
 

  

Abstract—Scale-free networks’ complex topology makes 

them an ideal target for worm attacks. Research has 

demonstrated that honeypot technology holds enormous 

promise for resolving worm-related problems. In this paper, we 

propose a novel propagation model based on honeypot feedback, 

namely H-SAIR. After capturing the virus successfully, the 

honeypot collects assault behaviors, analyzes attack paths, 

generates immunity information, and provides immune 

feedback to adjacent nodes to promote active protection. First, 

we introduce honeypot node H and affected node A based on the 

SIR model. Then, we use dynamics analysis to compute the 

model’s propagation threshold R0, proving the global stability 

of the disease-free equilibrium P0 and the existence of the 

endemic equilibrium P*. Finally, the experimental results 

indicate that when R0 is less than 1, the H-SAIR model 

effectively constrains the spread of worms. With the increase in 

feedback rate, the containment effect will become stronger. 

Meanwhile, we can effectively control the spread of worms by 

strategically placing enough honeypots at hub sites, thereby 

maintaining network security. 

 

Index Terms—worms; honeypots; feedback mechanisms; 

scale-free networks; stability analysis 

 

I.INTRODUCTION 

HE rapid development of information technology has 

exacerbated network security issues, making it the focus 

of social attention. Currently, the Internet is extensively 

utilized across several domains, including teleconferencing, 

entertainment, and e-commerce, facilitating the transfer of 

information beyond the constraints of information and space. 

Nevertheless, the widespread use of the internet concurrently 

results in the continual enhancement and evolution of 

network viruses. Network security faces a significant threat 

from worms [1]. It is a type of malware capable of rapid 

propagation and self-replication that can quickly infect 

numerous hosts, leading to significant issues such as network 

paralysis, system crashes, and data loss [2]. Consequently, 
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more and more scholars gradually pay attention to the 

important topic of network security. Therefore, studying the 

worm propagation process can facilitate the implementation 

of more targeted defense strategies, which is critical for 

network security [3], [4]. 

Currently, researchers have demonstrated scale-free 

characteristics in many real networks, such as the Internet, 

power grid, and World Wide Web [5], [6]. Scale-free 

networks have a highly complex network topology, and the 

degrees of nodes obey a power-law distribution 

( ) ~ , (2, 3]rP k k r  (where r  is the power exponent). This 

means that most nodes have low degrees while a few nodes 

have very high degrees, creating a big difference between 

core and periphery nodes [7]-[9]. Due to the complexity of 

scale-free networks, passive security defense strategies are 

not always effective. As a result, honeypots, which are an 

active security defense mechanism, have become an 

important tool in combating viruses [10]. Honeypots are 

beneficial for detection, attack, or disruption and can be 

deployed in different locations within the network [11]. 

Fig. 1 shows the deployment blueprint for honeypots. 

Honeypot systems are typically deployed in external 

networks to safeguard real servers or hosts, effectively 

blocking attacks from external viruses. Implementing 

vulnerable honeypots within internal networks to attract virus 

attacks for analysis can enhance the defense capabilities of 

actual hosts and strengthen their defensive capabilities. 
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Fig. 1. The deployment blueprint for the honeypots in the network 

Recent research indicates that honeypot technology has 

significant potential for addressing worm-related issues. 

However, the role of honeypots in transmitting immunization 

information to the periphery for prevention and control has 

not been sufficiently examined. In this paper, we will analyze 

the trapping and feedback mechanisms of honeypots on 

worms, and propose an active defense model to better 
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understand the dynamics of virus propagation in scale-free 

networks. It will also investigate the influence of the 

placement and quantity of deployed honeypots on virus 

spread, aiming to formulate a scientific and effective virus 

defense strategy. 

This paper assumes that after a worm attack, the honeypots 

deployed in the network adopt a “wide-in, tight-out” strategy 

[25] and will not become a new source of infection. We can 

refer to common devices in the network as common nodes, 

and we can refer to honeypot devices as honeypot nodes. 

 

II.RELATED WORK 

In recent years, the widespread use of the Internet has 

greatly improved people’s knowledge of the world, but the 

problem of network security has become increasingly serious. 

The dynamics of network virus propagation have become a 

widely researched topic among many experts [12]-[15], 

revealing the patterns of virus transmission, analyzing the 

development trend, and then proposing targeted defense 

measures. 

Regarding the defense of worms, it has been studied by the 

related literature, and significant progress has been made. In 

Refs. [16], [17], Gan and Kim et al. proposed a “vaccination” 

strategy for patching vulnerabilities or updating systems in 

nodes during the virus propagation process, prompting 

susceptible nodes to enter a recovery state early. In Refs. [18], 

[19], Xiao and Dong et al. proposed a propagation model that 

includes an isolation state to isolate infected nodes and 

reduce virus spread. The results showed that “vaccination” 

and isolation can effectively inhibit virus transmission. 

