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Abstract—In modern wireless communications, efficient uti-
lization of spectrum resources and enhancement of communi-
cation quality are key objectives. Orthogonal Time Frequency
Space (OTFS) modulation technology has become a research
hotspot due to its superior performance in the delay-Doppler
domain. This paper focuses on the issue of nonlinear distortion
in OTFS modulation systems caused by High Power Amplifier
(HPA) effects. We propose a novel data-driven channel estima-
tion algorithm based on Transformer and adaptive filters, which
performs channel estimation in the time-frequency (TF) domain
to effectively mitigate the nonlinear distortion introduced by
HPA. Simulation results show that compared with traditional
methods, our proposed method demonstrates higher estima-
tion accuracy and better anti-interference capability in high
dynamic environments, significantly improving the robustness
of signal transmission, especially in high-speed mobile commu-
nication scenarios.

Index Terms—OTFS, channel estimation, Transformer, sim-
ulation, wireless communications.

I. INTRODUCTION

IN modern wireless communication systems, the efficient
utilization of spectrum resources and the improvement

of communication quality have always been focal points
of research [1]. With the widespread adoption of 5G tech-
nology and the gradual development of 6G, the demand
for communications in high-speed mobility environments is
becoming increasingly urgent [2]–[4]. Traditional Orthogonal
Frequency Division Multiplexing (OFDM) technology expe-
riences significant performance degradation when faced with
high Doppler shifts and multipath effects [5]. Consequently,
Orthogonal OTFS modulation technology has become a
hot topic in recent years due to its superior performance
in the delay-Doppler domain [6], [7]. OTFS modulation,
by operating in the delay-Doppler domain, transforms the
signal transmission environment from a time-varying channel
to a time-invariant channel, significantly enhancing signal
robustness [8]. However, in practical applications, the acqui-
sition of Channel State Information (CSI) for OTFS systems
still poses numerous challenges. Particularly in high-speed
mobility scenarios, the rapid changes in the channel make
channel estimation complex and cost-intensive [9].

Due to the significant advantages and broad application
prospects of OTFS technology, it has garnered widespread
attention within the academic community. Particularly in
OTFS systems, the channel estimation algorithm directly de-
termines the performance of the transmission, making related
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research especially critical [10], [11]. Existing methods for
channel estimation in OTFS primarily include techniques
based on pilot symbols, compressive sensing, and machine
learning approaches [12]–[14].

Pilot Symbol-Based Channel Estimation: This approach
involves embedding pilot symbols within the transmitted
data, which are then utilized at the receiver end to estimate
the channel [15], [16]. While straightforward and intuitive,
this method can be costly in terms of pilot overhead in
scenarios with high Doppler shifts, and its accuracy is
susceptible to noise and interference [17], [18].

Compressive Sensing Methods: Compressive sensing
leverages the sparse characteristics of the channel to reduce
the number of samples required for channel estimation.
Typical compressive sensing algorithms include Orthogonal
Matching Pursuit (OMP) and Least Absolute Shrinkage
and Selection Operator (Lasso) [19]–[22]. These methods
perform well in scenarios where the channel exhibits sparsity;
however, they are computationally intensive and tend to
underperform in non-sparse channel conditions.

Machine Learning Methods: In recent years, machine
learning techniques have been extensively applied to channel
estimation. These methods utilize large-scale data sets to
train models, enabling effective estimation in complex chan-
nel environments. Common machine learning techniques in-
clude Deep Neural Networks (DNNs), Convolutional Neural
Networks (CNNs), and Recurrent Neural Networks (RNNs)
[23]–[29]. However, these approaches generally require sub-
stantial training data and often exhibit limited generalizability
in highly dynamic environments.

