
 

  
Abstract—Deep learning architectures have exhibited robust 

performance in short-term load forecasting tasks, contingent 
upon access to substantial training datasets. However, the 
acquisition of such datasets presents significant challenges, as 
load operators may be reluctant to share their data due to 
privacy protection policies. Consequently, the accurate 
prediction of loads becomes increasingly complex. This study 
proposes a novel approach to short-term load forecasting, 
leveraging federated learning and local tuning techniques. The 
proposed two-stage methodology commences with the training 
of a generic model through decentralized learning and central 
aggregation, aimed at preserving data privacy. Subsequently, 
the resulting generic model undergoes local fine-tuning on each 
operator's specific load data for enhanced forecasting accuracy. 
Empirical evaluations conducted on multiple regional load 
datasets from the GEFCom2012 and AEMO datasets 
demonstrate the trained model's capacity to improve short-term 
load forecasting accuracy while maintaining the confidentiality 
of individual operators' data. 
 

Index Terms—Load forecasting, federated learning, local 
tuning, data privacy 
 

I. INTRODUCTION 

However, obtaining accurate STLF predictions is 
challenging due to the complex and dynamic nature of the 
electricity demand. Machine learning algorithms have 
become a popular choice for STLF, as they can handle large  
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volumes of data and learn complex relationships between 
various factors affecting load demand. Niu et al. [2] 
introduced a novel approach for STLF, which utilizes a CNN-
BiGRU model enhanced by an attention mechanism. The 
proposed hybrid model exhibits superior accuracy when 
compared to the conventional Long Short-Term Memory 
(LSTM) model. Ma et al. [3] introduced a hybrid model for 
STLF, utilizing a multi-trait-driven approach in conjunction 
with secondary decomposition. The effectiveness of the 
model was evaluated through multi-step-ahead forecasting 
and demonstrated superior performance compared to all 
benchmark models. Similarly, Saeed et al. [4] proposed a 
hybrid CNN-LSTM model specifically designed for load 
forecasting in smart grids. The researchers conducted 
extensive experimentation on electricity load data, resulting 
in remarkable outcomes. The findings showcase the model's 
exceptional accuracy, achieving 98.3% accuracy and a 
0.4560 MAPE error. Jeong et al. [5] introduced a novel day-
ahead electric load forecasting model specifically designed 
for buildings. The proposed model, named the logistic 
mixture vector autoregressive model (LMVAR), exhibits 
superior performance when compared to benchmark methods. 
Liu et al. [6] introduced a pioneering model known as the 
Long-Term and Short-Term Time Series Network for load 
prediction. This model incorporates a convolutional layer to 
effectively capture the short-term attributes and 
interdependencies among variables. Syed et al. [7] introduced 
a hybrid STLF model utilizing clustering-based deep learning 
methodology. The primary objective of the study is to 
enhance scalability. The research endeavors to evaluate the 
influence of this approach on both training time and model 
accuracy. In a similar vein, Pham et al. [8] proposed a hybrid 
method for short-term load demand forecasting that 
amalgamates the Singular Spectrum Analysis (SSA) 
technique with LSTM techniques. Song et al. [9] introduced 
the VMD-Prophet-Seq2seq model for STLF. This model 
incorporates the Variational Mode Decomposition (VMD) 
method to decompose the original power load sequence into 
multiple integral mode functions (IMFs). Additionally, the 
Prophet method is utilized to decompose the original power 
load series into subsequences, facilitating multistep 
prediction on single-feature original data. Experimental 
findings support the superior performance of the proposed 
VMD-Prophet-Seq2seq model, demonstrated by a lower 
mean absolute percentage error (MAPE) compared to the 
suboptimal model. 
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Short-term load forecasting (STLF) is an important task in 