However, these defense strategies have a certain time lag and 

cannot resist virus attacks in time. 

To address this challenge, the public has recommended 

using honeypot technology as a proactive security measure. 

In Ref. [20], Qin proposed a ransomware monitoring method 

based on distributed honeypot technology. Honeypot 

transformed into a security service through port mapping, 

covering all intranet network segments and safeguarding the 

terminal security of enterprises. In Ref. [21], Hu introduced 

the design principles and architecture of a virtual honeynet, 

successfully implementing a closed virtual honeynet that 

ultimately demonstrated its practicality, reliability, and 

stability. In Ref. [22], Negi introduced a method for intrusion 

detection and defense in cloud security, utilizing a honeypot 

network. This approach employed cloud-based honeypots 

consistent with cloud frameworks, aiding in monitoring 

malicious attacks and protecting the cloud environment. In 

Ref. [23], Li designed and implemented a honeynet 

architecture specifically for the industrial control field, 

combining virtualization technology, honeynet architecture, 

and industrial systems to alter the asymmetric situation of 

network attacks and defense games. The aforementioned 

literature demonstrates the value of honeypots in defending 

against virus attacks. 

Existing studies have focused on the design of honeypot 

technology in various domains, while theoretical research is 

still in its infancy. In Ref. [24], Ren created a model of 

compartments within a scale-free network and studied the 

interaction between virus propagation and honeynets, 

concluding that honeypots with smaller power-law indices 

are more effective in capturing virus samples. In Ref. [25], 

Na proposed a worm propagation model for distributed 

honeypots based on a two-factor model, considering the 

characteristics of honeypots and scale-free networks in a 

distributed environment, and investigated the virus 

propagation patterns. In Ref. [26], Fu suggested a malware 

propagation model with immunization and isolation as 

defenses in two layers of complex networks (industrial 

control networks and honeynets). It studied the impact of 

average degree and power-law exponents on virus 

propagation in two layers of complex networks and revealed 

the relationship between virus propagation and honeynet 

effectiveness. 

All the above studies share a common issue: they only 

focused on the honeytrap's role in capturing viruses within 

scale-free networks, while neglecting the significance of 

honeypots in feedbacking immune information to other nodes 

in the network after capturing the virus. Additionally, they 

did not consider the impact of honeypot deployment sites on 

virus defense. In this paper, we introduce a worm defense 

model that utilizes honeypot feedback mechanisms in a 

scale-free network, named H-SAIR. 

The primary contributions of this article are as follows: 

1)We add the affected state node A into the classical SIR 

model to further distinguish the stage of the virus infection. 

Considering the role of honeypots against worms, we 

introduce honeypot susceptible node Sh and honeypot 

infected node Ih to create a new propagation model, named 

H-SAIR. 

2)We perform dynamic analysis of the model, calculating 

the propagation threshold R0, disease-free equilibrium P0, 

and endemic equilibrium P* associated with the node degree 

k. We also prove the stability and uniqueness of the 

equilibrium point. 

3)Numerical simulations using MATLAB verify the 

validity of the theory and show the propagation dynamics of 

the worms in a scale-free network. We compare the 

containment effects of different models on worms, explore 

the influence of different parameters on virus propagation, 

study the importance of honeypot’s number and deployment 

location, and propose practical measures to contain the 

spread of the virus. 

 

III.THE H-SAIR MODEL 

Worms probe the network for groups of susceptible hosts 

and launch attacks on hosts with system vulnerabilities. Once 

the virus enters the system, it will use system resources for 

self-replication and preparation, but infection symptoms will 

not immediately appear. At this point, the susceptible nodes 

have not yet been fully infected, so they are referred to as 

A ( )affected  nodes in this paper. Therefore, based on the 

classical SIR model, we consider including A  node before 

the infected state. We distinguish the stages of host infection 

in detail to enhance our analysis of the virus propagation 

process.  

In this paper, the spread of the worm follows the state 

transition process of S A I R . The workflow of 

the worm is described in the Algorithm 1: 
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Algorithm1: The process of worms’ attack and propagation. 

1 repeat 

2     begin 

3         Worms probe vulnerable hosts. 

4         Generate an IP address. 

5         Send a TCP/SYN-ACK packet to hosts randomly. 

6         if the SYN-ACK packet is received then 

7             Complete the three-way handshake; 

8             Establish a connection with the target host; 

9             Acquire the control of the target host successfully; 

10             Send malicious codes to affected hosts for infection. 

11         else if the SYN-ACK packet isn't received then 

12             Back to step 5. 

13         end 

14 
        Worms perform on-site processing and replicate 

        themselves. 

15         Generate copies, and repeats the above steps. 

16     end 

17     return infection status. 

