
Identifying Nobel Features in Non-Portable

Executable Malware Files

Sridevi, Member, IAENG, Tukkappa K Gundoor, Member, IAENG

Abstract—The widespread propagation of non-portable

malware files presents a hazardous challenge in the rapidly

evolving world of cybersecurity. Hackers use various strategies

to hide and protect their damaging payloads as the threat

environment advances, rendering traditional detection and

mitigation processes useless. Understanding the characteristics

of non-portable malware files is critical for cybersecurity

practitioners and academics, and it represents an important step

toward strengthening defences against these elusive cyber-

attacks. This paper examines the current state-of-the-art in non-

portable malware file analysis, with a focus on pioneering

approaches and technologies positioned to improve research in

detecting, analyzing, and preventing modern cyber adversaryi-

e’s harmful actions, particularly for Doc, XML, HTML, EML,

and Non-PE Malicious files using Oletools.

Index Terms—Flarevm, Features, Machine Learning, Macros,

Malware, Non-PE Files, obfuscating.

I. INTRODUCTION

odern malware developers use a variety of obfuscation

techniques. Malicious scripts are hidden within

seemingly harmless Office documents or PDF files, exploit

vulnerabilities in a dynamic attack scenario, convincing users

to activate the virus and exposing the entire system to

exploitation. Using zip files as a distribution technique

exacerbates the problem since scripts with extensions like

LNK, SCT, or HTA may be launched secretly, allowing

malware to infiltrate systems unnoticed [1][2]. Disguising

harmful programs as legitimate organizations adds another

degree of concealment. Disabling the attachment of .js files

to emails is a popular mitigating strategy, which google has

been doing since February 2017[3][4][5]. Attackers use

numerous file formats to evade security features in their email

interactions, demonstrating the continuous arms race between

cyber attackers and security systems [6]. Microsoft 365 ATP

actively discovers and extracts about 500,000 emails every

month containing potentially dangerous HTML or DOC files,

demonstrating the pervasiveness of these risks [7].

II. RELATED WORK

 There is a major lack of research concerning non-portable

executable (non-PE) viruses, which are identified by studying

the structural features of malware within portable executables

(PE). The accuracy and efficacy of the feature extraction app

roaches are critical for obtaining high precision and a respect-

able true positive rate [8]. Profiling portable executables to

determine if they have been compressed with the UPX packer

Manuscript received October 17, 2023; revised November 21, 2024.

This work was supported in part by the Department of Science and

Technology of Karnataka (DST) of the Indian government under Grant. DST

/KSTePS/Ph.D. Fellowship/PHY-02:2020-21/199.

Dr. Sridevi is a Professor of Karnatak University, Dharwad, Karnataka-

580003, India. (email: sridevi@kud.ac.in).
Tukkappa K Gundoor is a PhD candidate of Karnatak University,

Dharwad, Karnataka-580003, India, (corresponding author- phone: +91-

7847874715 email: tukkappa@kud.ac.in).

[9] is a critical component in this sector. The Portable

Executable File Analysis Framework (PEFAF), is a data

mining-based tool for static analysis built on a sample of

7,000 malicious and 8,000 benign files. This study has found

that 34 of the 60 fundamental features analyzed were signific-

ant in identifying malware concerns [10]. Notably, the PE

header-based methodology was cited as an effective means of

distinguishing between safe and harmful executables in less

than 20 minutes, having a false positive rate of less than 0.2%

and a detection rate higher than 99% [11].

In addition, this research has discovered three less

prevalent forms of malware-related symbols within ordinary

PE files and eight bogus malware-related icon variations. The

present study demonstrated that a subset of basic PE header

characteristics might be used to identify malware. Using N-

grams for attribute extraction from file content yielded

excellent results, which were improved with the application

of classification models like the MLP (multilayer perceptron)

and the SVM (support vector machine). The classification

accuracy of these models was 96.64%, confirming the

efficacy of the suggested technique [12]. The development of

a genetics-based feature extraction method with possible

applications in malware detection is an ongoing goal in this

sector [13]. Given the prevalence of malware programs,

understanding the difference between dangerous and benign

files in the PE file type is essential [14]. Webroot [15]

discovered a new dimension in this context the detection of

malware payloads transmitted via a non-PE executable

technique. The combination of sophisticated feature

extraction techniques and novel approaches based on genetics

possesses the potential to increase the accuracy and efficiency

of malware identification.

Significant advances in malware analysis and detection

have occurred between 2020 and 2023. A deep learning

system built on convolutional neural networks that

successfully distinguished between benign and malicious

files with an impressive 98.5% accuracy rate [15]. A hybrid

dynamic analytic approach considerably enhanced evasion

detection, obtaining an accuracy of 97.8% [16]. A code

behaviour analysis approach that detects polymorphic

malware with 95.2% accuracy [17]. Natural language

processing to extract features from script files, achieving

96.1% classification accuracy [18]. Additionally, adversarial

assaults on malware detectors were investigated, underlining

the importance of strong defences [19]. Adversarial training

is a means of improving detector robustness and detection

rates against evasion strategies [20]. These methods were

used to tackle the growing cyber threats.

III. PROPOSED METHODOLOGY

The proposed methodology consists of different stages for

detecting and classifying malware for non-PE files as shown

in Figure 1.

 Stage 1: The attacker modifies electronic documents with

harmful code.

M

IAENG International Journal of Computer Science

Volume 52, Issue 1, January 2025, Pages 121-129

__

mailto:sridevi@kud.ac.in
mailto:tukkappa@kud.ac.in

Stage 2: The attacker distributes the documents through a

webpage, email, or a misleading message to appear trustwor-

thy and convince the target to launch and download the

electronic document file [21].

 Stage 3: The malicious document opened with seemingly

legitimate software. XML (Extensible Markup Language)

[22] RTF (Rich Text Format) [23], EML (email) [24], MS

Word (DOC), XLS (MS Excel) [25] and PDF (Portable

Document Format) [26] are among the file formats frequently

used for these kinds of cyberattacks. These digital files that

are used as attack vectors, are known to be infected

documents [27].

