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Abstract—The objective of feature selection is to identify the
optimal subset of features from all non-empty subsets of the
attribute set that best approximates the distribution of the
original dateset or is optimal according to a certain evaluation
criterion, such as achieving the highest classification accuracy.
In wrapper-based feature selection, swarm intelligence optimi-
zation algorithms are widely used. This paper addresses the
feature selection problem using a wrapper-based approach,
employing nine swarm intelligence optimization algorithms to
solve it and compare their performance. The algorithms in-
clude Crow Search Algorithm (CSA), Aquila Optimizer (AQO),
Whale Optimization Algorithm (WO0A), Harris Hawks Opti-
mization (HHO), Arithmetic Optimization Algorithm (AOA),
Butterfly Optimization Algorithm (BOA), Ant Lion Optimizer
(ALO), Prairie Dog Optimization (PDO), and Sparrow Search
Algorithm (SSA). Performance testing was conducted on 12
standard UCI datasets to validate the performance of these
algorithms. Convergence curves and box plots of accuracy val-
ues for the nine swarm intelligence optimization algorithms
across the 12 datasets are presented. The simulation results are
compared based on the mean and standard deviation of fitness,
the number of selected features, and accuracy.

Index Terms—Feature selection, Swarm intelligence optimi-
zation, KNN classifier, Performance evaluation

[. INTRODUCTION

Feature selection 1s a widely used data preprocessing step
in the field of artificial intelligence, aimed at reducing
the complexity of datasets by removing irrelevant or redun-
dant attributes. A dataset processed through feature selection
becomes easier to understand, exhibits higher generalization
capability, and achieves better computational efficiency.
Feature selection methods, based on their integration with
learning algorithms, can be classified into three categories:
Filter, Wrapper, and Embedded. Filter methods operate in
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dependently of any learning algorithm; features are selected
before the training phase. These methods primarily select
features based on statistical relationships either among fea-
tures or between features and the target variable. Essentially,
Filter methods and learning algorithms are decoupled, with
feature selection acting as a preprocessing step, while the
learning algorithm functions as the validation mechanism.
Filter methods usually identify a subset of features without
requiring a classification algorithm, which allows for the
rapid elimination of noise, redundancy, and irrelevant fea-
tures. Despite their simplicity, speed, and high computation-
al efficiency, especially when handling high-dimensional
data, Filter methods have a significant drawback: they can-
not detect interactions among features due to the lack of a
subsequent learning phase. Consequently, their performance
often falls short of that achieved by Wrapper methods.
Unlike Filter methods, Wrapper methods integrate feature
selection with a learning algorithm. They leverage machine
learning to identify feature interactions, optimizing model
performance by selecting relevant features. This involves
iteratively training and evaluating the model on different
subsets, using evaluation metrics to find the optimal subset.
Wrapper methods often achieve higher accuracy than Filter
methods by assessing features based on the learner's perfor-
mance. However, they incur significant computational costs
due to the need for classifier training for each subset. Robust
search strategies are essential for identifying the best feature
subset. HExhaustive, heuristic, and random searches are pri-
mary strategies in Wrapper methods. Heuristic search algo-
rithms, which reduce the search space, are widely used
These include swarm intelligence and physics-inspired me-
ta-heuristic algorithms, commonly applied in practice.
Swarm intelligence optimization algorithms [6] simulate the
behavior of biological swarms to search for the optimal fea-
ture subset. Examples include the Honey Badger Algorithm
(HBA) [7] and the Artificial Hummingbird Algorithm (AHA)
[8]. Physics-inspired algorithms draw inspiration from natu-
ral phenomena or physical laws to design algorithms for
solving optimization problems, such as the Arithmetic Op-
timization Algorithm {AOA) [9], the Flow Direction Algo-
rithm (FDA) [10], and the Energy Valley Optimizer (EVO)
[11]. Agrawal et al. proposed the Quantum Whale Optimiza-
tion Algorithm (QWOA) for feature selection, which inte-
grates quantum concepts with the Whale Optimization Algo-
rithm to enhance the exploration and exploitation capabili-
ties of the classical WOA [12]. Gokalp et al. introduced a
novel emotion classification wrapper feature selection algo-
rithm based on the IG meta-heuristic, where Multinomial
Naive Bayes (MNB) is used as a classifier due to its high
performance in emotion classification with selected features
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by IG [13]. Le et al. utilized Grey Wolf Optimization (GWO)
and Adaptive Particle Swarm Optimization (APSO) to opti-
mize a Multi-Layer Perceptron (MLP), reducing the number
of input attributes required to predict early onset of diabetes
[14]. Hu et al. proposed a Decentralized Foraging Strategy
SMA (DFSMA), along with a Binary DFSMA (BDFSMA)
using a transfer function, demonstrating superior perfor-
mance over the original SMA and proving its practical engi-
neering value in search space and feature selection [15].
Alzagebah et al. combined a neighborhood search with the
Moth-Flame Optimization (MFO) algorithm to address the
feature selection problem, helping to avoid local optima and
premature convergence [16]. Arora et al. introduced the But-
terfly Optimization Algorithm (bBOA) for wrapper-based
feature selection, which selects the optimal feature subset,
reduces the length of the feature subset, and improves classi-
fication accuracy [17].