energy systems that involves predicting the future electricity 
demand of a particular area over a short period, typically 
ranging from a few hours to a few days. Accurate STLF is 
crucial for efficient energy generation, transmission, and 
distribution planning [1].  
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As discussed above, the application of machine learning 
techniques in the field of STLF has shown promising results. 
However, in real-world scenarios, extant methods are beset 
with certain issues. These issues are elucidated below. First, 
current machine learning-based load forecasting methods rely 
on having adequate training data sets with a significant 
number of samples. However, practitioners face challenges in 
meeting this condition during actual load forecasting work. 
Secondly, the potential to enhance model prediction 
capability exists by increasing the number of training samples 
through data sharing between regions. However, high data 
confidentiality requirements of individual power companies 
impose restrictions on data sharing for model training, and 
related privacy and confidentiality issues need to be 
addressed. Lastly, it is widely recognized that models trained 
via conventional machine learning approaches demonstrate 
inadequate generalizability, thereby requiring separate 
training on distinct datasets. 

Consequently, there is a pressing demand for a method that 
permits collaborative construction of load forecasting models 
while ensuring the confidentiality of load and other data. To 
meet this demand, this paper proposes a federated learning 
approach. 

Federated learning [10] represents a contemporary 
approach in the realm of machine learning, which facilitates 
collaborative training of a machine learning model among 
multiple entities, all while preserving the privacy of their 
respective data. Federated learning provides a promising 
solution to the challenges of STLF by allowing various 
stakeholders to contribute their data to a central machine 
learning model without sharing the data itself. This approach 
ensures data privacy and security while still enabling the 
model to learn from the collective data of all participants. 

Yan et al. [11] presented an application scheme for 
federated learning in financial credit risk management. The 
authors conducted an empirical investigation, comparing and 
analyzing their proposed approach. The findings 
demonstrated a substantial 14% enhancement in the 
performance of the application framework and methodology, 
particularly for small banks with restricted data samples. 

Another recent study by Perifanis et al. [12] aims to 
investigate the efficacy of federated learning applied to raw 
base station-aggregated Long-Term Evolution (LTE) data for 
time-series forecasting. Specifically, the authors assess the 
performance of five distinct neural network architectures in 
generating one-step predictions. The proposed models were 
trained within a federated setting on non-identically and non-
independently distributed (non-iid) data. The findings of the 
study suggest that neural network architectures adapted to the 
federated setting demonstrate comparable prediction error to 
those trained in a centralized setting. 

A recent study by Briggs et al. [13] proposed a federated 
learning-based model for STLF that utilized both local and 
global information. The authors reported that their model 
achieved improved prediction accuracy and outperformed 
traditional machine learning models. 

A separate investigation conducted by Taik et al. [14] 
examines the effectiveness of incorporating edge computing 
and federated learning, a decentralized machine learning 
paradigm, to enhance the quantity and heterogeneity of data 
utilized in training deep learning models, while 
simultaneously safeguarding privacy. Notably, this research 
marks the inaugural utilization of federated learning in the 
domain of household load forecasting and presents promising 
outcomes.  

To address the issues of inadequate data samples needed 
for constructing the load prediction model, and the high level 
of confidentiality of load-related data, which cannot be shared 
for training, this paper presents a federated learning approach. 
This approach proposes a short-term load forecasting model 
based on LSTM networks and incorporates local tuning of the 
federated learning-trained model. This method achieves 
collaborative training of the load prediction model among 
multiple load operators while ensuring data privacy, thereby 
enhancing the accuracy and generalization ability of the 
short-term load prediction model. 

II. FEDERATED LEARNING-BASED SHORT-TERM 
LOAD FORECASTING MODEL 

2.1 Method overview 

Fig. 1. LSTM model federal learning framework diagram 
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Fig. 2.  LSTM model federal learning flow chart 

 
The present study introduces a LSTM system for STLF 

that incorporates both federal learning and local tuning. This 
system is structured into two primary modules: the load 
operator and the central server. The load operator is mainly 
responsible for training the LSTM model with local data sets 
and then sending it to the designated central server. The 
central server continuously receives the local LSTM models 
from the load operators and then aggregates them using the 
specified aggregation algorithm to obtain a global model, 
which is then broadcasted to the load forecasting operators 
participating in the model training. After the federation 
learning is completed, a subsequent phase of local tuning is 
carried out on the individual load forecasting operators' local 
data. This process aims to derive a specific forecasting model 
for each load operator. The federated learning architecture 
design used in this paper is shown in Fig. 1. 