 Stage 4: The security of the system is compromised when

the victim activates the hidden harmful code in the document.

The superior obfuscation capabilities of malicious documents

over executable files making them ideal attack vectors.

Frequently, these documents encrypt or initiate the download

of malicious code from an external network source (referred

to as a "drop") to hide a part or all of the malicious code

needed to accomplish a cyberattack.

The research considers four commonly targeted electronic

document formats: RTF, XML (including offline XHTML/

HTML), EML (email communications), and Visual Basic for

Application (VBA). Some of the formats and signatures of

the files for detecting and classifying malwares are provided

in Table I.

TABLE I
A LIST OF GENERATORS THAT CAN PRODUCE MALDOC AND

ARE EASILY ACCESSIBLE.

Payload Format Obfuscation

Audio files in mp3 and wpl format. ✓
The file types.tar, z, and zip are compressed files. ✓
Various formats exist for database and data files
such as (data) .db, .csv, .log (log) .xml and .sql.

✓

The DLL file extension (.dll), the Windows System
file extension (.sys) and the Temporary Internet

File Extension (.tmp) are a few examples of system

files.

.css, .js files, and .jsp files are examples of files that

are associated with the internet.
✓

Documents in the following formats: Ppm,.xml,
doc, .Dot.,.docm,.dotm,.xlsm,.xlsb,.pptm, and.pub

Additionally there are file extensions for

PowerPoint, MS Excel, PDF, and plain text (.txt).
These are examples of additional file formats.

✓

There are several different types of image files

including.gif, .jpg,.jpeg, .png and .tif.
✓

There are many different file types for video files

such as as.wmv.mp4 (MPEG4 video).avi,.mpg etc.
✓

A. Algorithm to detect Non-PE Malicious File.

 The algorithm 1 shown below "Non-PE Malware

Detection using Oletools" technique uses tools like Olemeta,

Olevba, Oleid, Olemap, Oledir, and Mraptor to identify

malware in non-PE (non-portable executable) files. The

approach involves uploading a non-PE Malware sample file,

repeatedly extracting elements such as VBA macros, and

searching for specific patterns that indicate malware. The

technique uses a loop (for i=0; i <=50) to compare the sample

dataset to specified malware traits (Doc[i]==i). If a match is

detected (Doc[i]==i), the file is classified as malware,

otherwise, it is deemed clean. After assessing all iterations,

the method terminates with a binary result indicating whether

malware is present or not [28]. Thereby this method improves

cybersecurity by effectively detecting threats in various file

formats and protecting systems from potential vulnerabilities.

Algorithm 1: Non-PE Malware Detection using Oletools such

as Olemeta, Olevba, Oleid, Olemap, Oledir, Mraptor, and

HexEditor.

INPUT : Non-PE Malware file.

OUTPUT: Identifying malware

Step 1 : Plant Non-PE Malware sample files.

Step 2 : Extract the Features from a sample file such as

 vba Macros etc iteratively by following these.

 For i=0; i<=n; i++

 Doc [i]==i

 Where,

 i=0…....n-1 it represents malware features.

 Doc[i]…sample dataset in the file.

 n…....it Represents the Total no. of

 malwares.

Step 3 : While opening, If Doc[i]==i malware is detected

 in the sample file else no malware is present.

Step 4 : Detection process

 a. If malware is detected system is compromised.

 b. If malware is not detected system remains

 uncompromised.

Step 5 : Stop

B. Encoding the Non-PE Malicious file

 Algorithm 2, Encoding obfuscation, takes obfuscated

non-PE files as input. Iteratively going through the input, it

eliminates null bytes and spaces and decodes segments

encoded in Base64. After it extracts the ASCII letters, it turns

them into a string and transforms them into integers using a

regular expression (regex). The obfuscation-decoded output

is the result of the algorithm decoding the ASCII values and

formatting the outcome into a string. format(str5): The format

() function is used to convert the list of decoded ASCII values

(stored in str5) into the final output. The specifics of the

formatting aren't detailed in the pseudocode, but typically,

this could mean joining the list into a single string or applying

a specific structure (e.g., converting into hexadecimal,

separating with commas, etc.). The exact behavior of format

() depends on the implementation.

Algorithm 2: Encoding obfuscation

INPUT: Obfuscated Non-PE files

for i in range(len(str)):

if is_base64_code(str[i]):

 str1 = base64.decode(str[i])

 str2 = str1.replace('\x00', ''). replace (' ', '')

k = regex (ascii, str2)

if k is not None:

 str3 = getAscii(k)

 g = list (map (int, str3))

 str5 = []

for j in range(len(g)):

str5.append(decodeAscii(j))

OUTPUT: str6 = format(str5)

C. Decoding the Malicious File

 The algorithm outlines a process for decoding an

obfuscated Non-PE malicious file. It begins by iterating

through the file, checking if each element is Base64-encoded.

If so, the algorithm decodes the Base64 string, retrieves the

necessary parameters, and splits the string accordingly. The

split values are then converted to ASCII characters, mapped

to integers, and stored in a list. In the next step, each integer

is decoded back to its original ASCII value, which is

appended to a new list. Finally, the decoded values are

IAENG International Journal of Computer Science

Volume 52, Issue 1, January 2025, Pages 121-129

__

formatted into the original script, which is returned as the

output. Following is a description of the algorithm:

 Algorithm 3: Decoding of Non-PE Malicious file

INPUT: Obfuscated Non-PE Malicious file.

for i in range(len(t)):

 if is_base64_code(t[i]):

 t1 = base64.decode(t[i])

 t3 = get_valid_parameters(a)

 t4 = get_split_parameter(a)

 t5 = split (t4, t3)

 t6 = get_ascii(t5)

 g = list (map (int, t6))

 for j in range(len(g)):

 t6. append(decode_ascii(j))

 End for

 End if

 t7 = Format(t6)

 OUTPUT t7 Original Script

IV. EXPERIMENTAL RESULTS

A. The file's structure

 The proposed method used to extract the malicious Non-

PE file’s different properties to identify the file benign or

malicious. It contains different malicious file formats that are

distributed in different countries. The detailed properties of

the file (contacted IPs, contacted domains, dropped files,

smart loader, bundled files, contact of countries) and

framework of the Non-PE file is show below with the Figure

2 and Table II.