Although existing methods have improved the perfor-
mance of OTFS channel estimation to some extent, numerous
challenges persist. For instance, pilot-symbol-based methods
are costly and unstable in high Doppler shift environments,
compressive sensing techniques are computationally inten-
sive, and machine learning approaches rely heavily on exten-
sive data and have limited generalizability. Furthermore, non-
linear distortions caused by High Power Amplifiers (HPAs)
and issues with high Peak-to-Average Power Ratio (PAPR)
pose additional demands on channel estimation. High PAPR
values can lead to nonlinear distortions in the presence of
HPAs, reducing overall system performance. To address these
issues, Reference [30] utilized mu-law compression to reduce
the PAPR of OTFS signals by 2.5 dB, but this resulted in
a slight increase in the Bit Error Rate (BER) compared
to the original OTFS signals. Reference [31] confirmed
the effectiveness of Selected Mapping (SLM) technique in
suppressing the PAPR of OTFS modulation signals, with
results indicating superior performance of OTFS over OFDM
signals. Reference [32] combined Genetic Algorithms (GA)
with SLM to handle the PAPR of OFDM signals, but GAs
have high dimensions, significant complexity, and parameter
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selection heavily dependent on experience. These studies
have not yet integrated research on signal design and per-
formance optimization for communication and sensing in
OTFS-based systems. Therefore, developing a new method
that can perform channel estimation efficiently and accurately
in highly dynamic environments is particularly crucial. In
response to these challenges, we propose a channel esti-
mation method for OTFS modulation in the time-frequency
domain, based on Transformer and Adaptive Filters. This
method combines a preliminary coarse channel estimation
using a preamble sequence with frequency domain pilots,
utilizing the Transformer network to capture the temporal
correlations of the channel, and employing adaptive filters
to enhance noise reduction capabilities. Our approach not
only significantly reduces pilot overhead but also effectively
addresses nonlinear distortions caused by HPAs, thereby
enhancing the accuracy and robustness of channel estimation.

II. PROBLEM EXPLANATION

A. OTFS System

OTFS is an emerging modulation technique designed to
enhance the performance of wireless communication systems
under high Doppler frequencies and complex multipath chan-
nel conditions. By representing signals in a two-dimensional
time-frequency domain, OTFS effectively captures and pro-
cesses the time-varying and frequency-varying characteristics
of wireless channels, significantly boosting the robustness
and reliability of communication systems. OTFS processes
data in the Delay-Doppler (DD) domain, with its overall
architecture illustrated in Fig. 1.

1) ISSFT: At the transmitter, the M × N information
symbols XDD ∈ CM×N from the modulation alphabet are
assigned to a M × N grid in the DD domain, where M
and N respectively represent the number of subcarriers and
time slots used. The symbols in the DD domain are trans-
formed into the TF domain through the Inverse Symplectic
Finite Fourier Transform (ISFFT). Here, the TF domain is
discretized into an M ×N grid, and the element (m,n) of
XTF is represented as:

XTF [m,n] =
1√
MN

N−1∑
k=0

M−1∑
l=0

XDD[k, l]ej2π(
nk
N −ml

M )

(1)
In the transformation process, XDD[k, l] represents the el-
ement at position (k, l) within the matrix XDD, where k
ranges from 0 to M − 1 and l ranges from 0 to N − 1.

2) Heisenberg transform: The discrete Heisenberg trans-
form is applied to generate the time-domain transmission sig-
nal. The vector form of the transmission signal is expressed
as:

s = vec(GtxF
H
MXTF ) = (FH

N ⊗Gtx)xDD (2)

The pulse shaping waveform, denoted by Gtx, is consid-
ered as a rectangular waveform lasting for duration Ts,
which implies Gtx = IM . The matrix XDD is vector-
ized to form xDD = vec(XDD), expressed as xDD =
[xDD(0), · · · , xDD(MN − 1)]T . The vector s ∈ CMN×1

represents the form of the transmission signal, expressed as
s = [s(0), · · · , s(n), · · · , s(MN − 1)]T , where n ranges

from 0 to MN − 1, and the expression for s(n) is:

s(n) =
1√
N

N−1∑
k=0

ej2π⌊
n
M ⌋k/NxDD([n]M + kM) (3)

3) Channel: The OTFS wireless channel, characterized as
a time-varying multipath channel, can be described through
its impulse response in the Delay-Doppler domain.

h(τ, v) =
P∑
i=1

hiδ(τ − τi)δ(v − vi) (4)

The impulse response of the OTFS channel is characterized
by the Dirac delta function, denoted by δ(·). The path gain,
hi, for the i-th path, follows a normal distribution with mean
zero and variance 1/P , where P represents the total number
of paths.

