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Development of Efficient and Robust
Linkage Pattern Mining for Multiple Sequential
Data

Kyosuke Maeda, Issei Yokota, Yoshifumi Okada and Saerom Lee

Abstract—Linkage pattern mining is a method used to
extract frequently occurring patterns from multiple sequential
data without considering the similarity or correlation between
frequent patterns. Therefore, it is expected to be a promising
approach for disease prediction and voice data analysis. In the
previous method, closed itemset mining was introduced in the
linkage pattern-mining algorithm to ensure robustness against
noise. Although this method can extract linkage patterns from
noisy artificial datasets, a reduction in computation time and
stringent parameter settings are essential for its practical
application to real data. In this study, we employed Episode
Mining using Memory Anchor algorithm for frequent pattern
mining to overcome the limitations of the previous method. The
objective of this study is to develop a new robust linkage
pattern-mining method that is more applicable to real data. A
performance comparison between the previous and proposed
methods using artificial datasets showed that the proposed
method achieved a reduction in computation time while
maintaining an extraction accuracy that is comparable to that
of the previous method, particularly on noisy artificial datasets.

Index Terms—closed itemset, EMMA, interval graph,
linkage pattern, sequential pattern mining

I. INTRODUCTION

Pattern mining is a general technique used in data mining
to extract patterns with valuable information from large
amounts of data. With the proliferation of big data in
recent years, pattern mining has attracted attention for its
application in data analysis. Sequential pattern mining
identifies repeated patterns in sequential data by focusing on
similarities and correlations. Since the introduction of
sequential pattern mining by Agrawal et al. [1], various
methods have been proposed [2]-[4]. These methods have
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been applied in a wide range of fields, including e-learning
[5], medicine [6], and malware detection [7].

Among the sequential pattern-mining methods, linkage
pattern mining extracts frequently occurring patterns from
multiple sequences of data without using similarities or
correlations [8]. This method targets multiple sequences and
extracts groups of frequent patterns that appear repeatedly
across sequential data as linkage patterns.

Lee et al. [9] proposed a linkage pattern-mining algorithm
in which closed-itemset mining was introduced to make it
robust against noise. Their method (hereinafter referred to as
“previous method”) enabled a certain degree of pattern
extraction from artificial datasets containing noise. However,
the problem with the previous method that uses the mining
algorithm proposed by Mannila [10] is that the extraction of
frequent patterns utilizes most of the total computation time,
which is affected by the parameter settings.

This study aims to reduce the computation time required
for frequent pattern mining, which accounts for the majority
of the computation time of previous methods, for its
application to real data with noise. To achieve this objective,
we developed a new linkage pattern-mining method by
replacing the algorithm proposed by Mannila [10], which was
used to extract repeatedly occurring frequent patterns from
sequential data in the previous method, with Episode Mining
using Memory Anchor (EMMA) algorithm [11]. Because the
EMMA algorithm searches sequential data by focusing only
on frequent patterns, it is expected to be faster than the
algorithm proposed by Mannila, which comprehensively
searches for sequential data for frequent pattern mining. To
demonstrate the efficiency of the proposed method, we
compared the extraction accuracy and computation time of
both methods using noisy and non-noisy artificial datasets.

The remainder of this paper is organized as follows.
Section II defines the linkage pattern extracts used in the
study. Section III explains the implementation of the
proposed method. Section IV describes evaluation
experiments conducted using artificial datasets. Section V
presents the results and discusses the experiments, and
Section VI summarizes the study.

II. DEFINITION OF LINKAGE PATTERN

The linkage pattern to be extracted is defined according to
Lee et al. [9] as follows.

First, we consider a frequent pattern, where S is a single
sequence. In this case, freq(S, @) denotes the number of
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occurrences of the subsequence a in S. For a predefined
constant value &, a is a frequent pattern in S if freq(S, a) > 6.
Let us assume that multiple sequential data sets are provided
(Patterns A, B, and C) have already been extracted from these
sequences. A group of frequent patterns is called a linkage
pattern if the frequent patterns that occur in the sequential
data during a certain timeframe satisfy the following two
conditions.

1) One or more frequent patterns exist that partially or
entirely overlap in the occurrence time of all frequent
patterns.

2) A set of frequent patterns satisfying condition 1 occurs &
or more times along the sequential data.