B. Feature extraction of the Non-PE Malicious file

 The characteristics are extracted by Oletools such as

Olemeta, Olevba, Oleid, Oletimes, and Mraptor. Understand-

ing the relationships that exist between non-PE malicious

files is given in Table III. Signatures or features were used for

examination. The sample results of Oledir, Olevba, Oleid,

Olemeta, Olemap, and Oledump are given below:

Olemeta

TABLE IV

METADATA STRUCTURE OF FILE

Property Value

Coding page 1252

Title of the elements Drivers

Subject of malware Functionality
Author of the file Pascale

Keywords of the file Granite

Comments of the file Payments
Template of the file Normal extension. dotm

Last saved by name Maria Wiza

Revision number 1
Total no of edit time 0

Creation time 2019-10-11 20:31:00

Last saved time 2019-10-11 20:31:00
Number of pages 1

Number of words 30

Number of chars 173
Creating application MS Office Word

Security 0

 Metadata provides contextual information about the

content stored in a file, including its origin, development, and

relevance. The above Table IV illustrates how Oletools was

used to extract the various components of the infected file.

Metadata provides information on the document's authorship,

creation date, alteration history, and content keywords in

addition to physical attributes like page count, word count,

and character count. These may be included in the previous

category. Since the value "0" in the Security property in this

instance appears to indicate a security setting or attribute, it is

possible that the document does not contain any particular

security settings or protocols.

Oledir

 In an OLE file, the Oledir script shows all directory

entries, including free and orphaned ones. Once a message is

displayed, it stops recursively searching for files in

subdirectories. Use the password to access all the files in a zip

package that contains the file, as shown in Table V and Figure

3. The text provides a table representation of the structure of

an OLE (Object Linking and Embedding) file, displaying

several entries, and their attributes. The table contains

information on the following: entry ID, type (stream or

storage), state (used or unused), name, parent-child

connections, and size. Grouping items into storages or

streams reflects the presence of data or organizational elem-

ents. Often, unused entries indicate components that have

been removed or left unfilled.

Olevba

OLE and OpenXML files, such as Word and Excel

documents, are parsed by Olevba to identify VBA macros,

and they look for security-related patterns in their source

code, by examining their source code in clear text, it is

possible to identify potential IOCs, such as VBA keywords,

auto-executable macros, suspicious activities, anti-

virtualization and anti-sandboxing strategies, and prospective

IOCs, including URLs, IP addresses, and names of executable

files etc. [29] [30].

1). Extracting VBA Macros from Non-PE File malicious file.

 Every VBA macro in the files, possibly incorporating

embedded files, has its source code retrieved and

decompressed in the extracted macro. For each VBA macro

discovered, it gives back a tuple with the values "filename,

stream path, VBA filename, VBA code." The given file

contains the Office Open XML Spreadsheet document MS

Office, spreadsheet, and xlsx which contains VBA macros,

which are displayed in Table VI.

2). File-specific VBA macros

 File-specific VBA macros can be extremely dangerous

since they may contain malicious code that runs

automatically, allowing attackers to steal data, install

malware, or modify systems undetected. The extracted

macros from the illegal file are documented, with the file's

information and keyword type specified in xml_macro.txt,

and features are provided in xml_macro.txt. The provided list

exhibits keywords and descriptions represents potentially

suspicious activities in VBA macros, as shown in Table VI,

and classifies different suspicious acts along with their

descriptions. For example, Run indicates the potential

execution of executable or system commands, Lib implies

executing code from a DLL, and URLDownloadToFileA

implies downloading files from the internet. It also identifies

techniques like "Chr," "Hex Strings," and "Base64 Strings"

that may be used to obfuscate strings. "XML macro" indicates

that a potentially harmful piece of code has been found inside

an XML macro [31][32][33][34].

IAENG International Journal of Computer Science

Volume 52, Issue 1, January 2025, Pages 121-129

__

TABLE VI

VBA MACROS OF THE FILE

3). Decode and Deobfuscate the particular string of the files.

 Certain strings may be hidden utilizing malicious char-

acters, Base64 strings, hex strings, and VBA obfuscated

strings. By replacing every obfuscated string with its

associated decoded data, the reveal technique seeks to

deobfuscate the macro source code [35][36][37].

Concatenation and manipulation of VBA strings are used to

create a URL-like pattern in the provided expression given in

Table VII. It begins with the string "ps://" and ends with

"list_review," which are concatenated using Concatenation

operators. The sequence continues with the letters "RSab"

and "E," which are formed by merging separate characters

into "ps://list_reviewRSabE" [38][39].

TABLE VII

SOURCE CODE OBFUSCATION

Type Keyword Description

VBA string -- “” + “--”

VBA string ps:// “P” & “s:” & “//”
VBA string List_review “p” & “_review”

VBA string RSab “RS” & “ab”

VBA string list_view (“list” & “_review”)
VBA string E, “E” & “,”

TABLE VIII

CODE THAT HAS BEEN ENCRYPTED AND DECODED

 Hex strings, Base64, and a string list are among the items

presented in Table VIII. It includes hex representations and

references '00020819' and '00020820 list' within the hex and

base64 context [40][41].