The central server initializes a global model and 
distributes it to each load operator in the federated learning 
system. It collects the parameters of each load operator's local 
LSTM model and uses the FedAvg federated aggregation 
algorithm to compute the next round of global shared LSTM 
model parameters. The computed global LSTM model 
parameters are then shared with the load operators 

participating in the model training, completing a round of 
federated learning. The central server evaluates the model's 
performance based on performance requirements or the 
number of iterations. Finally, it obtains a global LSTM model 
with good performance. Each load operator fine-tunes their 
local model based on this global model to obtain the final 
training model. The specific workflow diagram is shown in 
Fig. 2, which mainly includes the following processes: (1) 
First, the data pre-processing work such as outlier processing 
and data normalization is performed on each load operator's 
data; (2) A global LSTM model is initialized by the central 
server using the existing public data, and then broadcasted to 
each load operator in the federated learning system; (3) In 
each training round, the participating load operators use the 
local data on the device to assess the model's performance. (4) 
The central server aggregates the local models from different 
load operators and updates the global shared model; (5) The 
above steps are repeated until the model accuracy reaches the 
required standard or the specified number of iterations. (6) 
Perform local tuning on the private data of each load operator 
to obtain the final training model. Unlike the traditional 
centralized training method, the federated learning training 
method only uploads the parameters of the training model 
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instead of uploading the load data. This method can 
effectively protect the data privacy of the participants and 
effectively avoid the privacy security issue, while the 
availability of the data is not reduced because no 
desensitization operation is performed on the training data. 
2.2 LSTM 

LSTM is a type of recurrent neural network (RNN) 
specifically designed to learn long-term dependencies in 
sequential data. LSTM networks have memory cells that can 
retain information over extended periods, distinguishing 
them from traditional RNNs.  

 
Fig. 3. LSTM network basic unit 

 
In the architecture of an LSTM network, the memory 

cells establish connections with three essential gates, namely 
the input gate, output gate, and forget gate. These gates play 
a crucial role in regulating the information flow within the 
network by enabling selective retention or omission of 
information, guided by the present input and the internal state 
of the memory cells. Consequently, LSTM networks possess 
the capacity to adeptly handle and interpret intricate 
sequential data, attaining a notable level of precision. Fig. 3 
illustrates the fundamental unit of the LSTM network. 

The equations governing the input, forget, and output 
gates are as follows: 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 × [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)              (1) 
𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓 × [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓�             (2) 
𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜 × [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜               (3) 

where  𝜎𝜎 denotes the sigmoid function, 𝑥𝑥𝑡𝑡 is the current input,  
ℎ𝑡𝑡−1 is the previous hidden state, W and b are weight matrices 
and biases, and 𝑖𝑖𝑡𝑡, 𝑓𝑓𝑡𝑡 , and  𝑜𝑜𝑡𝑡 are the activations of the input, 
forget, and output gates, respectively. 
2.3 Federated aggregation 

Federated Averaging (FedAvg) is a popular federated 
aggregation algorithm that addresses this challenge by 
computing the weighted average of the local model updates 
from the clients. 

The concept of FedAvg involves updating a global model 
iteratively by consolidating local model updates from a subset 
of clients. Each client autonomously trains its local model 
using its distinctive dataset and subsequently transmits the 
model updates to the server. The server aggregates these 
updates using a weighted average mechanism, with weights 
determined proportionally to the number of data samples 
available at each client. The resulting weighted average 
updates the global model, which is then communicated back 
to the clients for the next round of training. 

Mathematically, the FedAvg algorithm can be expressed 
as follows: 

Step 1. Initialize the global model parameters. 

Step 2. For each round t=1, 2, ..., T: 
a. Select a random subset of clients from the client 

pool. 
b. Each client k in performs K local iterations of 

stochastic gradient descent to update its local 
model parameters.  

c. Each client k sends its updated model 
parameters to the server. 

   d. The server calculates the weighted average of 
the model parameters received from all clients 
to derive the updated global model parameters.  

e. These updated global model parameters are then 
disseminated by the server to all clients. 