4) Wigner transform: At the receiver, the time-domain
received signal is expressed by the following equation:

r(t) =

∫∫
h(τ, v)s(t− τ)ej2πv(t−τ)dτdv + w(t) (5)

The time-domain received signal, denoted as s(t), and the
channel characteristics in the DD domain, represented as
h(τ, v), are considered. The received signal r(t) is sampled
at the time instances t = n

M∆f , where n = 0, · · · ,MN − 1.
Consequently, the discretized received signal r(n) is ex-
pressed as:

r(n) =
P∑
i=1

hie
j2π

ki(n−li)

MN s([n− li]MN ) + w(n) (6)

The noise w is a complex-valued Gaussian white noise,
independently and identically distributed following the
complex normal distribution N(0, σ2

cI), where σ2
c de-

notes the noise variance. IMN (li) is an MN × MN
matrix obtained by cyclically shifting the columns of
the identity matrix to the left. ∆ is an MN ×
MN Doppler frequency shift diagonal matrix defined
as ∆(ki) = diag

(
ej2πki

0
MN , ej2πki

1
MN , · · · , ej2πki

MN−1
MN

)
,

where diag(·) converts a vector into a diagonal matrix.
Through the Wigner transform, the TF domain received
signal YTF ∈ CM×N is expressed as:

YTF = FMGrxR (7)

The matrix R = vec−1(r) is obtained by the inverse vec-
torization of vector r. The receive filter Grx is a rectangular
waveform with duration Ts, and is represented by Grx = IM .

5) SFFT: DD domain received signal YDD ∈ CM×N

is obtained by performing the Symplectic Finite Fourier
Transform (SFFT), expressed as:

YDD = FH
MYTFFN = FH

MFMGrxRFN = GrxRFN (8)

Here, YTF represents the received signal in the TF do-
main as processed through the receiver’s filter systems.
The matrices FM and FN are Fourier transform matrices
applying transformations across subcarriers and time slots,
respectively, with FH

M being the Hermitian of FM , indi-
cating the inverse Fourier transform. The receiver’s filter
Grx, typically a rectangular waveform, shapes the waveform
in signal processing. The vector r is transformed back
into a matrix R through inverse vectorization. The signal
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Fig. 1. Structure of OTFS System.

YDD in the DD domain is then obtained by applying the
Symplectic Finite Fourier Transform (SFFT) through the
operations described. The matrix ∆ represents a Doppler
frequency shift diagonal matrix, formulated as ∆(ki) =

diag(ej2πki
0

MN , ej2πki
1

MN , . . . , ej2πki
MN−1
MN ) where diag(·)

turns a vector into a diagonal matrix. The transformation
simplifies to GrxRFN because the product FH

MFM simplifies
to the identity matrix I , thus not altering the product but
simplifying the expression.

B. HPA

HPAs are crucial components in wireless communication
systems, responsible for amplifying modulated low-power
signals to levels sufficient for transmission over long dis-
tances or in complex wireless environments. Ideally, an
HPA’s output is a simple amplification of the input signal;
however, due to hardware limitations, the output often ex-
hibits nonlinear distortions, especially when the input signal
approaches or exceeds the amplifier’s saturation point. This
can be mathematically modeled as:

y = H(x) = ax+ bx2 + cx3 + · · · (9)

where a, b, c, etc., are coefficients that describe the nonlinear
characteristics of the HPA.

