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Abstract—The augmented Kaczmarz algorithm is devised to
solve an inconsistent linear system by employing the classical
Kaczmarz algorithm on a parameterized augmented linear
system derived from the original inconsistent linear system. The
convergence of the resulting algorithm is proved. Numerical
results show that our algorithm exhibits superior performance
compared to the greedy randomized augmented Kaczmarz algo-
rithm in relation to the number of iterations and computational
durations for ill-conditioned linear inconsistent systems.

Index Terms—Kaczmarz algorithm, inconsistent linear sys-
tems, augmented linear system, iteration steps, ill-conditioned.

I. INTRODUCTION

We explore the iterative solution of a large inconsistent
linear equations as follows

Ax = b, with A ∈ Rm×n and b ∈ Rm. (1)

Here, we assume that A possesses full column rank, and
x ∈ Rn represents the variable to be solved. In the as-
sumption that A is full rank, the linear system (1) always
has a unique least squares solution x? = A†b, where A†

represents the Moore-Penrose pseudoinverse and this solution
also possesses the minimum norm according to [1]. As a
well-know fact, it holds true that Ax? = b − r, where
r ∈ N (AT ) is a non-zero vector and N (·) denotes the null
space of a matrix.

The well-known iterative Kaczmarz approach [2] is widely
used for solving extensive-scale linear equation systems
that are either consistent or inconsistent. This method was
first proposed by Stefan Kaczmarz, and re-discovered by
Gordon et al. [3] using the name of algebraic reconstruction
technique. Ever since its inception, the Kaczmarz method
has found extensive applications across various domains,
including but not limited to statistical analysis [4, 5], machine
learning [6], image reconstruction [7–15] and computerized
tomograph [16–18]. It is commonly referred to as the row-
wise approach due to its focus on processing a solitary row
of the matrix during each iteration [19, 20].

The REK, i.e., randomized extended Kaczmarz, algorithm
[21] is a highly representative and practical Kaczmarz-type
algorithm, initially introduced in 2013 by Zouzias and Freris
for linear inconsistent systems; see also [22, 23]. Specifically,
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the REK algorithm consists of a pair of sub-processes at
each iteration: the initial process involves iteratively solving
AT z = 0 by means of the randomized Kaczmarz (RK)
algorithm [24] to generate a sequence of vectors {zk}∞k=0

that approximates bR(A)⊥ , which represents the orthogonal
projection of b onto N (AT ); the second process involves
directly applying the RK algorithm to Ax = b − zk to
determine an approximate solution for x?. The primary
characteristic of REK is to attenuate the influence of the noise
in b, ensuring that, b − zk asymptotically lies within R(A)
as required by the RK algorithm. Experimental simulations
conducted in [21] demonstrate that the REK algorithm proves
effective for inconsistent linear equations especially for large-
scale situations; see for example [21, 25]. Overall, the REK
algorithm represents an important randomized numerical
iterative algorithm to the field of numerical linear algebra
and provides a powerful tool for solving linear inconsistent
systems efficiently and accurately. For more comprehensive
information on the generalizations of REK, we suggest
referring to [26–33] and the pertinent sources cited within.

Recently, a new algorithm called the greedy randomized
augmented Kaczmarz (GRAK) algorithm was developed by
Bai and Wu [34]. This algorithm is based on the two sub-
processes of the REK algorithm and utilizes the greedy
randomized Kaczmarz (GRK) algorithm [1] to iterative a
consistent augmented linear equations as follows(

I A
AT O

)(
z
x

)
=

(
b
0

)
, (2)

in which I ∈ Rm×m is the identity matrix of order m.
This system can be derived from (1). The GRAK algorithm
exhibits superior stability and efficiency compared to the
REK algorithm when solving (1).

Inspired by the idea of Bai and Wu [34], Liu [35]
constructed an accelerated randomized augmented Kaczmarz
(AGRAK) algorithm for solving (2) by incorporating a
positive parameter α into (2) as(

αI A
AT O

)(
1
αz
x

)
=

(
b
0

)
, (3)

However, calculating the residual of (2) at every step is im-
practical for such large problems in both accelerated and non-
accelerated iterative schemes. Hence, we are going to replace
the current greedy iterative strategy with a circular iterative
approach by the utilization of the Kaczmarz algorithm on the
augmented linear system (3). This modification aims to mini-
mize the computational load and reduce the computation time
for each iteration in the GRAK algorithm. A maximum limit
on the speed at which the resulting algorithm (denoted by
AKac, i.e., augmented Kaczmarz) converges is established.
With numerical experiments we show that with appropriate
choice of the α, the AKac algorithm demonstrates superior
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performance compared to the GRAK algorithm as for the
total number of iterations and the computational durations.