This paper is based on the Wrapper feature selection
method, comparing the Crow Search Algorithm (CSA) with
eight swarm ntelligence optimization algorithms: AO, AOA,
ALO, BOA, HHO, SSA, WOA, and PDO. The performance
of these nine nature-inspired algorithms is simulated and
compared across 12 datasets. The structure of the paper 1s as
follows: Section 2 introduces the eight swarm intelligence
optimization algorithms; Section 3 describes solving the
feature selection problem using the Crow Search Algorithm;
Section 4 presents the experimental simulations and results
analysis; and finally, Section 5 provides the conclusions of
the paper.

II. SWARM INTELLIGENCE OPTIMIZATION ALGORITHMS

A, Ant Lion Optimizer

The Ant Lion Optimizer {(Al.O) addresses optimization
problems by numerically simulating the interactions be-
tween ants and antlions. It introduces a random walk mech-
anism for ants to achieve global search, combined with a
roulette wheel selection and elitism strategy to maintain
population diversity and enhance algorithm performance. In
this algorithm, antlions represent solutions to the problem,
and they update and preserve near-optimal solutions by
preying on ants with higher fitness levels [18]. The random
walk process 1s defined as:

Xt _{O,cumsum@f(ﬁ )*U,Cﬂmsum(zr(;z ),1)
cumsum(2r(tn ),1)

(1)
where, X (¢) 1s the set of random walk steps for an ant,
cumsum 15 calculates the cumulative sum, # 15 the number of
steps (in this paper, the maximum number of iterations), and
r(t) 1s a random function.

(t) 1, rand =05 5
Fl =
0, rand < 0.5 2)

where, rand is a random number in the range [0, 1]. Since
the feasible domain has boundaries, Eq. {1) cannot directly
update the ant's position. To ensure randomness, Eq. (1)
needs to be normalized as follows:

Xt w(d o
.}(j :( I ai) ( I Ci)+cxf (3)
& —a)

where, @, 1s the mimimum value of the random walk, & the
maximum value of the i-th dimension variable's random
walk, ¢/ the minimum value of the i-th dimension variable
at the #-th iteration, and d; is the maximum value of the i-th
dimension variable at the ¢-th iteration.

(1) Ants entering traps. The random walk of ants is influ-
enced by the traps set by antlions:

cf = Antl.ion: +cf
4

d! = Antlion] +d’

(2) Ants sliding towards antlions. Adaptive reduction of
the trap region constrains the random walk of ants:

4
c =

Cf
I
o )
d=—
1
(3) Catching prey. After hunting, the antlion eats the ant
and relocates to its region to increase the probability of cap-

turing new prey, updating its position as follows:
Antlion’, = Ant; iff (Ant.) > f(Antlion’,) (6)

{4) Elitism strategy. Elite antlions, which are the best ant-
lions generated during each iteration, influence the random
walk of ants as well:

Any) = Ba 2 Re) ;RE ) o

B. Whale Optimization Algorithm

The Whale Optimization Algorithm (WOA) was pro-
posed by Mirjalili et al. in 2016 and is inspired by the hunt-
ing behavior of whales [19]. As a relatively novel optimiza-
tion algorithm, WOA has not been established for long. In
this algorithm, the position of the whales represents feasible
solutions. During the hunting process, whales either encircle
their prey or use bubble-net feeding. Encircling refers to all
whales moving toward other whales, while bubble-net feed-
ing involves whales swimming in a circular motion in the
water and releasing bubbles to drive away their prey. In each
iteration of their movement, whales randomly select be-
tween these two actions. When they encircle their prey, they
randomly decide whether to swim toward the best position
found so far. The steps of the WOA are as follows:

(1) Initially, the population size of whales is set to X , and
the positions of X whales are randomly generated. The pa-
rameters of the WOA, including e, 4.C, I, p and
Max _ Frer are then initialized.

{2) The fitness of each whale 1s calculated and compared,
ultimately determining the most suitable individual, which is
defined as X*:

(3) The algorithm then enters the main loop.

Ifp<05 and|A| <1, the position of each whale is updat-
ed according to Eq. (8); Otherwise, the position of the whale
is updated according to Eq. (9).
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Xt )= X% 4D (8)
X(t+D) =X, —A-D ©)
A=2a-r-a (10)

D=|C-X,,.—X (1)
where, A represents the convergence factor, and D de-
notes the distance between the individual whale and the best
whale position, which are calculated using Eq. (10} and Eq.
(11), respectively. Iere, 7 is a random number in the range
of [0,1]; @ linearly decreases from 2 to 0 as the number of
lterations increases; X, ; represents the position of any
whale in the current population. If p> 0.5, the position of
each whale 1s calculated according to Eq. (12).
X(t+D)=D-€" -cos(2zD + X () (12)
D' =Xty X(1) (13)
where, D’ represents the distance from the i-th whale to the
food source; ! 1s a random value in the range of [-1,1]; b 1s
the spiral constant.

(4) The whale population is reassessed to identify the
global optimal whale individual and its position.

(5) If the termination criteria of the WOA are met, the ex-
ecution of the algorithm will stop. Otherwise, if the termina-
tion conditions are not satisfied, the algorithm will retumn to
Step 2 and continue execution.

6) The global optimal solution X 4 1s outputted.
g P p

C. Sparrow Search Algorithm

The Sparrow Search Algorithm (SSA) is a swarm intelli-
gence optimization algorithm based on the behavior of spar-
rows, simulating the processes of foraging and avoiding
predators. This algorithm employs a discoverer-follower
model and incorporates a scouting alert mechanism. In this
algorithm, the discoverer is the sparrow that locates the best
food source, while the followers are other sparrows. Addi-
tionally, scouting sparrows are established to monitor safety.
Structurally, the SSA 1s quite similar to the Artificial Bee
Colony (ABC) algorithm, but there are some differences in
the search operators, making it an improvement over the
ABC algorithm [20].