In OTFS modulation systems, the HPAs significantly affect
system performance, particularly in handling high dynamic
range signals. OTFS is designed to excel in environments
with high Doppler shifts and multipath effects, which typi-
cally present signals with high PAPR. Such signals challenge
HPAs to operate over a broad dynamic range without intro-
ducing significant nonlinear distortions.

Assuming the signal input to the HPA is sTF , and the
output from the HPA is sHPA, the operation of the HPA can
be expressed as:

sHPA(t) = H(sTF (t)) (10)

Due to the high PAPR of OTFS signals, they are more
susceptible to nonlinear distortions from the HPA, especially
near the amplifier’s saturation. These distortions not only
increase interference in the signal but can also lead to
increased BER.

C. Channel Estimation

Channel estimation is a crucial preprocessing step in
communication systems, aimed at quantifying the various
effects experienced by a signal as it passes through wireless
or wired transmission media. The primary task of channel
estimation is to reconstruct the channel characteristics based
on the received signal so that the transmitted signal can

be accurately recovered at the receiver, thus ensuring the
accuracy and reliability of data transmission.

Channel estimation primarily involves determining the
channel impulse response h(t) or its discrete counterpart
h[n]. This estimation process requires precise quantification
of the channel’s multipath effects, Doppler effects, path loss,
and phase shifts. Specifically, the received signal r(t) can be
modeled as the convolution of the transmitted signal x(t)
with the channel impulse response h(t), plus noise n(t),
expressed mathematically as:

r(t) = (h ∗ x)(t) + n(t) (11)

where ∗ denotes the convolution operation. In discrete-time
systems, the model can be simplified to:

r[n] =
L−1∑
k=0

h[k]x[n− k] + n[n] (12)

During the signal reception phase, the receiver first needs
to estimate the channel impulse response, denoted as ĥ.
This process is typically accomplished by transmitting a
known pilot sequence and processing it at the receiver. The
estimated channel matrix ĥ can be obtained by minimizing
the error between the received signals and the pilot sequence
transmitted through the estimated channel model:

ĥ = argmin
h

∥r − h ∗ p∥2 (13)

Here, p represents the transmitted pilot sequence, ∗ denotes
convolution, and r is the received signal.

Once channel estimation is obtained, it can be used to
detect data symbols. At the receiver, the estimated channel
matrix is used to equalize the received signal, compensating
for the effects caused by the channel. Mathematically, this
can be achieved through various methods, such as Zero
Forcing (ZF) equalization or Minimum Mean Square Error
(MMSE) equalization. For ZF equalization, the detected
symbols ŶDD are given by:

ŶDD = ĥ−1 · YDD (14)

Here, ĥ−1 represents the inverse of the estimated channel
matrix, and YDD is the received signal.

III. METHODOLOGY

A. Signal Generation

This paper proposes a novel channel estimation algorithm
addressing the issue of HPA distortion in OTFS systems.
As Fig 2 shows, the algorithm is trained and validated in
a simulation environment. Firstly, we generate an OTFS
communication dataset that includes the impact of HPA
distortion using the simulation system. This simulation envi-
ronment retains the true channel structure for each sample.
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Fig. 2. Structure of the method.

During the simulation experiment, the program uses the
Least Squares (LS) channel estimation method to obtain
an initial channel estimate from the pilot sequences and
frequency domain pilot signals, which, together with the true
channel structure, forms a training dataset for offline training
of the deep learning module. Subsequently, the accuracy
of the channel structure estimated during online simulation
is verified using the test dataset during the demodulation
phase. This method efficiently handles channel estimation
for nonlinear and highly selective channels while maintaining
low pilot overhead.

This paper defines a basic transmission packet that in-
cludes a known deterministic preamble sequence (used for
initial channel synchronization) and a data field. Additionally,
a Cyclic Prefix (CP) is used to mitigate Inter-Symbol Interfer-
ence (ISI) caused by multipath propagation. In the data field,
each symbol utilizes M subcarriers, of which only Mon are
active, with the remaining subcarriers being inactive. Here,
|Mon| represents the number of pilot subcarriers. Further,
among the Mon subcarriers, Mp are allocated as pilots, and
the remaining Md subcarriers are used for data transmission.