The layout of this paper is as follows. Section II presents
the AKac algorithm and its convergence theory. Section
III discusses the numerical results obtained. Finally, in the
concluding Section IV, we provide some final remarks.

II. PRELIMINARIES

We will first introduce some mathematical symbols used
in this article.
• λmin(·)—the minimum nonzero eigenvalue of the cor-

responding matrix.
• ej—the jth coordinate basis column vector.
• R(A)—the column space of matrix A.
• uR(A)—the orthogonal projections of the vector u onto
R(A).

• uR(A)⊥—the orthogonal projections of u ∈ Rn onto
R(A)⊥.

Besides, the ith row, jth column, determinant, Euclidean
norm and Frobenius norm of a matrix A ∈ Rm×n are
denoted by A(i), A(j) det(A), ‖A‖2 and ‖A‖F , respectively.
Similarly, for any u ∈ Rn, ‖u‖2 and u(i) are used to
represent its Euclidean norm and ith entry, respectively.

The AKac algorithm can be obtained by using the Kacz-
marz method to (3), where α is an arbitrary positive pa-
rameter. Moreover, note that the special structures of the
coefficient matrix and the right hand side of (3), if the row
index ik at kth iteration satisfies m + 1 ≤ ik ≤ m + n,
then it holds that xk+1 = xk. Hence, it is possible to
rephrase the aforementioned statement in order to create
a more cost-effective version of the AKac algorithm that
maintains mathematical equivalence as follows.

Algorithm 1 The AKac Algorithm

Require: A ∈ Rm×n, x0 ∈ R(AT ), `, b ∈ Rm, z0 ∈ Rm
and α > 0.

Ensure: x`.
1: for k = 0, 1, 2, · · · , `− 1 do
2: Select ik = (k mod (m+ n)) + 1
3: If 1 ≤ ik ≤ m, set

zk+1 = zk + α2 b
(ik) − z(ik)k −A(ik)xk

α2 + ‖A(ik)‖22
eik

and

xk+1 = xk +
b(ik) − z(ik)k −A(ik)xk

α2 + ‖A(ik)‖22
(A(ik))T

else, set jk = ik −m,

zk+1 = zk −
AT(jk)zk

‖A(jk)‖22
A(jk) and xk+1 = xk

4: end for

Regarding the convergence of the AKac algorithm, we
present the subsequent theorem.

Theorem 1. The iterate sequences {xk}∞k=0 and {zk}∞k=0

generated by the Algorithm 1 using initial guesses x0 ∈ Rn,
z0 ∈ Rm and α > 0 converge linearly to x? = A†b and z? =

bR(A)⊥ in expectation, respectively. Moreover, the solution
error for {xk}∞k=0 and {zk}∞k=0 fulfills(
‖xk − x?‖22 +

1

α2
‖zk − z?‖22

)
< %b

k
m+n c

(
‖x0 − x?‖22 +

1

α2
‖z0 − z?‖22

)
, (4)

where

% = 1− α2(m−n)(det(ATA))2

m∏
i=1

(
α2 + ‖A(i)‖22

)
·
n∏
j=1

‖A(j)‖22
.

Proof: Notice that the vector ( 1
αz

T
? , x

T
? )T mentioned in

Theorem 1 is the solution to (3), as it satisfies the equations(
αI A
AT O

)(
1
αz?
x?

)
=

(
b
0

)
.

Next, we will show that ( 1
αz

T
? , x

T
? )T is also the minimum

norm solution in the least squares sense. Assume that
( 1
αz

T
∗ , x

T
∗ )T is a solution to (3), then, we can obtain

z∗ +Ax∗ = b and AT z∗ = 0,

which shows that b− z∗ ∈ R(A) and z∗ ∈ R(A)⊥. Thus,

bR(A)⊥ − z∗ = b− bR(A) − z∗ ∈ R(A).

On the other hand, bR(A)⊥ − z∗ ∈ R(A)⊥, which indicates
that bR(A)⊥ = z∗, i.e., z∗ = z?. So, we can obtain the
equalities

Ax∗ = b− z∗ = b− z? = bR(A).