Based on the aforementioned description of sparrows, a
mathematical model can be established to construct the SSA.
This model employs virtual sparrows to simulate the track-
ing of food sources, where each sparrow's position is repre-
sented by a position vector, defined as follows:

Q1 T ap

X = (14)

a1 Xn.D

where the number of sparrows is denoted by N, and the
dimension of the optimization is represented by D . The
following vector can be used to represent the fitness values
of all sparrows:

S 1 M2 .0 )]
flx)= ' (15
f ([XNJ a1 0 X ol
Where, each row corresponds to the value f(x).
¢ — :
X exp(—=) , if By <ST
=t e (16

Xy +O-L, . if Ry>ST

The scavengers will continue to monitor the producers
until the latter locate a suitable food source, at which
point the producers will leave their current position to
pursue the target food source. If successful, the scaven-
gers will obtain food from the producers; otherwise, they
will maintain their vigilance tasks. The foragers update
their positions according to the following equation.

)Ct *)Ct N
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D. Butterfly Optimization Algorithm

The Butterfly Optimization Algorithm (BOA) was intro-
duced by Arora et al. in 2019. This algorithm is inspired by
the survival and reproductive behaviors of butterflies in na-
ture. Butterflies analyze airborne scents to locate food
sources or other butterflies, relying on their sensory percep-
tion to identify these resources. In the BOA, each butterfly
emits a scent that diffuses through the environment, with the
scent intensity correlating to the butterfly's fitness. As a but-
terfly's position changes, so does its fitness. When a butter-
fly detects the scent of another, it moves closer to that but-
terfly, a process referred to as "global searching.” Converse-
ly, if a butterfly does not detect a more fragrant counterpart,
it will engage in random movement, known as "local search-
ing." The scent intensity 1s represented by the stimulus in-
tensity, as shown in Eq. (19):

F=d*” (19)
where, ¢ 1s the sensory factor; [ represents the intensity of
the stimulus; & is the power exponent. The intensity [ is
related to the fitness of the butterfly. During the global
search, butterflies move towards the optimal solution g*, as
expressed in Eq. (20).

M =wd (PP g )

where, x/ represents the solution vector of the i-th butterfly
in the #th iteration; g* denotes the best solution found so
far, 7 is the scent of the i-th butterfly; » is a random num-

i

(20)
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ber in the range of [0,1]. The local search phase can be ex-
pressed as follows in Eq. (21).

i+1 3 i i 3
X o=x (T )t

21
where, x/ and xf, represent the k-th and j-th butterflies ran-

domly selected from the solution space. During the foraging
process of the butterflies, both global and local searches are
performed, and the parameter p can be employed to facili-
tate the transition between these two search modes. Each
iteration utilizes the random values of » and p generated
by Eq. (21) to determine whether to engage in global or lo-
cal search strategies.

E. Harris Hawks Optimization

The Harris Hawks Optimization (HHO) algorithm 1s in-
spired by the hunting strategies of Harris hawks, where the
hawks symbolize candidate solutions and the optimal solu-
tion 1s referred to as the prey. In the HHO algorithm, the
Harris hawks utilize their keen eyesight to track their prey
and subsequently execute a surprise attack to capture it. The
HHO algorithm comprises three main components: the ex-
ploration phase, the transition phase between exploration
and exploitation, and the exploitation phase [22].

(1) Exploration Phase

Harris hawks randomly inhabit a location and employ two
strategic approaches to locate their prey, as described in Eq.
(22).
anaf (T)*}’i |Xmmf (T)i 2V2X(T) ‘: gz 0.5
[X a5t (D)= X ()] = 5[ + 130" = )], g < 0.5

(22)

X(r-i—l){

where, X(7) and X (7 +1) represent the positions of indi-
viduals in the current and next iterations, respectively; ¢
denotes the iteration count. X, (z) refers to the position of
a randomly selected individual, while X, (z) indicates
the position of the prey, which corresponds to the individual
with the best fitness. The variables 5 —#, and ¢ are random
numbers uniformly distributed between [0,1], g is used to
determine the strategy to be adopted in the random selection
process. X, (r) represents the average position of individu-
als, as shown in Eq. (23).

X5)=1 D X(0)

where, X, (7) represents the position of the & individual in
the population, and M denotes the size of the population.

(2) Transition Phase

(23)

The HHO algorithm operates based on the energy of the
prey's escape, which is defined by Eq. (24).

T
E=2E,(1-=) (24)

T

where, £, represents the nitial energy of the prey, 7 is the
iteration count, and 7 denotes the maximum number of
iterations. When |E| =1, the algorithm enters the explora-

tion phase; conversely, when |E|<1, it transitions to the
exploitation phase.

(3) Exploitation Phase

Definition: » is a random number uniformly distributed
in the interval [0, 1], used to select different exploitation
strategies.

(a) When 0.5 <|E| <1 and r>0.5, the soft encirclement
strategy is employed for position updates, as expressed in
Eq. (25).

X(z+1) :AX(T)—E|.D(mbe (z’)—X(z')| (25)

AX(7) = X i (7) = X (7) (26)

where, AX(r) denotes the displacement of the prey's cur-
rent position, while ./ 1s a random variable uniformly dis-
tributed within the interval [0, 2].

{b) When the condition |E1 <05 and = 0.5 1s met, the
position is updated using the hard encirclement strategy, as
formulated in Eq. (27).