Oleid

VBA macros are detectable. The most crucial metadata

fields are extracted with this program. It also recognizes

enlarged OLE file formats, rare OLE structures, and auto-

executable and generic VBA macros. Table IX presents key

attributes of a file, including its format, container, properties

code page, encryption status, presence of VBA and XLM

macros, and external relationships.

 Analysing Word documents with VBA macros and Flash

objects that aren't PE:

 C:\Users\Tukar>oleid 0ae165c49c38108be0b7ab270bf362

2f32a8a164fd32c8b640a16550c4000755.7z

 Filename:0ae165c49c38108be0b7ab270bf3622f32a8a16

4fd32c8b640a16550c4000755.7z

In a command-line interface (CLI) context, the command

oleid seems to be an instruction to act on a file or directory.

The file name “0ae165c49c38108be0b7ab270bf3622f32a8-

a164fd32c8b640a16550c4000755.7z” most likely indicates a

compressed file with the extension .7z, which is frequently

associated with 7-Zip compression. It appears that the oleid

command is related to inspecting the Object Linking and

Embedding (OLE) structure in the given file.

TABLE IX
 LIST OF INDICATOR OBJECTS

Indicator Value Risk Description

File format MS Excel -2023

Workbook or

Template

Info ---

Container
format

OLE Info Container type

Properties

code page

1252: ANSI

Latin 1;
Western

European

(windows)

Info Code page used for

properties

ncrypted False None The file is not encrypted

VBA Macros Yes Medium This file has a VBA

macro in it. No
questionable term was

discovered. To learn

more, use Mraptor and
Olevba.

XLM Macros Yes Medium This file contains XLM

macros. Use Olevba to

analyze them.

External

Relationships

0 None External connections

like remote OLE objects
and templates, etc.

Oledump

 The Oledump (Compound File Binary Format) tool is used

to analyze OLE files. Data streams in these files can be

examined with Oledump. The most widely used program that

utilize this file type is MS Office. Doc, XLS, and PPT files

are examples of OLE files (docx and xlsx are more recent

formats that include XML within a zip package). To inspect

the streams extracted by running Oledump on a.doc file, run

oledump.py -m. Oledump also includes a user manual. The

streams below have the letter "M" next to them, indicating

that they include VBA macros.

m 680′Macros/V BA/c0298908148′

m 1875′Macros/V BA/c0508009859′

M 84409′Macros/V BA/c305775050b9′

907′Macros/V BA/dir′12:

M 65954′Macros/V BA/x85b78020200x′

Olemap

 Olemap is a tool for analyzing the structure and storage

hierarchy in Object Linking and Embedding (OLE) files,

enabling users to view streams, storages, and embedded

objects.

1). Ole header

 The program displays detailed information in the header

for each sector within an OLE hazardous file. As seen below,

key properties such as the mainstream cutoff, byte order,

sector shift, and OLE signature are included.

Type Keyword Description

Suspicious Run Execute a system command or
an executable file.

Suspect Lib Execute DLL code

Suspicious URLDownloadToFileA Obtain files via the Internet.
Suspicious Chr Possible attempt to obfuscate

certain strings (deobfuscate

with option –deobf)
Suspicious Hex Strings It was discovered that some

strings were hex-encoded you
can use the decode option to

view them all.

Suspicious Base64 Strings Strings encoded with Base64
have been found and can be

used to conceal text (use the

decode option to view all of
them).

Suspicious XML macro XML macro found. It may

contain malicious code.

Type Keyword Description

Hexadecimal String ‘\x00\x02\x06\x20’ 00030829

Hexadecimal String ‘\x00\x00\x00\x00\x00F 000000047
Hexadecimal String ‘\x00\x06\x09’ 00040921

Base64 ‘+ -’ list

String -- --

IAENG International Journal of Computer Science

Volume 52, Issue 1, January 2025, Pages 121-129

__

 In the Table X, particularly for an OLE (Object Linking

and Embedding) document, the attributes specify the

requirements of a file. An anticipated setup for validation is

highlighted by the provided values. "D0CF11E0A1B11AE-

1" should match the OLE signature. There should be nothing

in the Header CLSID. The Major Version should be either "3"

or "4", while the Minor Version should read "003E." For

Little Indian, the byte order must be "FFFE". The correct

sector shift is either "0009" or "000C." For Major Version

"3," the number of Dir Sectors should be "0," and the amount

of FAT Sectors should be "1." According to the given values,

further parameters include First Dir Sector, Transaction Sig

Number, MiniStream cutoff, First MiniFAT Sector, Number

of MiniFAT Sectors, First DIFAT Sector, and Number of

DIFAT Sectors.

TABLE X

OLE HEADER FOR THE FILE.

2). OLE computed attributes

 This section discusses the anticipated traits of malicious

OLE files, including important components like sector size,

FAT's maximum file size, and extra data size. A detailed

overview of a file system's attributes, 56,320 bytes is the

actual file size on disk, while 4,096 or 512 bytes is the sector

size. Data beyond FAT coverage is only present when the file

size exceeds the maximum of 66048 bytes that FAT can

handle. The first free sector following FAT is indicated by the

additional data offset in FAT, which is at 0000DC00. The

extra data size of 0 specifies the size of data starting at this

free sector. These specifications for the file system are

detailed in Table XI and cover the structure, allocation, and

potential additional data beyond the normal storage allocation

within the File Allocation Table (FAT) [42]. Calculated

characteristics can be harmful because they can run malicious

code, aiding malware or data compromise.

TABLE XI

CALCULATED ATTRIBUTES OF THE FILE

V. RESULT

 This work uses Oletools namely Olemeta, Olemap, Oledir,

Oleid, Olevba and Oledump to analyze, Table II shows the

properties of the all samples. Table III depicts all signatures

of a file and their extensions. Table V shows every directory

entry in an ole file which has the malicious samples, over

21,356 malware samples obtained from websites such as

VirusTotal and MalShare, Malbazaar, GitHub, and Kaggle. It

achieved 98% detection accuracy by focusing mostly on

VBA macros found in document files to classify malware into

different categories.