18 until ( )p
k

N I  and ( )h
k

N S  are both empty. 

 

In this paper, we focus on the feedback mechanism of 

honeypots in controlling worms in scale-free networks. The 

degree of nodes in this network follows a power-law 

distribution ( ) ~ , (2, 3]rP k k r  (where r  is the power 

exponent), and the average degree of nodes is 

1

( )
k

k kP k , where  represents the maximum 

degree of nodes in the network. The model categorizes all 

nodes into six states, referred to as , , , , ,
p p p p h h
k k k k k kS A I R S I . The 

common node density ( )p
kN t  and the honeypot node density 

( )h
kN t  must satisfy the following conditions: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

p p p p p
k k k k k

h h h
k k k

N t S t A t I t R t

N t S t I t
 

The parameters are defined as shown in Table Ⅰ: 

TABLE I 

DEFINITION OF PARAMETERS AND VARIABLES 

Parameters 

/Variables 
Definition 

1d  Probability of a new honeypot node joining 

the network per unit time 

1  Probability of a honeypot node moving out of 

network per unit time 
 Infection rate of worms to 

honeypot-susceptible nodes 

 Removal rate of worms from infected nodes 

d  Probability of a common node joining the 

network per unit time 
 Probability of a common node moving out of 

network per unit time 

 Infection rate of worms to susceptible nodes 

 Feedback rate of honeypot-infected nodes 

 Probability of affected nodes transforming 

into infected nodes 

h
kS  

Density of honeypot-susceptible nodes with 

degree k 

h
kI  Density of honeypot-infected nodes with 

degree k 

p
kS  Density of susceptible nodes with degree k 

p
kA  Density of affected nodes with degree k 

p
kI  Density of infected nodes with degree k 

p
kR  Density of recovered nodes with degree k 

h  Probability that other nodes in the network 

communicate with honeypot-infected nodes 

p  Probability that other nodes in the network 

communicate with infected nodes 

 

The network is equipped with deceptive information and 

exploitable vulnerabilities for each honeypot node, allowing 

it to actively lure worms into launching attacks. Honeypot 

nodes monitor worm’s attack behavior, then provide 

generated immune information to common nodes. These 

nodes can detect and patch security vulnerabilities in time, 

thus effectively preventing potential virus attacks. The 

infected nodes and honeypot-infected nodes communicate 

with other nodes in the network with probabilities of p  and 

h , respectively, and interact with each other. 

 

1

1

1
( ) [1 (1) ( ) ]

1
( )

p p p

p
k

k

t P I P I
k

kP k I
k

 (1) 

 

1

1

1
( ) [1 (1) ( ) ]

1
( )

h h h

h
k

k

t P I P I
k

kP k I
k

 (2) 

In the following, we utilize Algorithm 2 to describe 

trapping and feedback mechanisms for honeypots: 

 

Algorithm2: Honeypot trapping and feedback mechanisms. 

 
Input: Susceptible Nodes p

k
S , Infected Nodes p

k
I , 

 
           Honeypot-susceptible Nodes h

k
S  

 
Output: Affected Nodes p

k
A , Recovered Nodes p

k
R , 

 
              Honeypot-infected Nodes h

k
I  

1 begin 

2     Deploy honeypots to lure worms into attacking. 

3     foreach ( )p p

k
I N I  do 

4 
        Scan the susceptible nodes, and obtain the control  

        of the target nodes successfully. 

5         foreach ( )h h

k
S N S  do 

6             if honeypot captured the virus successfully then 

7                 Honeypot-susceptible nodes convert to  

IAENG International Journal of Computer Science

Volume 52, Issue 1, January 2025, Pages 90-102

 
______________________________________________________________________________________ 



 

                honeypot-infected nodes; 

8 
                The firewall intercepts the data packets in and  

                out of the honeypots; 

9                 Data transponders dump data messages; 

10                 Intercept all system logs through honeypots; 

11 
                Extract useful data using protocol analysis,  

                behavioral analysis, profiling, etc. 

12 
                Analyze the infection behavior of worms and  

                prepare immunization codes. 

13             else if honeypot not catching the worms then 

14                 if worms infected susceptible nodes then 

15 
                    The state of common nodes transforms into: 

                    p p p p
k k k kS A I R . 

16                 else 

17                     No nodes were infected. 

18                 end  

19             end  

20         end 

21     end 

22     foreach ( )h h

k
I N I  do 

23         Scan the network, interact with common nodes; 

24         Feedback immunization codes for susceptible nodes; 

25 
        Common nodes ( , , )p p p

k k k
S A I  convert to recovered 

        nodes p

k
R . 