In the signal, the pilots are embedded in the TF domain,
resulting in a reduced number of subcarriers for data trans-
mission in the DD domain while maintaining the subcarrier
spacing and bandwidth. The signal is transformed to the
TF domain, considering only the data part, resulting in an
Md ×N matrix:

XTFd
[md, n] =

1√
NMd

N−1∑
k=0

Md−1∑
l=0

XDD[l, k]e
j2π

(
nk
N −mdl

Md

)

(15)
Then pilots are then inserted into the subcarriers as fol-

lows:

XTF [m,n] =

{
pilots if m ∈Mp

XTFd
[m,n] if m ∈Md

(16)

Fig. 3 illustrates the TF domain frame structure, where
D represents data subcarriers, P represents pilot subcarriers,

and PR represents the preamble sequence. This configura-
tion ensures no overlap between pilot and data subcarriers,
thereby optimizing the utilization of resources during channel
estimation.

Fig. 3. TF domain frame structure.

B. Preliminary Estimate

LS channel estimation method in the frequency domain
to process the preamble and pilot information, initiating the
channel estimation process. The initial channel estimation
process for the preamble is as follows:

ĤLS
TF [m,npr] =

Y[m,npr]

P[m]
,∀m (17)

where Y[m,npr] is the frequency domain signal of the
m-th subcarrier obtained by demodulating the preamble at
the npr-th symbol position. P[m] denotes the predefined fre-
quency domain preamble sequence. For the pilot subcarriers,
the initial channel estimation result is as follows:

ĤLS
TF [mp, n] =

Y[mp, n]

S[mp, n]
,∀n (18)

Thus, for the n-th symbol of each frame, Y[mp, n] and
S[mp, n] represent the received and transmitted frequency
domain signals at the mp pilot positions, respectively. In
this experiment, the pilot and transmitted signals have the
same power. The pilot information serves as the basis for
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interpolating the data subcarrier information to obtain the
final channel estimation.

C. Transformer Estimator

We utilize a Transformer-based receiver which demon-
strates significant performance improvements in symbol-
by-symbol estimation compared to traditional DNN re-
ceivers. The Transformer processes and learns data se-
quences through a self-attention mechanism, which effec-
tively captures long-range dependencies within the sequence
data. Unlike traditional feedforward DNN architectures, the
Transformer can process data in parallel, thereby improving
training and inference efficiency. Through the multi-head
attention mechanism, the Transformer can focus on different
parts of the input sequence simultaneously, considering more
information when estimating the current output. The internal
mechanism of the Transformer is as follows:

First, the Transformer generates the query (Q), key (K),
and value (V) matrices from the input sequence through
linear transformations using the self-attention mechanism, as
shown in Equation (19):

Q = XWQ, K = XWK , V = XWV (19)

Then, the attention weights are calculated using Equation (6):

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (20)

where dk is the dimension of the key vectors. The result of
the self-attention calculation is processed by a feed forward
neural network to enhance feature representation:

FFN(x) = max(0, xW1 + b1)W2 + b2 (21)

Here, max(0, x) denotes the activation function, and we
chose the Rectified Linear Unit (ReLU) as the activation
function. This choice is due to its fast computation, low
parameter tuning requirements, and significant effectiveness
in solving optimization problems. The weight matrices W1

and W2 correspond to the linear transformations of the input.
Through self-attention mechanisms, the Transformer can

effectively learn and capture the temporal correlations of the
channel, thereby excelling in symbol-by-symbol estimation.
In the context of channel estimation, the Transformer’s input
must be related to the number of active and pilot subcarriers.
Additionally, each Transformer network contains multiple
encoder and decoder layers, which determine the steps of
parallel operations. These processing characteristics enable
the Transformer to learn the time-varying correlations of
the channel and adjust the channel estimation accordingly.
We use the initial channel estimation introduced in the
previous section as the input to the Transformer interpolation
algorithm to obtain the channel information for the entire
frame.