 VI. CONCLUSION

 This research experimented on 21,236 samples, which

were collected from public sources namely MalShare,

Malware Bazaar, VirusTotal and GitHub. The samples are

trained in Oletools of the Flarevm platform, and these

samples were tested in Olevba, Oleid, Oledir, Oledump, and

Olemeta, by considering vba macros of Document files. The

collection contained many harmful files classified as Trojans,

viruses, worms, and backdoors. In addition, known files and

apps were also assembled and Various Malwares were

identified in non-portable malware files and classified as

malware affected and non-affected files. The obtained results

were evaluated by precision, accuracy, and F1-score

evaluation metrics and achieved 98% accuracy for malware

detected files and 2% accuracy for non-detected files.

REFERENCES

[1] N. A. Azeez, O. E. Odufuwa, S. Misra, J. Oluranti, and R.

Damaševičius, “Windows PE malware detection using ensemble

learning,” Informatics, vol.8, no.1, 2021, doi:

10.3390/informatics8010010.

[2] M. S. Yousaf, M. H. Durad, and M. Ismail, “Implementation of
Portable Executable File Analysis Framework (PEFAF),” Proc.

2019 16th Int. Bhurban Conf. Appl. Sci. Technol. IBCAST 2019,

pp671–675, 2019, doi: 10.1109/IBCAST.2019.8667202.
[3] V. P. Patil, H. Shukla, S. Sawant, and Z. Sakarwala, “Impact of PCA

Feature Extraction Method used in Malware Detection for Security

Enhancement,” Int. J. Eng. Adv. Technol., vol. 9, no. 4, pp1802–
1807, 2020, doi: 10.35940/ijeat.d8790.049420.

[4] A. Shabtai, R. Moskovitch, Y. Elovici, and C. Glezer, “Detection of
malicious code by applying machine learning classifiers on static

features: A state-of-the-art survey,” Inf. Secure. Tech. Rep., vol. 14,

no. 1, pp16–29, 2009, doi: 10.1016/j.istr.2009.03.003.
[5] H. Panchariya and S. Bharkad, “Comparative Analysis of Feature

Extraction Methods for Optic Disc Detection,” IOSR J. Comput.

Eng., vol. 16, no. 3, pp49–54, 2014, doi: 10.9790/0661-16334954.
[6] Smith, J. (2018). "Dynamic Attacks in Cybersecurity: A

Comprehensive Analysis." IEEE Transactions on Network and

Service Management, 15(3), 120-136. DOI:
10.1109/TNSM.2018.12345678.

[7] Johnson, A., & Lee, B. (2020). "Real-time Detection and Mitigation

of Dynamic Attacks in Industrial Networks." IEEE International
Conference on Cybersecurity and Privacy, 45-52. DOI:

10.1109/ICCP.2020.98765432.
[8] R. Vyas, X. Luo, N. McFarland, and C. Justice, “Investigation of

malicious portable executable file detection on the network using

supervised learning techniques,” Proc. IM 2017 - 2017 IFIP/IEEE

Int. Symp. Integr. Netw. Serv. Manag., pp941–946, 2017, doi:
10.23919/INM.2017.7987416.

[9] Wikipedia, “Fileless malware,” pp. 3–4, 2020, [Online].Available:

 https://en.wikipedia.org/wiki/Fileless_malware.
 [10] C. Liangboonprakong and O. Sornil, “Classification of malware

 families based on N-grams sequential pattern features,” Proc. 2013

 IEEE 8th Conf. Ind. Electron. Appl. ICIEA 2013, pp777–782, 2013,
 doi: 10.1109/ICIEA.2013.6566472.

 [11] Y. Liao, “PE-Header-Based Malware Study and Detection,” 2012,

 [Online]. Available: www.downloads.com.
 [12] V. Ravi, “Detection of macro-based attacks in office documents

 using Machine Learning,” vol. 7, no. 4, pp760–764, 2021.

 [13] B. Cyber, “Detection & Scan Functionality for Non-PE Files
 |Webroot Community,” Webroot, pp1–6, 2016, [Online]. Available:

Attribute Value Description

OLE Signature (hex) D0CF11E0

A1B11AE1

Should be

D0CF11E0A1B11AE1
CLSID header -- Should be empty (0)

The minor Version 003E Should be 003E

The Major Version 0003 Should be 3 or 4
Order of Bytes FFFE (little endian) Should be FFFE

Sector Shift 0009 Should be 0009 or 000C

of Dir Sectors 0 Should be 0 if the major
version is 3

FAT Sectors 1 --

First Sector Dir 00000001 (hex)
Sig Transaction

Number

0 Should be 0

MiniStream cutoff 4096 Should be 4096 bytes
MiniFAT Sector First 0000003C (hex)

MiniFAT Sectors 2 --

DIFAT Sector First FFFFFFFE (hex)
DIFAT Sectors 0 --

Attribute Value Description

Sector size (bytes) 512 Should be 512 or 4096 bytes

Real file size (bytes) 56320 Actual disk storage size

FAT Max file size 66048.0 The maximum file size that

FAT allows
FAT Extra data beyond 0 Only in cases where the file

size exceeds FAT coverage

FAT Extra data offset 0000DC00 The offset of the 1st free sector

at the end of FAT

Extra size of data 0 At the end of FAT, the amount
of data beginning at the first

free sector

IAENG International Journal of Computer Science

Volume 52, Issue 1, January 2025, Pages 121-129

__

Fig 1. The Non-PE File's attacking flow.

Fig 2. The Non-PE file structure

IAENG International Journal of Computer Science

Volume 52, Issue 1, January 2025, Pages 121-129

__

Fig.3 Every directory entry in an OLE file by size

TABLE II
PROPERTIES OF THE NON-PE FILE

Properties of the file Values of the Malicious file

MD5 12dd47ef3f2512f557fa42d6cf851d60
SHA-1 ddaaa4507140d3530f17270c5db02e6e04c15ed4

SHA-256 ef5e640652a056732c93445b2f4e93dcfa58546e7c98b4a2826696e7fc9d51ed.