X(7+1) = X, (1) — E|AX (7)) @7

{c) When the condition 0.5 <[E|<] and r<0.5 is satisfied,
the position is updated using the progressive soft encircle-
ment approach, as delineated in Eq. (28).

X(r+1)= Y, fOY) < f(X(D) 8
|z, @< X))

Y= mebif (T) - ElJmebM (T) 7X(T)| (29)
Z=Y+SxLF(2) (30)

where, f(-) denotes the fitness function, s is a two-
dimensional random vector; and LF(-) represents the math-
ematical formulation of the Lévy flight.

(d) When the condition |E| < 0.5 and 7 <0.5 is met, the
position is updated using the asymptotic hard encirclement
method as described by Hq. (28), with ¥ defined in Eq. (31).

Y= mebif (T) - E|Jmebz£ (T) - Xm (T)l (3 1)

F. Arithmetic Optimization Algorithm

The Arithmetic Optimization Algorithm (AOA) funda-
mentally relies on exploration and exploitation mechanisms.
During the exploration phase, a comprehensive traversal of
the search space is required since the optimal solution could
be situated anywhere within this space [23]. Conversely, the
exploitation phase capitalizes on the effective information,
utilizing correlations among high-quality solutions to incre-
mentally adjust and refine the search trajectory from the
nitial guess towards the optimal solution. In AOA execution,
the switching between exploration and exploitation phases is
governed by the function value of the Mathematical Opti-
mizer Accelerator (MOA). When #1 > MOA | global explo-
ration is activated; whereas, when rl < MOA , the algorithm
transitions to local exploitation.

MOA(2) = Min +t = (2220 (32)

(1) Global exploration. Division and multiplication opera-
tions generate high distribution values or decision metrics
conducive to the global exploration mechanism.
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x, (¢ +1) = left(bestx, +(MOP +£)*(UB, — LB,) -
*u+LRB, ), <05
x,, (¢ +1) = left(bestx, * MOP*(UB, — LB,)

34
*u+ LB ), otherwise (39

The Mathematical Optimizer Probability (MOP) is formu-
lated as:

MOA(H) =11
Tﬂ

(35)

(2) Local exploration. Subtraction and addition operations
result in high-density values, which enhance the algorithm's
capacity for local exploitation.

%, (¢t +1) = left(bestx, - MOP*(UB, — LB,)

36
%11+ LB )1y, <0.5 36

% At +1) =lefi(besix, + MOP*(UB, - LB )

37
*1+ LB ), otherwise 7

G. Agquila Optimizer

As an innovative intelligent optimization algorithm, the
core concept of the Arithmetic Optimization (AO) algorithm
is to emulate the natural behavior of eagles in capturing their
prey, with the goal of achieving optimization objectives.
This algorithm exhibits exceptional optimization capabilities
and efficient convergence rates, offering an effective solu-
tion for addressing optimization challenges [24]. The popu-
lation is randomly initialized within the defined search space.

X, ,=rand<(UB,~LB; )+ LB,,i=12,...N,=12,...
(38)

In this context, rand is a random vector, LB denotes the
lower bound of the j~th dimension of the given problem, and
UB denotes the upper bound of the j-th dimension of the
given problem. Expansion of search. Eagles identify hunting
areas by soaring high and diving vertically, a behavior that
can be modeled mathematically as follows:

RED = X () 12 [ (X (1) Toee (1) r00)

(39)
xM(f):%Zile(t), Vi=1,2---Dim  (40)

where, x, (¢ +1) represents the solution generated at iteration
{+1; Xy (f) is the best solution obtained up to iteration ¢,
approximating the prey's location; (1-¢/7) controls the
search expansion over iterations; X, () denotes the mean
value of the current solutions at iteration £, calculated using
Eq. (39); rand 1s a random value between O and 1; # and
T represent the current and maximum iteration numbers,
respectively, D¥m indicates the problem's dimensionality,
and N is the population size (number of candidate solutions).

H. Prairie Dog Optimization

The fundamental concept of the Prairie Dog Optimization
(PDO) algorithm is to model prairie dog behavior in two

distinct stages [25]. The first stage, global exploration, en-
compasses two behavioral modes: searching for food and
constructing burrows. The second stage, local exploitation,
includes two behavioral modes: responding to food source
signals and reacting to predator signals.

(1) Exploration Stage

The exploration stage employs two strategies:
Strategy One. Individuals search for new food sources
within their burrows.

PD =GBest, , —eCBest, ; xp-CPD, ,

i+1,5+1
(41)

Muaxiter
4

xLevy (H)V

Strategy two. Individuals continuously excavate new bur-
rows.

ED

41,741

= GBest, ;, xrPD x DS x Levy (n)

Maxiter . Muoxiter (42)

Y ———<iter <
4

where, PD), ; represents the position of an individual, while
GBest, ; signifies the current global best solution. Levy(n)
refers to the standard 1.évy flight, and p 1s a specialized
food source alarm fixed at 0.1 Hz for this experiment. The
mathematical models for eCBest; P CPD, ; and DS are
formulated as follows:

CPD,, xmean(PD

)

GBest, ; x(UB,—LB )+A

eCBest, , = GBest, , xA+ (43)

where, eCBest; ; evaluates the effectiveness of the current
best solution, with A representing minor differences be-
tween individual prairie dogs. CPD i1s the cumulative ran-
dom effect of all prairie dogs in the population, and »PD is
the position of the random solution.