D. Adaptive Filter Noise Compensation

To reduce noise, the output of the Transformer layer is
further processed by Adaptive Filters (AF). The goal of the
adaptive filters is to update the initial estimates and learn
to correct the estimation errors compared to the perfect CSI
channel.

The adaptive filter network is trained to determine the
parameters θ⋆ that minimize the loss function ℓ(θ). This
process can be expressed as:

θ⋆ = argmin
θ

ℓ(θ, ĤTransformer
TF [m,n], HTF [m,n]) (22)

where θ represents the weight vector of the adaptive filters,
HTF [m,n] is the perfect channel response obtained from the
training sample vectors used during the training phase of our
proposed estimator, and ĤTransformer

TF [m,n] is the output of
the Transformer. The loss is calculated as:

1

NM

M−1∑
m=0

N−1∑
n=0

∣∣∣HTF [m,n]− f̂(ĤTransformer
TF [m,n], θ)

∣∣∣2
(23)

During the training phase, this process is iterative, with the
neural network adapting f̂(ĤTransformer

TF [m,n], θ) based
on each training sample. In summary, the final channel
estimation is given by:

ĤTransformer[m,n] = f̂(ĤTransformer
TF [m,n], θ⋆) (24)

IV. EXPERIMENTS

This chapter evaluates the performance of the proposed
channel estimation method in a communication environ-
ment affected by nonlinear distortion through controlled
experiments. The proposed method is compared with two
baseline methods, TCE and CCE. In these methods, channel
estimation is accomplished through the pilot responses in the
DD domain. For these baseline methods, the pilot Signal-to-
Noise Ratio (SNR) is set to SNRp = 40 dB according to the
design assumptions.

A. Dataset Simulation

To ensure compatibility, our system design adheres to the
physical layer specifications of the IEEE 802.11p commu-
nication standard. Therefore, we consider a bandwidth of
B = 10 MHz and a carrier frequency of fc = 5.9 GHz, trans-
mitting frames with M subcarriers and N = 14 symbols.
Additionally, we use a Turbo LTE coding with a rate of 1/2
and perform equalization using the MMSE criterion. Unlike
other estimators, our proposed method performs equalization
within the Time-TF domain.

Furthermore, simulations are conducted under the ITU-T
Vehicular-A channel model at a speed of v = 300 km/h,
employing 16-QAM and QPSK modulation. Our evaluation
also considers the effects of HPA non-linearity. For the
highest modulation order, the Input Back-Off (IBO) is set to
4 dB, while for the non-linear effects of QPSK modulation,
the IBO is set to 2 dB. Table I summarizes the parameters
used in the simulations.

B. Evaluation Metrics

To comprehensively evaluate the performance of the pro-
posed method, we utilize two key metrics: the BER and the
PAPR. This article will detail each metric and its calculation
methods.

The BER is defined as the ratio of the number of erroneous
bits to the total number of transmitted bits, and it is one of the
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TABLE I
SUMMARY OF PARAMETERS

Symbol Description
Symbols Number 14

Subcarriers Number 52
Band-width 10 MHz

Carrier Frequency 5.9 GHz
Symbol Duration 8 µs

Subcarrier Spacing 156.25 kHz
Mobility Speed 300 km/h
Input Back-Off 2 dB, 4 dB

Modulation QPSK, 16-QAM

important indicators of communication system performance.
The definition of BER is as follows:

BER =
Ne

Nt
(25)

This formula expresses the BER as a simple fraction or
ratio, where the numerator is the number of bits that were
incorrectly received, and the denominator is the total number
of bits sent during the transmission. This metric is crucial
for understanding the robustness and reliability of a com-
munication link under various conditions, such as noise,
interference, and signal distortion.