Step 3. Return the final global model parameters. 
2.4 Local fine-tuning 

Once a global model has been trained using federated 
learning, the next step is to deploy the model on the clients 
and use it to make predictions on new data. However, it is 
often the case that the global model may not perform well on 
the local data of each client, due to differences in data 
distributions or other factors. 

To address this issue, local tuning can be applied to fine-
tune the global model on each client's local data. This 
involves allowing each client to perform multiple rounds of 
local updates using its own data, similar to the process during 
the global model training phase. 

Specifically, each client performs K rounds of local 
updates using the global model as a starting point. During 
each round, the client uses its own data to update the model 
parameters using a local optimization algorithm such as 
stochastic gradient descent (SGD) or Adam. 

Local tuning can improve the performance of the global 
model on each client's local data by allowing the model to 
adapt to the specific features or patterns of that data. This is 
particularly useful in scenarios where the clients have diverse 
data distributions or where the clients are heterogeneous in 
terms of their computation or storage capabilities. 

III. EXPERIMENTS 
3.1. Data description and error evaluation 

This study undertook simulation experiments utilizing the 
GEFCom2012 dataset [15], comprising load and temperature 
data sourced from 20 unique regions within the United States. 
Both load and temperature data were captured on an hourly 
basis. For the purposes of this experiment, a sub-sample of 
data from five distinct regions was chosen. The training 
dataset was composed of observations ranging from January 
1st, 2007 to March 31st, 2007, while the testing dataset 
encompassed a period from April 1st, 2007 to April 7th, 2007. 

This paper introduces a federal learning-based LSTM 
STLF system, which necessitates constructing a distributed 
environment to facilitate the training process of the model. A 
comparative analysis is undertaken to assess the performance 
of the aforementioned system in relation to the centralized 
LSTM-based STLF system. To conduct this experiment, two 
machines with identical configurations were prepared. Each 
machine was equipped with an Intel Xeon platinum 8124 
CPU, an RTX 3080 GPU, and 128GB of RAM. One of these 
machines was selected as the central server, while the other 
was used to generate multiple processes that simulated load 
operators situated in diverse regions. 
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Two commonly utilized metrics for evaluating the 
accuracy of load forecasting models are Root Mean Square 
Error (RMSE) and Mean Absolute Error (MAE). RMSE is 
more sensitive to outliers and assigns greater penalties to 
larger errors compared to MAE. The definitions of RMSE 
and MAE are as follows: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑁𝑁
∑ (𝑃𝑃𝑖𝑖 − 𝐴𝐴𝑖𝑖)2𝑁𝑁
𝐼𝐼=1               (4) 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ |𝑃𝑃𝑖𝑖 − 𝐴𝐴𝑖𝑖|2𝑁𝑁
𝐼𝐼=1                      (5) 

In the above equation, N is the prediction interval, 𝑃𝑃𝑖𝑖 and 
𝐴𝐴𝑖𝑖 are the ith predicted and actual values, respectively. 
3.2. Method comparison 

To evaluate the forecasting performance of the model 
introduced in this paper, load prediction was conducted on the 
experimental dataset utilizing the proposed model, as well as 
two alternative models: the LSTM-based federated learning 
model and the LSTM neural network model. The obtained 
results are presented in Table 1 and Table 2, respectively. 
Based on the experimental outcomes, it is apparent that the 
model presented in this paper attains superior predictive 
performance across all five regions, thereby demonstrating a 
high level of accuracy and robustness. In the comparative 
analysis between the LSTM-based federated learning model 
and the LSTM neural network, the findings demonstrate that 
the former exhibits inferior predictive performance in all five 
regions. This outcome remains consistent despite the 
utilization of a federated learning approach to augment the 
experimental dataset. In comparison to the LSTM neural 
network, the proposed model exhibits a marked improvement 
in optimal RMSE and MAE, with enhancements of 30% and 
40%, respectively. This observation implies that the model 
can better augment predicted regional load samples, while 
concurrently safeguarding the privacy of data from distinct 

regions. As a result, the model can more effectively capture 
the patterns of load data, leading to an enhanced predictive 
accuracy. To demonstrate the forecasting efficacy of the 
model introduced in this research, a comparative analysis is 
presented in Fig. 4, illustrating the predicted values generated 
by the proposed model alongside the corresponding actual 
values. 
3.3. Experiments on AEMO dataset 