26     end 

27     return recovered nodes p

k
R ； 

28 end 

 

The state transition relationship of the H-SAIR model is 

shown in Fig. 2, where the circular boxes represent the states 

of the nodes, and the arrows indicate the direction of node 

state transitions. 
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Fig. 2. Schematic diagram of model state transformation 

The transformational relationships between the states are 

as follows: 

1) p p
k kS A : Worms exploit system vulnerabilities in 

susceptible nodes to launch attacks, gain control, and then 

transform into affected nodes. 

2) p p
k kA I : Worms transmit the primary program to 

affected nodes, causing it to become completely infected, and 

subsequently transform into infected nodes. 

3) p p
k kI R : Infected nodes update the virus database to 

install patches and remove worms. 

4) p p
k kS R : Susceptible nodes receive the immune 

information, which is fed back from the honeypot-infected 

nodes, and thus become recovered. 

5) p p
k kA R : Affected nodes receive the immune 

information, which is fed back from the honeypot-infected 

nodes, and thus become recovered. 

6) h h
k kS I : Honeypot-susceptible nodes get attacked by 

worms or interact with infected nodes, resulting in infection 

and its transformation into honeypot-infected nodes. 

7) p h
k kI S : Worms replicate themselves at infected 

nodes to infect other computer systems, while 

honeypot-susceptible nodes actively induce worm intrusion. 

8) ( , )h p p p

k k k k
I S A I : Honeypot-infected nodes generate 

immune information by analyzing the virus’s attack behavior 

and feeding it back to the common nodes (susceptible nodes, 

affected nodes, recovered nodes). 

Therefore, the probability of susceptible nodes with degree 

k  become infected is    1 - (1 - )p k pk , the 

probability of honeypot-susceptible nodes with degree k  

become infected is    1 - (1 - )p k pk , and the 

probability of honeypot-infected nodes of degree k  deal in 

feedback is    1 - (1 - )h k hk . 

According to the states transition relationships in Fig. 2, its 

differential dynamics equation can be expressed as: 

 

( )

1 1

1

- - -

- - -

- - -

-

- -

- ( 1,2, 3, , )

p
p p p pk p h
k k k k

p
p p p pk p h
k k k k

p
p p p pk h
k k k k

p
p p p p pk h
k k k k k

h
k h h p h

k k k

h
k h p h

k k

dS
dN kS kS S

dt
dA

kS kA A A
dt
dI

A I kI I
dt
dR

k S A I I R
dt
dS

d N kS S
dt
dI

kS I k
dt

 (3) 

In particularly, it follows from 

1

( ) ( ) ( ) ( ) ( )

[ ( ) ( ) ( )]

p p p p p

p p p
k k k

k

N t S t A t I t R t

S t A t I t
 

1

( ) ( ) ( ) [ ( ) ( )]h h h h h
k k

k

N t S t I t S t I t  
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It can be calculated as follows: 

 
- , lim

p p
p pk p
k k
t

dN dN
dN N N

d t
 

 
1 1- , lim

h h
k h h h

k k
t

dN dN
d N N N

d t
 

Simplification of Eq. (3) yields the following sub-equation, 

referred to as Model I: 

 

1
1

1

- - -

- - -

- - -

( - ) - ( 1 )

p
p p p pk p h
k k k k

p
p p p pk p h
k k k k

p
p p p pk h
k k k k

h h
k k h p h

k k

dS
dN kS kS S

dt
dA

kS kA A A
dt
dI

A I kI I
dt
dI d N

k I I k
dt

 (4) 

The feasible domain of Model I is denoted by : 

4

1

1

[( , , , ) : ,

, , , , 0, 1,2, 3, , )]

p
p p p p p ph
k k k k k k k

h
p p ph h

k k k k k

dN
S A I I R S A I

d N
I S A I I k

 

This set is a positive-invariant set for Model I. 

There exists a unique disease-free equilibrium 0P  for 

Model I. 

0 0 0 0 0( , , , ) ( , 0,0,0)
p

p p p h T T
k k k k

dN
P S A I I  

Let   1 2 3 0 0 0( , , ) ( , , )T p p h T
k k kx x x x A I I , Model I can be 

written as ( ) - ( )
dx

F x V x
dt

. 

 

 

1

( ) 0

( ) -

p p
k

h p
k

p p ph
k k k

p p p ph
k k k k

h
k

kS

F x

kS

kA A A

V x I kI I A

I

 

Next, we solve the Jacobian matrix for ( )F x  and ( )V x  

separately, yielding the following results: 

 

 

0
3 3

0 0

( ) 0 0 0

0 0

p
p
k p

k

i p
h
k p

k

kS
I

F P
x

kS
I

 

0
3 3

1

( )

0

-

0 0

i

h
ph
k h

k
h

ph
k h

k

V P
x

k kA
I

k kI
I

 

We use the next-generation matrix method to calculate the 

basic regeneration number  -1
0 ( )R FV , which is the 

propagation threshold value for the Model I related to the 

disease-free equilibrium 0P . 