The PAPR is another critical metric used to assess the
performance of communication systems, particularly in the
context of OFDM transmissions, which are prone to high
PAPR values. PAPR is defined as follows:

PAPR =
max0≤t≤T |x(t)|2

mean0≤t≤T |x(t)|2
(26)

The instantaneous value of the transmitted signal is de-
noted by x(t). The maximum instantaneous power of the
signal within the time interval 0 ≤ t ≤ T is represented
by max0≤t≤T |x(t)|2, and the average power over the same
interval is given by mean0≤t≤T |x(t)|2.

High PAPR values can lead to inefficiencies in the power
amplifiers used in communication systems, potentially caus-
ing nonlinear distortions if the amplifier enters saturation.
Minimizing PAPR is essential for efficient amplifier opera-
tion and overall system performance.

C. Baseline Methods

1) TCE: This method has proposed an embedded pilot
scheme that includes sufficiently large guard intervals around
a unique pilot to improve the acquisition of responses in the
DD domain. The allocation of pilot and data symbols within
the OTFS frame is as follows:

XDD[l, k] =


pilots if l = lp, k = kp

0 if |l − lp| ≤ Gl, |k − kp| ≤ Gk

data otherwise
(27)

In this setup, Gl and Gk represent the guard intervals along
the delay and Doppler axes, respectively. The channel esti-
mation method is based on the received symbols YTCE [l, k]
within the sub-grid defined by (lp −Gl ≤ l ≤ lp +Gl, kp −
Gk ≤ k ≤ kp +Gk).

Therefore, using a thresholding method, the channel esti-
mate for this grid is expressed as:

ĥDDTCE
[l−lp, k−kp] =

{
YTCE [l,k]
XDD[lp,kp]

if YTCE [l, k] ≥ ϑ

0 otherwise
(28)

Here, ϑ represents the detection threshold, which is set
at ϑ = 3σw. The σw denotes the standard deviation of the
effective noise in the pilot signal.

2) CCE: This method introduces an estimator for OTFS
systems that obtains the cross-correlation channel matrix
through estimation in the DD domain. It assumes that the
channel remains invariant over multiple symbol durations and
that pilots and data are transmitted in separate frames. Con-
sequently, in the DD domain, the pilot signals are considered
as:

XDD[l, k] =

{
1 if l = lp, k = kp

0 otherwise
(29)

Consequently, the estimated channel response in the DD
domain can be represented as:

ĥDDCCE
[l, k] =

K∑
κ=1

hκδ((l − lκ)− lτκ)e
jϕκ · ψκ[l]

×ΥN (kvκ + κvκ − (k − kκ))

(30)

In this representation, hK denotes the path gain, while lτK
and kvK

are the integer indices of delay and Doppler shifts,
respectively, in the DD domain. The initial phase is repre-
sented by ϕ. The fractional Doppler shift, κvK

, uses a non-
integer index to denote the Doppler value of the K-th path,
where (kvK

+κvK
) represents the DD domain representation

of the path’s fractional Doppler shift. The phase shift caused
by the Doppler effect, ψK , and the function ΥN are defined
as shown in Equations (31) and (32):

ψK [l]e
j2π(kvK

+κvK
)
NCP −lτK

+l

(M+NCP )N (31)

ΥN (x)

N∑
n=1

ej2π(n−1) x
N (32)

In this context, NCP represents the size of the cyclic prefix.

D. BER Analysis

Fig. 4 illustrates the BER performances of different chan-
nel estimation methods under QPSK modulation with an IBO
set at 2 dB. As depicted, the performance of all estimators is
similar at lower SNR. However, as the SNR increases beyond
25 dB, the error levels of the baseline estimators become
more pronounced. In contrast, the method proposed in this
paper exhibits superior performance, with its detection capa-
bility nearing ideal detection performance when considering
perfect Channel State Information. Notably, at a high SNR
of 30 dB, only the method proposed in this paper achieves a
BER below the specified threshold. Compared to the baseline
methods, the proposed method offers close to 10 dB gain at
this specific BER threshold.