To better validate the applicability of the method 
proposed in this paper, we conducted short-term load 
forecasting experiments using the Australian AEMO 
electricity dataset. The AEMO dataset [16] includes 
electricity load data from five states in Australia: New South 
Wales (NSW), Queensland (QLD), Victoria (VIC), South 
Australia (SA), and Tasmania (TAS). This dataset is a freely 
available public dataset that has been widely used in many 
studies. The following experiments use data from March 1, 
2024, to April 5, 2024. Specifically, data from March 1, 2024, 
to March 31, 2024, is used for training, and the prediction 
data is from April 1, 2024, to April 5, 2024. The data 
sampling interval is 5 minutes. Therefore, there are 288 
observations per day. Each training set contains 8,928 
observation points, and each prediction set contains 1,440 
observation points. 

Tables 3 and 4 respectively present the RMSE and MAE 
results of three short-term load forecasting methods on the 
AEMO dataset. Based on the data in Tables 3 and 4, the same 
conclusion can be drawn from the experiments conducted on 
GEFCom2012 dataset, that the method proposed in this paper 
performs better than the other two methods in the short-term 
load forecasting results for all five states. 

Table 2.  MAE performance comparison on GEFCom2012 dataset. Best 
performances are highlighted with boldface font. 

Zone No. LSTM 
Federated 
Learning 

Federated 
Learning + Local 

Fine Tuning 

1 660.35 6386.86 503.67 

11 3891.69 4529.28 2433.83 

12 4022.41 6682.17 3738.4 

15 3934.31 3901.80 3411.93 

20 3322.94 3889.25 3226.32 

 

Table 1.  RMSE performance comparison on GEFCom2012 dataset. 
Best performances are highlighted with boldface font. 

Zone No. LSTM 
Federated 
Learning 

Federated 
Learning + Local 

Fine Tuning 

1 847.5 6523.35 679.54 

11 4813.92 5561.15 3311.24 

12 5292.81 8257.64 4735.57 

15 4927.88 5422.22 4709.01 

20 4513.55 5202.88 4499.24 

 

Table 3.  RMSE performance comparison on AEMO dataset. Best 
performances are highlighted with boldface font. 

State LSTM 
Federated 
Learning 

Federated 
Learning + Local 

Fine Tuning 

NSW 975.88 1065.31 876.43 

QLD 643.75 875.19 523.85 

VIC 875.43 908.67 805.66 

SA 654.86 813.26 589.32 

TAS 705.38 896.31 650.23 

 
Table 4.  MAE performance comparison on AEMO dataset. Best 

performances are highlighted with boldface font. 

State LSTM 
Federated 
Learning 

Federated 
Learning + Local 

Fine Tuning 

NSW 753.41 821.65 689.12 

QLD 506.58 649.12 479.32 

VIC 965.32 1085.98 856.73 

SA 723.58 905.39 681.25 

TAS 786.32 975.32 703.83 
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(a) Zone 1                                                                  (b) Zone 11 

 
(c) Zone 12                                                                  (d) Zone 15 

 
(e) Zone 20 

Fig. 4. Load forecasting results on GEFCom2012 dataset using the model in this paper 
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IV. CONCLUSION 
This paper presents a novel approach to address the 

various challenges encountered in short-term load 
forecasting (STLF). Specifically, a two-stage method 
leveraging federated learning and local tuning is proposed 
to tackle issues including the limited availability of 
sufficient data samples and features critical for developing 
accurate load forecasting models, the restricted 
generalization capabilities of current models, and the need 
to maintain privacy and confidentiality of load data, which 
constrains sharing for training. The proposed method was 
simulated and evaluated using multiple regional load 
datasets from the GEFCom2012 and AEMO datasets, 
demonstrating efficacy in improving model predictive 
accuracy. Consequently, the optimized federated learning 
algorithm shows promise for further exploration to enhance 
load forecasting performance while preserving data security. 
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