GbhBest, , —rPD,
CPD,, = —
d GBest, , +A

(44)

DS denotes the digging strength of small groups, which
depends on the quality of the food source. » introduces ran-
domness to ensure effective exploration, taking the value -1
for odd iterations and 1 for even iterations. Max,,, 1s the

maximum number of iterations, and ifer represents the cur-
rent iteration number.

iter

H 2
DS =15xrx (- 0y Mo

M. axz'te v

(45)

{(2) Exploitation Stage

In the exploitation stage, the first type of sound indicates
the location and quality of a food source. When an individu-
al discovers a high-quality food source, other individuals
converge at the sound source to satisfy their food needs. The
position update for this scenario is mathematically repre-
sented as follows:

ED

i+, j+

1 =GBest, ,—eCBest, ,xe—-CFPD,

M.
XF&HCZ‘V’ axzter - M. iter
2 4

(46)
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The second type of sound warns of a predator's presence.
Prairie dogs on the predator's path will hide. The position
update for this scenario is mathematically represented as
follows:

axzter

PD =GBest, , x PEx mndVWT

I+, 7+ <ng

iter

(47)

where, PE denotes the predator effect, and rand is a ran-
dom number between O and 1.

iter

PE=15xrx(l-—22

) Mgy

(48)

Aitor

III. SOLVING THE FEATURE SELECTION PROBLEM USING
THE CROW SEARCH ALGORITHM

A. Crow Search Algorithm

In 2016, Askarzadeh et al. conducted an in-depth study on
the foraging behavior of crows and successfully developed
an innovative algorithm known as the Crow Search Algo-
rithm (CSA). The CSA simulates two behaviors of crows:
foraging and hiding food, and it is characterized by its pa-
rameter efficiency, simplicity, ease of understanding, and
strong global search capability [26].

The CSA is inspired by the food-storing behavior of
crows, which involves hiding leftover food for retrieval
when needed. Crows are known for their greed, often fol-
lowing each other to discover food resources during forag-
ing. Locating food hidden by a crow is not an easy task;
once a crow detects that other crows are trailing it, it will
quickly adopt a strategy to mislead its pursuers by altering
its direction of movement, thereby protecting its food source.
The CSA utilizes a population of seekers to explore the
search space. By employing a population-based approach,
the probability of finding a good solution and escaping local
optima 1s enhanced. The CSA algorithm increases solution
diversity and employs a memory mechanism to retain the
best solutions. During the iterations of the Crow Search Al-
gorithm, each crow randomly selects either another crow or
itself and migrates towards its hidden position(i.e., the best
solution found by the crow). This signifies that in each itera-
tion, the best-known position will be directly used n subse-
quent searches to find even better solutions.

(1) Crows live in a social structure, exhibiting group be-
havior.

(2) Crows possess the ability to remember the locations
where they have stored food.

(3) There are instances of mutual chasing and theft among
CTOWS.

(4) When being followed, crows will protect their stored
food with a certain probability.

In each iteration, the position update of crow i 1is closely
related to a randomly selected crow j. Crow i will follow
crow J to its food storage location m_ j iter (represented
by the position of crow j in the code). A perception proba-
bility parameter 4P =0.1 is set to determine whether crow
J detects the tracking behavior of crow i . Consequently,
there are two potential position update scenarios for crow 7 .

1) Successful Tracking

In this case, crow j does not notice the tracking behavior
of crow 1:

Xi,irerH :Xi,irer +I; % i Iter X(mj,iter 7Xi,irer) (49)

where, r, represents a uniformly distributed random number
in the interval [0, 1], and " denotes the flight distance
of crow i at the current iteration 7fer . The flight distance
determines the step size of the movement towards the se-
lected hidden position. When the flight distance is relatively
short, the crows typically engage in local search; however,
as the flight distance increases, the crows are more likely to
undertake global search behaviors.

2) Tracking Failure

At this point, the tracking behavior of crow i has been de-
tected, prompting crow j to guide it to a random position.
Therefore, in conjunction with step 1, the position update
method for crow [ 1s given by:

Xi,ifer+1 - Xz,zrer 4 Xﬂi,ifer X(mj,ifef
i

Xufer+1 _ _Xi,iter),rj > AP_:,ifer (50)

a random position, otherwise

where, #, represents a uniformly distributed random number
in the interval [0, 1]. AP/ indicates the adaptability level
of crow j after iterations. A smaller AP value leads to a
more intense jfer search behavior, while a larger 4P value
enhances the diversity of the search behavior. The algorithm
proceeds as follows:

(1) Parameter initialization. Define the decision variables
and determine the perception probability ( 4P ), flight dis-
tance ( /1), maximum number of iterations (ifer mex ), and
the number of crows ( N ).

(1) Position and memory initialization. Crows are ran-
domly distributed within the search space. In the mitial it-
eration, each crow hides food at its starting position.

(3) Evaluation of the fitness (objective) function. For each
crow, compute its objective function value.

(4) Update crow positions. Determine new positions
based on Eq. (49).

(5) Verify the feasibility of new positions. Check the va-
lidity of the new position for each crow. If the new position
is feasible, the crow will update its position; otherwise, it
retains its current position.

(6) Compute the objective function for the new position.
Calculate the objective function value for each crow's new
position.

(7)) Update crow memory. If the objective function value
at the new position is better, update the memory to reflect
the information of the new position.

(8) Termination condition. Repeat Steps 4 to 7 until the
termination condition is satisfied, at which point output the
position of the best objective function value.