 

  

-1

2

1

( )
( )( )

1

( )( )

1

2
(1 (1) 2 (2) ( ))

1
( )

( )( )

p p
k

p
k

p

p

k

kS
FV

I

dN

k

P P P

dN
k P k

k

 (5) 

 2
0

1

1
( )

( )( ) k

pdN
R k P k

k
 (6) 

 

IV.THE STABILITY ANALYSIS 

In this section, we focus on proving the local and global 

stability of disease-free equilibrium P0, as well as the 

existence and uniqueness of endemic equilibrium P*. 

A.Local Stability of Disease-Free Equilibrium 

Lemma 1. When R0 < 1, the disease-free equilibrium P0 is 

locally asymptotically stable within the feasible domain; 

instead, when R0 > 1, P0 is unstable within the feasible 

domain. 

Proof. The Jacobian matrix of the Model Ⅰ  at the 

disease-free equilibrium P0 is 

 

11 1

0 4 4

1

( )

J J

J P

J J

 (7) 

The characteristic polynomial associated with the matrix 

is: 

 

-1 -1
1

2

1

( ) ( ) ( ) ( )

[( )( ) - ( )] 0
p

k

dN
k P k

k

(8) 
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In Eq. (8), there exist  repeated characteristic roots 

- 0  and 1- 0 , ( - 1)  repeated characteristic roots 

- - 0  and - - 0 , and two characteristic roots in 

the equation: 

2

1

( )( ) - ( ) 0
p

k

dN
k P k

k
 

Let 
2

1

, , ( )
p

k

dN
a b m k P k

k
, then 

the equation can be reformulated as ( )( ) - 0a b m , 

and its characteristic root can be calculated for 

2-( ) ( ) - 4( - )

2 1

a b a b ab m
. Where 

1 0 , 

2

2

-( ) ( ) - 4( - )

2 1

a b a b ab m
. According to 

0 1R , it can be calculated that 2 0 . Thus, when 

0 1R , the disease-free equilibrium 0P  of Model I is locally 

asymptotically stable, when 0 1R , 2 0 , the 

disease-free equilibrium 0P  is unstable. 

B.Global Stability of Disease-Free Equilibrium 

Lemma 2. When R0 < 1, the disease-free equilibrium P0 is 

globally asymptotically stable within the feasible domain; 

instead, when R0 > 1, P0 is unstable in the feasible domain. 

Proof. Create the subsequent Lyapunov function [27]: 

 ( , ) ( )p p p ph
k k k kL A I A k I  (9) 

According to Model I, the full derivative of ( , )p p
k kL A I  is 

1

( - - - )

( )( - - - )

[ - ( ) ]

( )[ - ( ) ]

- ( )( )

- ( )( )

( )

p p p pp h
k k k k

p p p ph h
k k k k

p pp h
k k

p ph h
k k

p pp h h
k k

p pp
k k

p

k

L kS kA A A

k A I I kI

kS k A

k A k I

kS k k I

kS I

dN
k kP k I

k

2

1

0

- ( )( )

[ ( ) - 1]
( )( )

( - 1) 0

p p
k k

p
p p
k k

k

p
k

I

dN
k P k I I

k

R I

 (10) 

We can compute 0L  when 0 1R . By the Lasalle  

invariant principle, we demonstrate Lemma 2. 

C.Existence of Endemic Equilibrium 

We solve the endemic equilibrium P* by the following 

differential equation: 

 

* * *

* * * *

* * * *

1
* 1 *

1

- - - 0

- - - 0

- - - 0

( - ) - 0

p p p pp h
k k k k
p p p pp h
k k k k
p p p ph
k k k k

h
k h p h

k k

dN kS kS S

kS kA A A

A I kI I

d N
k I I

 (11) 

Assuming h  and p  to be constants, the endemic 

equilibrium P* of Model I is 

 *
** * *( , , , )p p p h T
kk k kP S A I I  (12) 

The calculation results are as follows: 

*

**

*
*

* **

*
*

* *

**

* * * * *
*

1 *
*

1 1*

( )( )

( )( )

1

( )

( )

( )

p
p
k p h

pp
p
k ph h

pp
p
k h h

p h

p p p ph
p k k k k
k

ph
h
k p

dN
S

k k

dN k
A

k k k

dN k
I

k k

k k

k S A I I
R

kd N
I

k

 

Using Eq. (1), (2), we can calculate as follows: 

*
1

1 *

1 1 1*

1
( )

1
( )

( )

h h
k

k

ph

p
k

kP k I
k

kd N
kP k

k k

 (13) 

 

*
1

*

1 *

* **

*

1 *

1
( )

1
( )

( )

1

( )( )

1
( )

( )

p p
k

k

pp

h
k

ph h

pp

p
k

kP k I
k

dN k
kP k

k k

k k k

dN k
kP k

k H

 (14) 

Let * * * *( ) ( )( )(p h h pH k k k

*
)hk . According to Eq. (14), We can obtain: 
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Next, we generate the self-consistent equation *( )pf . 

