev A, Zhang L. On the Evolution of ndnSIM: an
Open-Source Simulator for NDN Experimentation. ACM SIGCOMM
Computer Communication Review; 2017; 47(3): 19-33.

IAENG International Journal of Computer Science

Volume 52, Issue 1, January 2025, Pages 38-45

__