B. K-Nearest Neighbors

The K-Nearest Neighbors (KNN) classifier is a super-
vised learning algorithm that determines the category of an
unknown sample by calculating the distances between it and
the samples of known categories. It selects the K nearest
samples as neighbors and subsequently classifies the un-
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known sample based on the obtained category information
through majority voting or weighted majority voting. The
algorithm can be described as follows:

(1) Calculate the distances between the test data and the
traiming data.

(2) Sort the distances in ascending order.

(3) Select the K nearest points.

(4) Count the frequency of each category among the K
points.

(5) Assign the category with the highest frequency among
the K points as the predicted classification for the test data.

In this experiment, KNN is employed for the classifica-
tion task, calculating the Euclidean distance D, between the
training set and the test data to determine the closest sam-
ples, as expressed in Eq. (51).

K
Dy = ‘jzi_l(rmmﬁ —Testp; ¥ (51)

C. Fitness Function

genetic and evolutionary algorithms. It evaluates the qual-
ity of individual solutions to a problem, with higher fitness
values indicating superior solutions that are favored for sur-
vival and reproduction, while lower values suggest inferiori-
ty and lead to elimination. Typically derived from the prob-
lem's objective function, the fitness function can be repre-
sented by the numerical value of the objective function, re-
lated metrics, or an evaluation function based on the prob-
lem's characteristics and individual solutions. Designing the
fitness function requires consideration of the problem's fea-
tures and objectives, selecting appropriate metrics to ensure
a meaningful and discriminative evaluation. Feature subsets
are represented as binary vectors, with '1' for selected fea-
tures and '0' for non-selected features. These conflicting
objectives are encapsulated in the fitness function, as shown

in Eq. (52).
|

= hy (D)+h,
Sitness = hy (D) + I

(52)
where, y,(D) represents the classification error rate corre-
sponding to the feature subset selected by the classifier. |M |
denotes the number of selected features, |N| 1s the total
number of features, /i, and %, are two weight coefficients
reflecting the subset's classification accuracy and length,
respectively, with the constraint # +#, =1. Given the ne-
cessity for an accurate classification model, the classifica-
tion accuracy is assigned a higher inertia weight. In this
study, A and A, are set to 0.99 and 0.01, respectively.

D. Performance Evaluation of Feature Selection

Metrics are often utilized when evaluating and interpret-
ing the results of feature selection problems. These evalua-
tion metrics include the fitness value, classification accuracy,
and the average number of selected features. Egs. (53) to (58)
sequentially represent the calculation methods for average
classification accuracy, the average number of selected fea-
tures, and the mean and standard deviation of fitness values.

i 1 20 4
ean _decuracy = 0 Zg=1 coUracy; (53)

where, Mean accuracy represents the average classifica-

tion accuracy obtained from 20 independent runs of the al-

gorithm, while Accuracy; denotes the classification accura-

cy achieved in each individual run. The classification accu-
racy 1s calculated as follows:

4 —L S match(Py, Al 54

couracy =— 3" march(Plh. b) (54

where, N represents the number of test instances, which

corresponds to the number of instances in the dataset. P/,

denotes the predicted class label for data pomnt i, while A/

refers to the actual class label from the labeled data, serving

as the reference class label. The function march(Pl, 41) acts

as a comparison function. When PI =41

match(Pl,, AL) =1, otherwise, match(PL, AL)=0.

1 20

M. ture = — ture, 55

ean _ feature 5 Zi:l Sfeature, (55

where, Mean feature represents the average number of

selected features obtained from M independent algorithm

runs, while feature; denotes the number of selected features
obtained in each individual run.

Mean_ fim ! > fit (56)
ean e85y = — eSS
- 20 Lt :

where, AMean fitness tepresents the average fitness ob-
tained from M independent runs of the algorithm, while f;
denotes the best fitness achieved in each individual run. The
method for calculating {itness is as follows.
fitness = 099*(1 — Accuracy)+
|Selecred Jfeatures Countl
0.01*

|T0tal Jeatures C Ountl

(57)

where, Accuracy refers to the classification accuracy.

(1 , 2
Std _ fitness = J%Z( fitness, —Mean _ fitness)~ (58)

where, Std  fimess represents the standard deviation of the
fitness values, fitmess;, denotes the fitness value obtained in
the i iteration, and Mean fitness is calculated using Eq.
(56).

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Selection of Experimental Data

The experiments involved selecting 12 datasets from the
UCI repository for classification studies. These datasets,
with varying instances, feature counts, and classes, provide
diverse perspectives to evaluate the advantages and disad-
vantages of different nature-inspired algorithms across vari-
ous datasets. Table I details the information of these da-
tasets.

In this study, the K-nearest neighbor (KINN) algorithm
with K=5 was employed to calculate the classification accu-
racy in the fitness function, as KNN is proven to be faster
and simpler. The experiments were repeated 20 times with
different random seeds. Additionally, to prevent over-fitting,
five-fold cross-validation was used. The dataset was divided
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into training and test sets. In the first iteration, 80% of the
feature vectors were used for training, and the remaining
20% were used for testing. Subsequently, another 20% of
the feature vectors were used for testing, while the remain-
ing 80% were used for training. This process was repeated
until all feature vectors were used for testing. Finally, the
average statistical measurements over 20 independent runs
were collected and presented as the final results.

All experiments were conducted using MATLAB R2020a
on an Intel Core 13-1005G1 machine with a CPU of 1.20
GHz, 4GB of RAM, and a Windows 10 operating system. In
this study, the population size for each algorithm was set to
10, and the maximum number of iterations was set to 100.
The common parameters for the nine algorithms were kept
consistent. The dimensionality of the search space equaled
the total number of features. According to previous research,
setting the parameter A, to 0.99 resulted in optimal classifica-
tion performance.