 *
*

1 *

1
( ) ( )

( )

pp
p

p
k

dN k
f kP k

k H
 (15) 

If there exists a unique nontrivial solution to the equation, 

it must satisfy the following condition: 

*

*

* 0
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d
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Let 
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We can calculate as follows：
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 (17) 

According to 

*

*
0

* 0

( )

p

p

p

df
R

d
, it can be shown that at 

that time 0 1R , and there is 

*

*

* 0

( )
1

p

p

p

df

d
. As a result, 

there is one positive endemic equilibrium P  for Model I. 

 

V.SIMULATION RESULTS 

We perform the numerical simulation with a given 

scale-free network, assuming all system parameters are 

constant. Considering a total of 10,000 nodes in the network, 

the experiment is conducted in a scale-free network 

following a power-law distribution with an exponent of 2.17 

and a maximum node degree of 300. The average degree of 

this network is calculated to be 5.99. We keep the basic 

parameters for the following experiments unchanged: set 

0.2 , 0.35 , 0.15 , 00. 1500d , 00. 1500 , 

0.4 , 0.001 , 1 0.0025d , and 1 0.0025 . 

Additionally, select 10 initial infected nodes and 50 initial 

honeypot nodes. 

A.Comparison of Different Models 

In this paper, we propose the H-SAIR model, which builds 

upon the aforementioned literature [24] and further describes 

the stages of virus infection by incorporating the affected 

state (A). Consider the ability of honeypots to capture viruses 

and their mechanism for feedback immune information. The 

study [24] investigated the compartmental modeling of viral 

spread and honeypot interaction. Based on the literature, we 

create the H-SIR model and specify it as Model II, using the 

following differential equation: 

 

1
1

1

- - -

- -

( - ) - ( 1 )

p
p p p pk p h
k k k k

p
p p pk p
k k k

h h
k k h p h

k k

dS
dN kS S S

dt
dI

kS I I
dt
dI d N

k I I k
dt

 (18) 

The propagation threshold R0 = 0.1139 < 1 for both Model 

I and Model II. Model II only considers the immune feedback 

of honeypots on susceptible nodes in the network, ignoring 

the affected state in the pre-infection stage and missing the 

global prevention process. 

Figs. 3 and 4 show the evolution of different state nodes 

over time in Model II, while Figs. 5 and 6 depict the evolution 

of different state nodes over time in Model I. Both models 

exhibit similar overall trends in worm propagation; in the 

early stages of the system, the virus continuously scans and 

attacks, infecting honeypots and susceptible nodes in a short 

period of time. 

 

Fig. 3. Evolution of the H-SIR model’s system 

IAENG International Journal of Computer Science

Volume 52, Issue 1, January 2025, Pages 90-102

 
______________________________________________________________________________________ 



 

 

Fig. 4. Honeypot evolution over time in the H-SIR model 

 

Fig. 5. Evolution of the H-SAIR model’s system 

 

Fig. 6. Honeypot evolution over time in the H-SAIR model 

The trend of the curve in the figure indicates that the 

number of infected nodes increases rapidly in the early stages. 

Subsequently, the honeypot-infected nodes interact with 

common nodes, providing feedback on immune information, 

thus achieving an early immune effect. After reaching its 

peak, the number of infected nodes gradually decreases until 

it tends to zero. When compared to Fig. 3, the peak of 

infected nodes in Fig. 5 decreases by 34.39%. Additionally, 

compared to Fig. 4, the honeypot utilization in Fig. 6 has also 

decreased. It can be observed that the immunization of the 

global by H-SAIR model can effectively reduce the number 

of virus-infected nodes while reducing the consumption of 

honeypot resources. Compared to Model II, the H-SAIR 

model proposed in this paper can better control the spread of 

the virus in the pre-infection stage. 

 

Fig. 7. The number of infected nodes versus degree and time 

 

Fig. 8. The number of recovered nodes versus degree and time 

Figs. 7 and 8 depict the relationship between the number of 

infected and recovered nodes and the degree of nodes in the 

network ( )k  and time ( )t , respectively. The infected nodes 

are primarily those with lower degrees, consistent with the 

characteristics of power-law distribution in the scale-free 

network. Over time, the worm will ultimately disappear, 

leading to a stable equilibrium within the system, thus 

verifying Lemma 1. 

B.Comparison of Parameters 

This section examines the impact of important parameters 

( , , ) on infected nodes over time and provides the 

corresponding defense measures. 