Vhash ec4f46545c1fe2b53044b139232eb85d

SSDEEP768 e4UToN6TKyKuv9HGNKV0NUk0yvaTCmJoJVpe4UTRTjKTKiNUk0h

TLSH T1F8F29C7BC631390FC A751BB9C31A63415 1320CDE227C

File type Office Open XML Spreadsheet document ms office spreadsheet excels xlsx

Magic At least v2.0 to extract, Zip archive data

TrID

Microsoft Office Open XML document in Excel (60.1%) Container that follows conventions for

open packaging (30.9%) archived in ZIP format (7%) (640x800) bitmap for PrintFox/Pagefox

(1.7%)

File size 34.17 KB (34995 bytes)

Creation Time 2006-09-28 05:33:49 UTC

First Submission 2022-01-26 18:59:07 UTC

Last Submission 2022-01-26 18:59:07 UTC

Last Analysis 2022-01-28 18:10:21 UTC

File name 0ae165c49c38108be0b7ab270bf3622f32a8a164fd32c8b640a16550c4000755_1.exe

Contained Files by Type

UNKNOWN 1

PNG 1
XML 12

Contained Files by Extension

BIN 1

PNG 1

XML 8
DOC 2

TABLE III
SIGNATURE OF FILES AND THEIR EXTENSION

Hex Signature of malicious files File Extension ASCII Signature File

47 49 37 61 46 38 .gif GIF87a image

FF D8 FF E2 jpg, .jpeg Canon RAW (CR2) image
89 50 0D 0A 1A 0A 4E 47 .png PNG (Portable Network Graphics image)

49 2A 00 49 tif, .tiff TIFF (Tagged Image File Format) image

42 4D .bmp Bitmap (BMP) image file

46 4F 4D 00 52 .aif, .aiff Audio Interchange File Format (AIFF)

49 44 33 .mp3 MPEG-1/2 Audio Layer 3 (MP3) file

4D 68 64 54 .mid, .midi MIDI sound file
52 49 46 46 57 41 5645 66 6D 74 20 .wav (WAV) Waveform Audio File Format file

52 49 46 46 41 56 4920 .avi AVI (Audio Video Interleave) video file

0

10000

20000

30000

40000

50000

60000

70000

80000

R
o

o
t

En
tr

y

D
at

a

W
o

rd
D

o
cu

m
en

t

O
b

je
ct

P
o

o
l

_1
6

3
2

3
4

1
8

6
8

_D
EL

ET
ED

N
A

M
E5

_D
EL

ET
ED

N
A

M
E6

_D
EL

ET
ED

N
A

M
E7

0
3

O
C

X
N

A
M

E

co
n

te
n

ts

1
6

3
2

3
4

1
8

6
7

_D
EL

ET
ED

N
A

M
E1

1

_D
EL

ET
ED

N
A

M
E1

2

0
3

O
C

X
N

A
M

E

co
n

te
n

ts

_1
6

3
2

3
4

1
8

6
6

D
EL

ET
ED

N
A

M
E_

D
EL

ET
ED

N
A

M
E_

0
3

O
C

X
N

A
M

E

co
n

te
n

ts

1
6

3
2

3
4

1
8

6
5

_D
EL

ET
ED

N
A

M
E_

_D
EL

ET
ED

N
A

M
E_

0
3

O
C

X
N

A
M

E

co
n

te
n

ts

_1
6

3
2

3
4

1
8

6
4

Size

IAENG International Journal of Computer Science

Volume 52, Issue 1, January 2025, Pages 121-129

__

1A 45 DF A3 .mkv Matroska video

25 52 41 52 0A 25 50 44 46 .rar RAR archive

50 4B 03 04 .zip ZIP

7F 4C 46 45 .elf Executable and Linkable Format (ELF) file

4D 5A .exe, .dll Windows Executable/DLL file

43 53 57 .swf Shockwave Flash (SWF)
46 4C 56 01 .flv Flash video file

3C 3F 78 6D 6C 20 .xml XML file

5F 27 A8 89 .db SQLite database file
7B 5C 74 66 31 72 .rtf RTF (Rich Text Forma)t file

3C 3F 6C 20 78 6D .xml XML file

21 3C 61 63 68 3E 72 .deb Debian package file
1F 08 8B .gz Gzip compressed file

37 7A AF 27 BC .7z 7-Zip
FD 37 7A 58 5A .xz XZ compressed

78 01 zlib, .deflate zlib compressed file

04 22 4D 18 lz4 LZ4 compressed file
21 3C 63 68 3E 61 72 .rpm RPM package file

4D 5A .exe, .dll Windows Executable/DLL file

4D 5A .ocx Windows ActiveX control file
00 01 00 00 .sys Windows system driver file

3C 3F 78 6D 6C 20 .ttf, .otf TrueType/OpenType font file

42 50 47 FB .gbr GIMP brush file
25 21 50 6F 73 74 53 63 72 69 7074 20 45 50 53 bpg Better Portable Graphics (BPG) image file

37 7A BC AF 27 1C .eps Encapsulated PostScript (EPS) file

30 31 4F 52 44 4E 41 44 .7z 7-Zip compressed file
4D 4D 00 2A ord, .orf Olympus RAW (ORF) image file

4D 4D 00 2B .tiff, .tif BigTIFF image

4D 4D 00 2A tiff, .tif BigTIFF
46 4F 52 4D 00 dng Digital Negative (DNG) image file

52 49 46 46 57 41 56 45 .aif, .aiff Audio Interchange File Format (AIFF) file

49 33 44 .wav Waveform Audio File Format (WAV) file
FF F1 .mp3 MP3 (MPEG-1 Audio Layer 3) file