B. Feature Selection Results and Analysis

To evaluate the effectiveness and superiority of the Crow
Search Algorithm (CSA) in feature selection, CSA was
compared with eight commonly used swarm intelligence
optimization algorithms across 12 different UCI datasets.
These algorithms include Ant Lion Optimizer (ALO),
Arithmetic Optimization Algorithm (AOA), Butterfly Opti-
mization Algorithm (BOA), Harris Hawks Optimization
(HHO), Population-Based Optimization Algorithm (PDO),
Sparrow Search Algorithm (SSA), Whale Optimization Al-
gorithm (WOA), and Eagle Strategy (AO). The results were

that the CSA algorithm holds a significant advantage in ac-
curacy. Table TV shows the number of selected features for
all swarm intelligence optimization algorithms, with CSA
winning by an absolute margin. These results underscore the
superior performance of the CSA algorithm in terms of fit-
ness, accuracy, and feature selection, illustrating its robust-
ness and effectiveness in various classification scenarios.

To provide a more intuitive and vivid demonstration of
the differences among the nine swarm ntelligence optimiza-
tion algorithms, convergence curves and accuracy box plots
were generated based on the best classification accuracy
calculated by the KINN classifier during the execution of the
algorithms. The convergence curves for the nine swarm in-
telligence optimization algorithms across the 12 datasets are
illustrated in Fig. 1. Seen from Fig.1, the horizontal axis
represents the number of iterations, while the vertical axis
depicts the average accuracy values obtained after each al-
gorithm 1s independently executed 20 times. These curves
highlight the convergence behavior of each algorithm, with
the CSA algorithm consistently exhibiting superior conver-
gence performance. Additionally, the accuracy box plots are
presented in Fig. 2. Offering insights into the variability and
robustness of their performance. The combination of con-
vergence curves and accuracy box plots offers a comprehen-
sive visual comparison, emphasizing the advantages of the
CSA algorithm in terms of both convergence speed and ac-
curacy stability.