1)Parameter  

To study the effect of infection rate  on viral 

propagation, Fig. 9 shows the variation of the number of 

infected nodes over time with values of 0.2, 0.4, and 0.6. 
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Fig. 9. The number of infected nodes over time at different   

Fig. 9 shows that a lower worm infection rate  is 

associated with a reduced number of nodes in the infected 

condition and an earlier peak time. Compared to the values of 

 being 0.4 and 0.6, setting the parameter  to 0.2 results in 

a decrease of 25.39% and 37.05% in the peak number of 

infected nodes. 

 

Fig. 10. Phase diagram of (S, A, I) at different   

 

Fig. 11. Phase diagram of (S, I, R) at different   

Figs. 10 and 11 illustrate the phase diagrams for 

(Susceptible, Affected, Infected) and (Susceptible, Infected, 

Recovered) at different values of the parameter , 

respectively. Despite the varying values of parameter , the 

basic regeneration number follows to 0 1R . 

For this reason, using an Intrusion Detection System (IDS) 

to detect known worm signatures, using a firewall to block 

unnecessary traffic, and implementing Distributed Denial of 

Service (DDoS) protection can effectively reduce the 

infection rate . These measures can enhance network 

resilience and prevent worms’ propagation. 

2)Parameter   

Fig. 12 shows the variation of the number of infected 

nodes over time when the honeypot infection rate  takes 

values of 0.1, 0.4, and 0.9. The values of the are different, 

but the basic regeneration number 0 1R  remains constant. 

Fig. 12 indicates that as the honeypot infection rate  

increases, the number of infected nodes reaches a smaller 

peak. This suggests that honeypots are more effective in 

luring worms, and due to the virus prioritizing attacking them, 

they can better control the spread of the virus. 

 

Fig. 12. The number of infected nodes over time at different   

 

Fig. 13. Phase diagram of (S, A, I) at different   
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Fig. 14. Phase diagram of (S, I, R) at different  

Figs. 13 and 14 show the phase diagrams for (Susceptible, 

Affected, Infected) and (Susceptible, Infected, Recovered) at 

different values of parameter . The number of infected 

nodes decreases with the increase of parameter . 

Therefore, increasing the honeypot infection rate  can 

control the spread of worms. If necessary, honeypots can 

replicate real environments, implement popular services and 

applications, and utilize public IP addresses, thereby 

enhancing the likelihood of the honeypot becoming targeted. 

3)Parameter   

In this paper, we propose a honeypot feedback mechanism, 

in which the honeypot feeds back immune information to the 

common nodes after capturing worms successfully. Fig. 15 

shows the variation of the number of infected nodes over time 

when the feedback rate  takes values of 0, 0.001, 0.003, and 

0.005. Figs. 16 and 17 show the phase diagrams for 

(Susceptible, Affected, Infected) and (Affected, Infected, 

Recovered) at different values of , respectively. At this 

point, the basic regeneration number R0 < 1. 

 

Fig. 15. The number of infected nodes over time at different  

As shown in Fig. 15, if 0 , the honeypot will not 

communicate with common nodes and cannot provide 

immune information. If it only improves its own anti-virus 

capabilities, it cannot effectively inhibit virus propagation. 

 

Fig. 16. Phase diagram of (S, A, I) at different  

 

Fig. 17. Phase diagram of (A, I, R) at different  

As can be seen from the above graphs, with the increase of 

the feedback rate , on the one hand, the number of infected 

nodes can decrease earlier and faster until it tends to zero; on 

the other hand, the peak of infected nodes is much smaller 

than when 0 . Compared to 0 , regardless of the 

feedback rate , the network can reach a stable state more 

quickly. Therefore, increasing the feedback rate  can 

enhance the overall immunity of the system, which plays a 

crucial role in containing the spread of worm propagation in 

the network. 

The experimental results indicate that ( , , ) 

significantly influences the spread of worms. The number of 

infected nodes is directly related to the infection rate  and 

inversely related to the honeypot infection rate  and 

feedback rate . Consequently, it is necessary to enhance the 

network's virus resistance capability while increasing the 

attractiveness of honeypots to viruses. Additionally, 

improving the mechanism for honeypot feedback on immune 

information is crucial. 

C.Comparison of Honeypot Deployments 

Since the degrees of nodes in a scale-free network follow a 

power-law distribution. If a worm launches an attack on the 

hub nodes, the network will be highly vulnerable. Next, we 
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deploy the honeypots at different locations within the 

scale-free network with an initial number of 0, 50, and 100 

nodes. 

Fig. 18 shows the variation of infected nodes when the 

honeypot deployment location is randomly selected. Figs. 19 

and 20 show the phase diagrams for (Susceptible, Infected, 

H-infected) and (Affected, Infected, H-infected), respectively. 