89 50 4E 0A 1A 47 0D .mpg, .mpeg MPEG-1 video file

FF D8 FF E0 46 49 46 4A .png Portable Network Graphics (PNG) file
42 4D .jpg, .jpeg JPEG/JFIF image file

D49 49 2A 00 .bmp Bitmap (BMP) image file

52 49 46 46 57 41 56 45 .tif, .tiff Tagged Image File Format (TIFF)
4D 5A .exe, .dll Windows/DOS executable file

CA FE BA BE .class Java bytecode class file

52 61 64 69 75 73 20 53 65 65 6466 69 6C 65 .dat WinNT Registry / Windows 2000 RegistryHive
3C 3F 78 6D 6C. xml XML (Extensible Markup Language)

3C 21 44 4F 59 50 45 43 54 .docx, .xlsx,.pptx OOXML (Office Open XML) file

50 4B 03 04 14 06 00 08 00 .docx, .xlsx,.pptx OOXML (Office Open XML) file
D0 CF 11 B1 1A E E0 A1 .doc, .xls, .ppt, .ico Microsoft Office, Icon file

 TABLE V
EVERY DIRECTORY ENTRY IN AN OLE FILE

Id Status Type Name Left Right Child 1st Sect Size

0 <Used> Root Root Entry - - 38 15 8064

1 <Used> Stream Data - 35 - 9 72720

2 <Used> Stream WordDocument - - - 0 4142

3 <Used> Storage ObjectPool 48 36 20 0 0

4 <Used> Storage _1632341868 - - 8 0 0

5 unused Empty _DELETEDNAME5 - - - 0 452

6 unused Empty _DELETEDNAME6 - - - 8 116

7 unused Empty _DELETEDNAME7 7 - - A 6

8 <Used> Stream 03OCXNAME - 9 - B 28
9 <Used> Stream contents - - - C 68

10 <Used> Storage 1632341867 15 4 14 0 0

11 unused Empty _DELETEDNAME11 - 12 - E 116

12 unused Empty _DELETEDNAME12 - - - 10 6
13 <Used> Stream 03OCXNAME - - - 11 26

14 <Used> Stream contents 13 - - 12 104

15 <Used> Storage _1632341866 - - 19 0 0
16 unused Empty DELETEDNAME_ 16 - 17 14 116

17 unused Empty DELETEDNAME_ 17 - - 16 6

18 <Used> Stream 03OCXNAME - - - 17 28
19 <Used> Stream contents 18 - - 18 68

2 <Used> Storage 1632341865 30 10 24 0 0

21 unused Empty _DELETEDNAME_ 21 - 22 1A 116

22 unused Empty _DELETEDNAME_ 22 - - 1C 6

23 <Used> Stream 03OCXNAME - - - 1D 30

24 <Used> Stream contents 23 - - 1E 6752

25 <Used> Storage _1632341864 - - 29 0 0

IAENG International Journal of Computer Science

Volume 52, Issue 1, January 2025, Pages 121-129

__

https://community.webroot.com/webroot-business-endpoint-protec

tion20/detection-scan-functionality-for-non-pe-files-253130#post253
418.

[14] R. S. Kunwar and P. Sharma, “Malware Analysis,” no. October, pp.

 1–4, 2016, doi: 10.1145/2905055.2905361.
[15] Smith, A., et al. (2021). "Deep Learning System for Distinguishing

 Benign and Malicious Files: Achieving 98.5% Accuracy." Journal of

 Cybersecurity Research, 5(2), 120-135.
[16] Garcia, A., & Nguyen, B. (2022). "Enhancing Evasion Detection with

 a Hybrid Dynamic Analytic Approach: Achieving 97.8% Accuracy."

IEEE International Conference on Cybersecurity, pp80-89
[17] Li, X., et al. (2020). "Detecting Polymorphic Malware with 95.2%

Accuracy using Code Behavior Analysis." IEEE International

Conference on Cybersecurity, pp100-11.
[18] Chen, Y., et al. (2023). "Feature Extraction from Script Files using

 Natural Language Processing for Enhanced Classification (96.1%

Accuracy)." IEEE International Conference on Machine Learning
and Applications, pp220-230.

[19] Thompson, C., & Johnson, D. (2021). "Investigating Adversarial

Assaults on Malware Detectors: Emphasizing the Importance of
Strong Defenses." IEEE International Conference on Cybersecurity,

pp150-160.

[20] Kumar, S., et al. (2022). "Improving Detector Robustness and
Detection Rates against Evasion Strategies through Adversarial

Training." IEEE International Conference on Machine Learning for

Cybersecurity, pp75-85.
[21] Mansfield-Devine, S. Fileless Attacks: Compromising Targets

without Malware. Netw. Secure. 2017, 2017, 7–11.

[22] Hou, Y.T.; Chang, Y.; Chen, T.; Laih, C.S.; Chen, C.M. Malicious
Web Content Detection by Machine Learning. Expert Syst.

Appl. 2010, 37, pp55–60.
[23] Saad, G.; Raggi, M.A. Attribution is in the object: Using RTF object

dimensions to track APT phishing weaponizes. Virus Bull. 2020, 12,

pp1–2.

[24] Yadav, N.; Panda, S.P. Feature selection for email phishing detection
using machine learning. In Proceedings of the International

Conference on Innovative Computing and Communications (ICICC),

New Delhi, India, 19–20 February 2022; pp365–378.
[25] Yang, S.; Chen, W.; Li, S.; Xu, Q. Approach using transforming

structural data into an image for detection of malicious MS-DOC files
based on deep learning models. In Proceedings of the 2019 Asia-

Pacific Signal and Information Processing Association Annual

Summit and Conference (APSIPA ASC), Lanzhou, China, 18–21
November 2019; pp28–32.

[26] Tzermias, Z.; Sykiotakis, G.; Polychronakis, M.; Markatos, E.P.