TABLEI 12 DATASETS USED IN SIMULATION EXPERIMENTS

o . Number Datasets Features Instances Classes
evaluated based on the mean and standard deviation of fit- . .
ness, the number of selected features, and accuracy, with the 1 Algerian Forest Fires 12 244 z
optimal values highlighted in bold. Data tables provided the 2 Brain Tumor2 10366 50 3
results for the mean fitness, accuracy standard de\/.’l.ﬂtlon, 3 Bupa 5 345 2
mean number of selected features, and accuracy. Additional-
L 4 Cleanl 166 476 2
ly, convergence curves and box plots of precision values for
the nine swarm intelligence optimization algorithms on 12 5 Climate Model Simulation Crashes 19 540 2
datasets were presented. é Connectionist Bench 59 208 2
Simulation results are shown in Tables II- IV, with the 5 Forest type mapping 26 s A
best results highlighted in bold. Table 11 presents the mean
and standard deviation of fitness for the nine swarm intelli- 8 Handwritten 235 1593 10
gence optimization algorithms. Tables III- IV show the 9 HAPTDataSet 560 360 9
comparison of accuracy yalues and the mean numbfar of se- 10 Heart 12 270 5
lected features for the different algorithms, respectively. In _
these tables, the best results are highlighted in bold. In Table i Wine 12 178 3
II, the CSA algorithm achieved the highest average fitness 12 Zoo 15 101 7
values on most datasets (12 datasets). Table 11T demonstrates
TABLEII. COMPARISON OF MEAN FITNESS AND ACCURACY STANDARD DEVIATION
Dataset Measure ALO CSA WOA SsSA BOA HHO AOA AO PDO
| AVG 0.0092 0.0065 0.0125 0.0084 0.0216 0.0182 0.0143 0.0082 0.0114
Algerian
STD 0.0093 0.0072 0.0122 0.0087 0.0067 0.0096 0.0100 0.00%96 0.0101
AVG 0.0013 0.0049 0.0015 0.0049 0.0076 00116 0.0109 0.0021 0.0004
Brain
STD 0.0012 0.0000 0.0015 0.0012 0.0219 0.0306 0.0302 0.0014 0.0011
AVG 0.2826 0.2839 0.2852 0.2892 0.3058 0.2982 0.2826 0.2826 0.2867
Bupa
STD 0.0000 0.0039 0.0092 00111 0.0163 0.0179 0.0000 0.0000 0.0108
AVG 0.1001 0.0997 0.1069 0.1033 0.1175 0.1033 0.1083 0.1037 0.0903
Zoo
STD 0.0253 0.0151 0.0226 0.0247 0.0202 0.0218 0.0240 0.0199 0.0292
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AVG 0.0292 0.00%90 0.0385 0.0238 0.0438 0.0486 0.0209 0.0136 0.0310
Cleant STD 0.0295 0.0178 0.0205 0.0156 0.0174 0.0246 0.0189 0.0141 0.0221
) AVG 0.0536 0.0503 0.0735 0.0619 0.0824 0.0587 0.0779 0.0638 0.0541
Climate STD 0.0170 0.0092 0.0150 0.0134 0.0093 0.0117 0.0155 0.0101 0.0163
AVG 0.0615 0.0503 0.0704 0.0616 0.0736 0.0799 0.0535 0.0437 0.0505
Connectionist
STD 0.0202 0.0264 0.0354 0.0299 0.0212 0.0367 0.0295 0.0321 0.0353
) AVG 0.03%4 0.0113 0.0434 0.02%6 0.0650 0.0465 0.0175 0.0135 0.0206
Hine STD 0.0246 0.0135 0.0216 0.0252 0.0385 0.0383 0.0250 0.0144 0.0192
AVG 0.0866 0.0969 0.0971 0.1199 0.1060 0.1058 0.0879 0.0719 0.0812
Forest STD 0.0084 0.0069 0.0083 0.0067 0.0102 0.0107 0.0097 0.0055 0.0050
AVG 0.0263 0.0220 0.0300 0.0246 0.0361 0.0317 0.0262 0.0199 0.0208
HAPTD STD 0.0157 0.0164 0.0146 0.0120 0.0124 0.0179 0.0153 0.0106 0.0136
AVG 0.08%4 0.0811 0.0934 0.0853 0.1093 0.0981 0.1033 0.08%94 0.0774
Heart STD 0.0348 0.0206 0.0428 0.0266 0.0306 0.0472 0.0299 0.0236 0.0455
AVG 0.0269 0.0269 0.0522 0.0286 0.0608 0.0578 0.0288 0.0208 0.0265
Handwritten
STD 0.0077 0.0044 0.0052 0.0094 0.0062 0.0096 0.0071 0.0069 0.0088
TABLEIIL. COMPARISON OF ACCURACY VALUES FOR DIFFERENT AT GORITHMS
Dataset ALO CSA WOA SSA BOA HHO AQA AO PDO
Algerian 0.9938 0.9969 0.9896 0.9948 0.9813 0.9844 0.9875 0.9938 0.9906
Brain 1.0000 1.0000 1.0000 0.9950 0.9900 0.9900 1.0000 1.0000 1.0000
Bupa 0.7246 0.7232 0.7217 0.7167 0.6964 0.7058 0.7246 0.7246 0.71%6
Zoo 09750 0.9950 0.9650 0.9800 0.9600 0.9550 0.9825 0.9900 0.9725
Cleanl 0.9500 0.9537 0.9295 09421 0.9200 0.9442 0.9232 0.9389 0.9505
CliMate 0.9417 0.9532 0.9319 0.9421 0.9292 0.9222 0.9486 0.9597 0.9537
Connectionist 09146 0.9061 0.9037 0.8829 0.8951 0.8951 09122 0.9293 0.9207
Wine 0.9629 0.9914 0.9586 0.9729 0.9371 0.9557 0.9843 0.9886 0.9814
Forest 09798 0.9827 0.9755 09798 0.9678 0.9731 09774 0.9851 0.9846
HAPTD 09153 0.9225 09111 09188 0.8931 0.9056 0.8986 09139 0.9285
Heart 0.8222 0.8593 0.8130 0.8537 0.8093 0.7954 0.8380 0.8556 0.8444
Handwritten 0.9061 0.9042 0.8989% 0.9008 0.8860 0.9017 0.8953 05011 0.9159
TABLE IV. COMPARISON OF AVERAGE SELECTED FEATURE COUNT
Dataset ALO CSA WOA SSA BOA HHO AQA AO PDO
Algerian 395 4.45 2.90 4.20 3.90 3.50 2.50 2.65 2.70
Brain 1362.4 5046.2 1571.7 5050.2 2724 4 18073 992.7 2156.8 411.5
Bupa 6.00 2.90 585 520 3.15 4.15 6.00 6.00 545
Zoo 7.15 5.55 6.15 640 6.75 6.55 5.65 595 6.10
Cleanl 68.10 74.60 61.80 76.85 52.90 58.75 30.70 5645 84.70
Climate 740 5.15 6.10 8.70 7.00 5.75 5.30 7.60 9.25
Connectionist 12.80 23.45 10.40 23.90 13.10 11.60 5.60 11.50 16.20
Wine 340 2.25 3.15 3.50 3.65 4.00 2.50 2.85 2.85
Forest 17.10 9.85 15.40 12.40 11.45 13.65 10.35 14.00 14.95
HAPTD 31045 269.65 30340 270.75 189.75 256.45 16235 232.00 367.80
Heart 525 6.25 4.80 5.65 4.55 5.90 5.05 5.50 5.50
Handwritten 183.05 124 45 174,40 130.05 119.20 154.65 118.30 149.45 179.40
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V. CONCLUSIONS

Based on the wrapper-based feature selection method, the
Crow Search Algorithm (CSA) was compared with eight
swarm intelligence optimization algorithms: Ant Lion Op-
timizer (ALO), Arithmetic Optimization Algorithm (AOA),
Butterfly Optimization Algorithm (BOA), Harris Hawks
Optimization (HHQO), Sparrow Search Algorithm (SSA),
Whale Optimization Algorithm (WOA), and Population-
Based Optimization Algorithm (PDO). The convergence
curves and box plots of precision values for the nine nature-
inspired algorithms were presented across 12 datasets.
Comprehensive performance metrics were compared. CSA
achieved the highest average fitness values on most datasets,
with an absolute advantage in the number of selected fea-
tures, while also maintaining superior accuracy. The evalua-
tion of the proposed nature-inspired algorithms was based
on the mean and standard deviation of fitness, the number of
selected features, and accuracy, with optimal values high-
lighted in bold. The comparison revealed that CSA consist-
ently obtained the highest average fitness values on most
datasets and demonstrated a clear advantage in the number
of selected features and accuracy. The results, including
mean and standard deviation of fitness, number of selected
features, accuracy, convergence curves, and box plots of
precision values across 12 datasets for the nine algorithms,
provide significant reference value for future research.
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