Fig. 5 displays the BER performance using 16-QAM
modulation with an IBO of 4 dB. Similar to observations
made under QPSK modulation, all estimation methods ex-
hibit comparable performance at lower SNR. However, at
higher SNR levels, the method proposed in this paper demon-
strates significant performance gains. Furthermore, the two
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Fig. 4. BER Analysis under QPSK Modulation with IBO=2dB.

Fig. 5. BER Analysis under 16-QAM Modulation with IBO=4dB.

estimators from the baseline methods exhibit a pronounced
error floor at high SNR values in scenarios involving higher
modulation orders. This is primarily due to the fact that
even as SNR continues to increase, the system’s nonlinear
distortion and other hardware limitations prevent further
reduction in the BER. Consequently, these estimators are
unable to reduce the BER below a specific threshold during
the signal detection process.

In addition, we compared the BER accuracy of different
deep learning estimators in data-driven channel estimation.
The specific results are shown in Table II

TABLE II
ESTIMATION RESULTS BER ANALYSIS ON DIFFERENT MODEL

SNR LSTM GRU Transformer

QPSK & IBO=2dB

15 0.0159 0.0167 0.0150
20 0.0019 0.0018 0.0012
25 0.0004 0.0003 0.0003
30 0.0001 0.0001 0.0001

16-QAM & IBO=4dB

15 0.1201 0.1302 0.1101
20 0.0470 0.0480 0.0450
25 0.0085 0.0080 0.0075
30 0.0021 0.0018 0.0015

E. PAPR Analysis

We compared the impact of two benchmark channel es-
timation methods on the Complementary Cumulative Distri-
bution Function (CCDF), a commonly used tool to assess
signal PAPR distortion and provide intuitive information
about the probability of the signal exceeding a given power
level, λ. As shown in Fig. 6, we analyzed the CCDF
results of different estimation methods. The figure reveals
that, to facilitate channel estimation in the DD domain, the
estimators allocate very high pilot power. It is evident that
our method achieves at least a 10 dB PAPR threshold gain
compared to the suboptimal benchmark method. Research
indicates that higher symbol detection accuracy depends on
higher pilot power, which leads to increased PAPR levels.
However, the requirement for high pilot power can lead to
inefficient resource utilization, potentially adversely affecting
power efficiency. Compared to pilot configurations in the DD
domain, pilot placements in the TF domain offer a more
efficient use of resources.

Fig. 6. PAPR Analysis.

The PAPR threshold is influenced by several factors, in-
cluding the specific attributes of the communication system,
the characteristics of the HPA, and the performance require-
ments of the application. The PAPR limitation caused by high
power pilots in the DD domain is a significant challenge
in existing research. Therefore, maintaining a lower PAPR
is extremely important in mitigating distortion caused by
HPAs, as the efficiency of HPAs decreases with the increase
of the PAPR of the input signal. It is noteworthy that
higher PAPR values can significantly impact the quality of
communication and are generally challenging to achieve in
practical applications. In contrast, our method offers a more
practical approach to OTFS communication.

V. CONCLUSION

This paper addresses the issue of nonlinear distortion
in OTFS systems caused by HPA and proposes a novel
channel estimation algorithm that combines Transformer and
adaptive filters. Simulation experiments demonstrate that
the proposed algorithm significantly outperforms traditional
pilot symbol estimation and compressed sensing methods
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in highly dynamic channel environments. By conducting
channel estimation in the TF domain, the proposed method
successfully reduces the impact of HPA-induced nonlinear
distortion and significantly lowers the BER at signal-to-noise
ratios SNR up to 35 dB, showcasing its efficiency and reli-
ability in complex channel conditions. This study provides
a new approach for effectively obtaining and utilizing CSI
in OTFS systems, offering important theoretical foundations
and technical support for the development of future high-
speed mobile communication systems.
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