This shows that there exists a vector x̄ ∈ R(AT )⊥ fulfills
x∗ = A†b+ x̄. Hence, it holds that

‖z∗‖2 + ‖x∗‖2 = ‖z?‖2 + ‖A†b+ x̄‖2
= ‖z?‖2 + ‖A†b‖2 + ‖x̄‖2
= ‖z?‖2 + ‖x?‖2 + ‖x̄‖2
≥ ‖z?‖2 + ‖x?‖2,

which implies that ( 1
αz

T
? , x

T
? )T is the solution with minimum

norm and least-squares error for (3).
Let

Ã =

(
αI A
AT O

)
,

then following a similar reasoning as in [34, Theorem 3.1],
we can concluded that ( 1

αz
T
0 , x

T
0 )T of the AKac algorithm

lies within R(ÃT ), i.e.,(
1

α
zT0 , x

T
0

)T
∈ R(ÃT ).

In fact, setting

u = (AT )†x0 +
1

α
(I −AA†)z0

and
v =

1

α
A†z0 + (ATA)†x0,

we can get

ÃT
(
u
v

)
=

(
αI A
AT O

)(
u
v

)
=

(
1
αz0
x0

)
.
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As a result, considering Theorem 3.1 mentioned in [26],
for k = 0, 1, 2, · · · , we have(
‖xk − x?‖22 +

1

α2
‖zk − z?‖22

)
< %̃b

k
m+n c

(
‖x0 − x?‖22 +

1

α2
‖z0 − z?‖22

)
, (5)

where

%̃ = 1− α2(m−n)det(ÃT Ã)
m+n∏
i=1

‖Ã(i)‖22
.

Based on the following matrix transformation(
I O

− 1
αA

T I

)(
αI A
AT O

)
=

(
αI A
O − 1

αA
TA

)
,

we have

det(Ã) = det

(
αI A
AT O

)
= det

(
αI A
O − 1

αA
TA

)
= (−1)nαm−ndet(ATA).

As a result, with the fact that ÃT = Ã, we can obtain

det(ÃT Ã) = (det(Ã))2 = α2(m−n)(det(ATA))2. (6)

On the other hand, it follows from straightforward com-
putations that

m+n∏
i=1

‖Ã(i)‖22 =

m∏
i=1

(
α2 + ‖A(i)‖22

)
·
n∏
j=1

‖A(j)‖22. (7)

By substituting (6) and (7) into (5), we can obtain (4), thereby
concluding the proof.

III. NUMERICAL EXPERIMENTS

In this section, we choose two distinct types of matrices
to assess the effectiveness of the AKac algorithm when
compared to the GRAK algorithm. These two types of
matrices are randomly produced by the MATLAB command
randn(m,n) with varying values for m and n, and the
sparse matrices ash958, cities, abb313, Sandi−authors and
flower−5−1 taken from the University of Florida sparse
matrix collection [36]. The vector b = Ax∗ + r with x∗
being a solution of (1). The non-zero vector r is randomly
generated using the MATLAB embedded command null.
We initialize the vectors x0 and z0 to zero, and stop the
iterations once the RSE, i.e., the relative solution error, at
xk becomes smaller than 10−4. Here, the RSE is described
as

RSE =
‖xk − x?‖22
‖x?‖22

with x? = A†b.

We evaluate the convergence performance of the AKac
algorithm and the GRAK algorithm by analyzing the quantity
of iteration steps (IT thereafter) and measuring the duration
in seconds for computation (CPU thereafter). For GRAK
algorithm, the IT and CPU are calculated as the medians
of 50 independent executions for the number of iteration
steps needed and the CPU durations elapsed. In addition,
as referenced in [35], we set α =

√
σmin(A)/2 in our

numerical experiments. All experiments are conducted on

a personal computer with an AMD R7 2.67GHz central
processing unit and 16.00 GB memory, utilizing MATLAB
(R2022b) as the software platform.

The IT and CPU required for both the AKac and GRAK
algorithms to meet the termination criterion while solving
Gaussian linear systems are listed in Tables I-III. Addition-
ally, we also offer the comparison of the GRAK algorithm’s
acceleration compared to that of the AKac algorithm by using
the quantity speed-up in these three tables. Here, the speed-
up is described as

speed-up =
CPU of GRAK

CPU of AKac
.