In the following, honeypot-infected will be referred to simply 

as H-infected. 

 

Fig. 18. Number of infected nodes over time at random locations 

 

Fig. 19. Phase diagram of (S, I, H-infected) at random locations 

 

Fig. 20. Phase diagram of (A, I, H-infected) at random locations 

Fig. 21 shows the variation of infected nodes when the 

honeypot is deployed at the hub location. Figs. 22 and 23 

show the phase diagrams for (Susceptible, Infected, 

H-infected) and (Affected, Infected, H-infected), 

respectively. 

 

Fig. 21. Number of infected nodes over time at hub locations 

 

Fig. 22. Phase diagram of (S, I, H-infected) at hub locations 

 

Fig. 23. Phase diagram of (A, I, H-infected) at hub locations 

Figs. 18 and 21 indicate that increasing the number of 

deployed honeypots can reduce the number of infected nodes 

and control the spread of the virus, compared to the state 
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without any deployed honeypots (H-nodes=0) in the network. 

Comparing Fig. 18 with Fig. 21, it is observed that when the 

total number of honeypots remains constant, honeypots 

deployed in hub positions perform better in terms of trapping 

and feedback. Regardless of whether the number of 

honeypots is 50 or 100, deploying them in hub locations 

results in a lower peak of infected nodes compared to random 

locations. 

The above experimental results show that the location and 

number of deployed honeypots are crucial in controlling the 

spread of worms. Therefore, if the capital and labor costs 

permit, it is important to deploy a sufficient number of 

honeypots in central and hotspot locations within a network. 

In the meantime, the honeypots should play the role of 

feeding back immune information to effectively enhance the 

network's security defenses. 

D.Further Discussion 

On the basis of experiment b above, we further discuss the 

interaction between the parameters through sensitivity 

analysis. It is easy to know that 0R  and *
pI  are affected by 

the infection rate , the removal rate , the honeypot 

infection rate , and the feedback rate . Therefore, the 

partial derivatives of the infected node *
pI  are obtained, 

respectively. As we know: 
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According to * * *

*

p p h

h

I I
, * 0

pI
. It can be 

inferred that the number of infected nodes in virus 

propagation increases monotonically with parameter , and 

decreases monotonically with parameters , , and . 

Fig. 24 shows the sensitivity surface of infection rate , 

removal rate , and the peak of infected nodes. As the 

infection rate  increases, the peak of infected nodes also 

increases. On the contrary, as the removal rate of  

increases, the peak of infected nodes gradually decreases. 

 

Fig. 24. Sensitivity surface of ,  and the peak of infected nodes 

Fig. 25 shows the sensitivity surface of honeypot infection 

rate , feedback rate , and infection nodes peak. It can be 

seen that with the increase of the honeypot infection rate , 

the peak of infected nodes decreases. Similarly, as the 

feedback rate  increases, the peak of infected nodes 

decreases. 

 

Fig. 25. Sensitivity surface of ,  and the peak of infected nodes 

Therefore, it is crucial to reduce the infection rate while 

improving the removal rate, honeypot infection rate, and 

feedback rate in order to control the spread of worms. For 

instance, running an older or vulnerable operating system on 

honeypots, installing known vulnerabilities, using weak 

passwords, or storing sensitive data. Additionally, depending 

on the severity of the threat, the most important 

immunization information should be fed back first, which can 

effectively control the scale of the spread of worms. 
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VI.CONCLUSION 

This paper introduces a feedback mechanism based on the 

honeypot-captured worms and proposes a new model, named 

H-SAIR. The honeypot can proactively identify potential 

risks and transmit immune information to common nodes, 

effectively preventing worm propagation. We analyze the 

stability of the equilibrium points and demonstrate the 

feasibility of the H-SAIR model. 

We simulate the propagation model of worms under the 

honeypot feedback mechanism using MATLAB, and analyze 

the influence of critical parameters ( , , ) on the number 

of infected nodes. Compared with the original H-SIR model, 

the H-SAIR model proposed in this paper can better control 

the virus transmission. Additionally, we simulate the 

deployment locations and quantities of honeypots in the 

network. The results indicate that in a scale-free network, 

appropriately deploying a sufficient number of honeypots at 

hub locations can significantly inhibit virus spread, thereby 

enhancing network security. 

Deploying numerous honeypot servers on the actual 

network necessitates consideration of various issues, 

including capital expenditure, labor costs, network 

bandwidth, and security risks. The paper primarily discusses 

theoretical proofs and simulations to validate the 

effectiveness of honeypot defenses against worms. As a 

result, in the next step, we will conduct a further examination 

of the practical utility of honeypots in real networks, aiming 

to derive findings that accurately reflect the actual 

circumstances. 
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