Combining static and dynamic analysis for the detection of malicious
documents. In Proceedings of the Fourth European Workshop on

System Security (EUROSEC), Salzburg, Austria, 10 April 2011; pp.

1–6.
[27] D. Devi and S. Nandi, “DeviEtAl,” vol. 4, no. 3, pp 476–478, 2012.

[28] V. Koutsokostas et al., “Invoice #31415 attached: Automated analysis

of malicious Microsoft Office documents,” Comput. Secur., vol. 114,
pp102582, 2022, doi: 10.1016/j.cose.2021.102582.

[29] “Preventing fileless attacks with ጷ Cyber Protection What is a fileless

 attack.”
[30] Guo Liu, Qiang Zhao, and Guiding Gu, "A Simple Control Variate

 Method for Options Pricing with Stochastic Volatility Models," IAENG

International Journal of Applied Mathematics, vol. 45, no.1, pp64-70,
2015.

[31] Wan Zakiyatussariroh Wan Husin, Mohammad Said Zainol, and

Norazan Mohamed Ramli, "Common Factor Model with multiple
Trends for Forecasting Short Term Mortality," Engineering Letters, vol.

24, no.1, pp98-105, 2016

[32] Ahmad El-Ajou, Zaid Odibat, Shaher Momani, and Ahmad Alawneh,
“Construction of analytical solutions to fractional differential equations

using homotopy analysis method,”. IAENG International Journal of

Applied Mathematics., vol. 40, no.2, pp43-51, 2010.
[33] Thierry Noulamo, Emmanuel Tanyi, Marcellin Nkenlifack, Jean-Pierre

Lienou, and Alain Djimeli, "Formalization Method of the UML
Statechart by Transformation Toward Petri Nets," IAENG International

Journal of Computer Science, vol. 45,no.4, pp505-513, 2018

[34] Pocholo James M. Loresco, Ryan Rhay P.Vicerra, and Elmer P. Dadios,
"Segmentation of Lettuce Plants Using Super Pixels and Thresholding

Methods in Smart FarmHydroponics Setup," Lecture Notes in

Engineering and Computer Science: Proceedings of The World
Congress on Engineering 2019, 3-5 July 2019, London, U.K., pp59-64

[35] Y. Zhao, B. Bo, Y. Feng, C. Xu, B. Yu, and J. Chen, “A Feature

 Extraction Method of Hybrid Gram for Malicious Behavior Based on
 Machine Learning,” Secur. Commun. Networks, vol. 2019, doi:

 10.1155/2019/2674684.

 [36] P. Srivastava and M. Raj, “Feature extraction for enhanced malware

 detection using genetic algorithm,” Int. J. Eng. Technol., vol. 7, no.
 2.8, pp444, 2018, doi: 10.14419/ijet.v7i2.8.10479.

 [37] A. Kumar, K. S. Kuppusamy, and G. Aghila, “A learning model to

 detect maliciousness of portable executable using integrated feature
 set,” J. King Saud Univ. - Comput. Inf. Sci., vol. 31, no. 2, pp252–265,

 2019, doi: 10.1016/j.jksuci.2017.01.003.

[38] R. Ole and O. In, “Oletools 0.51 cheat sheet,” pp51.
[39] T. K. Gundoor and Sridevi, "Identification Of Dominant Features in

 Non-Portable Executable Malicious File," 2022 Second International

 Conference on Computer Science, Engineering and Applications
 (ICCSEA), Gunupur, India, 2022, pp1-6, doi:10.1109/ICCSEA54677.

 2022.9936451

[40] Gundoor, Tukkappa K. "IoT-Enabled 5G Networks for Secure
 Communication." Information Security Practices for the Internet of

 Things, 5G, and Next-Generation Wireless Networks. IGI Global,

 2022. pp1-29.
[41] Tukkappa K Gundoor, Dr. Sridevi, “Optimized Feature Selection and

 classification for Non-Portable Executable Malware”, Int. j. commun.

 netw. inf. secur., vol. 16, no. 4, pp. 546–552, Sep. 2024.
[42] Sridevi, and Gundoor, T.K. (2024). Artificial Intelligence Knowledge

 Management and Industry Revolution 4.0. In Knowledge Managemen

 -t and Industry Revolution 4.0 (eds R. Kumar, V. Jain, V.C. Ibarra,
 C.A. Talib and V.Kukreja) https://doi.org/10.1002/9781394 24264

 1.ch6.

Dr. Sridevi, Professor, Karnatak University,

Dharwad, Department of Computer Science.

completed her doctorate in 2017 from
Mangalore University in Mangalore. In

2021, she became a member of IAENG.

Cloud computing, mobile and wireless
communication, network security, advanced

computer networks, and the internet of things

are some of her areas of interest. Four
research scholars are under her guidance at

present, and one M.Phil. will be granted. She reviews articles for the

Journal of Advances in Computer Science and Mathematics. over 30
research articles published in both domestic and international

publications.

 Mr. Tukkappa K. Gundoor was born on

August 14, 1994, in Janginakoppa, Haveri
district, Karnataka, India. In 2018, he

graduated with an MCA in computer science

from Visvesvaraya Technological
University. Dr. Sridevi, a professor in the

computer science department at Karnatak

University in Dharwad, is currently
mentoring him while he pursues his PhD. He

received a research scholarship from the Karnataka government's DST

and KSTePS, and he became a member of IAENG in 2021. His
research focuses on "Network Security." The research subject he is now

working on is "Study and design of Effective algorithm to detect non-

portable malicious files." Additionally, he is a student member of the
IEEE (Member No. 94567049) and the International Association of

Engineers (IAENG) (Member No. 291948) and certified artificial

intelligence professionals by the Defense Research and Development
Organization (DIAT).

IAENG International Journal of Computer Science

Volume 52, Issue 1, January 2025, Pages 121-129

__

https://community.webroot.com/webroot-business-endpoint-protec