The purpose of this quantity is to provide insights into
the comparative efficiency between the GRAK and AKac
algorithms, where a higher speed-up value signifies that
the AKac algorithm consumes significantly less CPU time
compared to the GRAK algorithm. From Tables I-III, it can
be observed that the AKac algorithm demonstrates superior
performance in CPU and IT compared to the GRAK algo-
rithm, especially when m is closer to n. In such cases, a
higher speed-up indicates that the AKac algorithm reaches
the termination criterion faster than its counterpart, such as
for m = 600 and n = 500, the speed-up even attains 382.13.
Furthermore, to enhance the visual comprehension of the
convergence behavior exhibited by these two algorithms, we
plot the curves of the RSE in base-10 logarithm versus IT
and CPU for both the GRAK and AKac algorithms with m
values of 100, 600, and 1000 in Figures 1-3. These curves
reveal that the AKac algorithm exhibits a significantly faster
decrease rate in RSE compared to the GRAK algorithm.
This phenomenon becomes even more pronounced as m
approaches n. Thus, it can be confirmed that satisfactory
outcomes can still be attained without using some greedy
strategies.

TABLE I: CPU and IT of AKac and GRAK for matrices
A ∈ R100×n with varying n.

m× n 100 × 70 100 × 80 100 × 90

GRAK
IT 50830.0 291338.0 1533303.0

CPU 1.12 6.58 35.69

AKac
IT 12486.0 32241.0 434.0

CPU 0.03 0.08 0.15

speed-up 37.33 82.25 237.93

TABLE II: CPU and IT of AKac and GRAK for matrices
A ∈ R600×n with varying n.

m× n 600 × 300 600 × 400 600 × 500

GRAK
IT 33616.0 235133.0 3780342.0

CPU 3.5 29.6 573.2

AKac
IT 19920.0 54434.0 279640.0

CPU 0.09 0.30 1.50

speed-up 38.89 98.67 382.13

For the five sparse matrices, we tabulated the IT and
CPU required for AKac and GRAK in Table IV. However,
it is worth mentioning that the GRAK algorithm failed to
meet the stopping criterion after 1,000,000 iterations for
matrix cities. From Table IV, we see that the AKac algo-
rithm exhibits superior performance compared to the GRAK
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TABLE III: CPU and IT of AKac and GRAK for matrices
A ∈ R1000×n with varying n.

m× n 1000 × 500 1000 × 600 1000 × 700

GRAK
IT 52175.0 153335.0 494853.0

CPU 12.1 43.8 168.5

AKac
IT 35206.0 54631.0 111018.0

CPU 0.24 0.44 0.89

speed-up 50.42 99.55 189.33
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Fig. 1. Picture of the trend of log10(RSE) with changes in
CPU and IT for AKac and GRAK for random matrices A ∈
R100×n with and n = 70, 80, 90.

algorithm in terms of both CPU and IT, and the speed-
up even attains 708.13. To view the convergence behavior
of these two algorithms visually, we additionally generate
graphs illustrating the relationship between the RSE (in base-
10 logarithm) and IT as well as CPU in Figure 4. As the
curves in Figure 4 show that, the relative solution error curve
in base-10 logarithm of the AKac algorithm in each subplot
decrease more fiercely than that of the GRAK algorithm.

IV. CONCLUSION

By applying the Kaczmarz algorithm to the augmented
linear system that can be deduced from the REK iterative
process, we have obtained an augmented Kaczmarz algorithm
to address inconsistent linear equation systems and estab-
lished the convergence theory for the resulting algorithm.
Numerical experiments show that our algorithm exhibits
superior performance compared to the GRAK algorithm in
both CPU times and iteration steps if an appropriate positive
parameter α is conveniently available.

0 1 2 3 4
IT 104

-4

-3

-2

-1

0

lo
g 10

(R
SE

)

GRAK
AKac

0 1 2 3 4
CPU

-4

-3

-2

-1

0

lo
g 10

(R
SE

)

GRAK
AKac

0 0.5 1 1.5 2
IT 105

-4

-3

-2

-1

0

lo
g 10

(R
SE

)

GRAK
AKac

0 10 20 30
CPU

-4

-3

-2

-1

0

lo
g 10

(R
SE

)

GRAK
AKac

0 100 200 300 400
IT 104

-4

-3

-2

-1

0

lo
g 10

(R
SE

)

GRAK
AKac

0 200 400 600
CPU

-4

-3

-2

-1

0

lo
g 10

(R
SE

)

GRAK
AKac

Fig. 2. Picture of the trend of log10(RSE) with changes in
CPU and IT for AKac and GRAK for random matrices A ∈
R600×n with n = 300, 400, 500.
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Fig. 4. Picture of the trend of log10(RSE) with changes in
CPU and IT for AKac and GRAK on sparse matrices.
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