For example, when =2, in Fig. 1, a group of patterns (i.e.,
Patterns A to C) exists with overlapping timings of
occurrences (Condition 1), and these patterns occur three
times (Condition 2); consequently, the group of frequent
patterns A, B, and C is extracted as a linkage pattern.

III. METHOD

Fig. 2 illustrates the steps involved in the proposed method.
The proposed method follows a flow similar to that of the
previous method; however, the algorithm for extracting
frequent patterns from each sequence (Fig. 2a) has been
improved. A detailed description of the proposed method is
presented in this section.

A. Preprocessing

First, normalization and discretization were performed on
all sequential input data before frequent pattern extraction.
For normalization, the sequential data were converted to
values ranging from 0 to 1. In discretization, the normalized
data are divided into D stages and assigned discrete values
from 0 to D-1. In the proposed method, D was set to 50 stages,
which is the same value used in the previous method.

B. Frequent Episode Extraction and Labeling

Next, the EMMA algorithm [11] was used to extract
frequent episodes from the sequential data (Fig. 2a). EMMA
is a frequent episode mining algorithm for single sequences.
In this study, we used the EMMA algorithm proposed by
Huang et al,, and EMMA uses the minimum number of
occurrences, @ (6 is a natural number > 2), as a parameter.

The process flow of the EMMA algorithm is shown in Fig.
3. Events, episodes, and patterns are defined as follows: An
event is recorded data at one time point. An episode is a
combination of events with more than @ occurrences, and a
pattern is the same label assigned to the same episode by
labeling process. In Step 1, the input data are searched once,
and the number of event occurrences is counted. In Step 2, the
events whose number of occurrences in Step 1 is less than 8
are deleted (in Fig. 3, € = 2 for explanation). In Step 3, a list
recording the time points of event occurrence, called the
Location List, is created. In Step 4, the Location List is used
to identify larger episodes by recursively searching for
episodes whose number of occurrences is greater than or
equal to 8, where @ is the same value as that used in Step 2.
The Bound List created in Step 4 is a list of episode
occurrence locations in the form of [episode start location,
episode end location]. In Fig. 3, an episode is identified by
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Fig. 1. Example of linkage pattern (redrawing based on [9])

extending event {a} as an example. <{a}, {b}> is searched
recursively, because the number of occurrences is greater
than two when event {a} is extended with event {b}. Finally,
all frequent episodes whose number of occurrences is more
than @ are extracted as an output. The steps of the EMMA
algorithm described above were modified for linkage pattern
mining from those of the original EMMA algorithm.

The frequent episodes extracted using the EMMA
algorithm were then labeled. In the labeling process, unique
labels were assigned to each frequent episode after excluding
frequent episodes with lengths less than two. If multiple
patterns appeared during the same period, a label
corresponding to a longer episode was assigned. In Fig. 3,
episode <{a}, {b}> is assigned label 1, and output as pattern.

C. Interval Graph Generation

In this step, interval graphs were generated from the
interval representations of the frequent patterns extracted in
Subsection III.B. (Fig. 2b). An interval graph is a graph in
which each labeled frequent pattern is associated with a node,
and the overlap of any two labeled frequent patterns on a
certain time axis between sequential data points is
represented by an edge [12]-[14]. Thus, the set of frequent
patterns that appear to be linked simultaneously among
different sequential data is the interval graph.

D. Extraction of Linkage Patterns Based on Closed
Itemset

In the previous method, closed-itemset mining was applied
to exclude noise patterns that mistakenly appeared in the
interval graph generation using robust linkage pattern mining.
Fig. 2c illustrates the process by which noise patterns are
removed from an interval graph. Each interval graph is
indicated as a transaction, and a labeled frequent pattern,
where each node in an interval graph is indicated as an item.
The maximum closed itemset satisfying minsup is extracted
from an itemset consisting of an interval graph by applying
closed itemset mining. Finally, the most frequently occurring
closed itemset is output as the linkage pattern. The randomly
constructed noise patterns can be removed using
closed-itemset mining.

Fig. 2c shows an example in which the noise patterns nA,
nB, and nC are removed by closed-itemset mining, and only
the precise linkage patterns {A, B, C} are extracted. In the
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Fig. 3. Procedure of Episode Mining using Memory Anchor algorithm and labeling

proposed method, the linear time closed-itemset miner
algorithm [15], which is a fast and exhaustive closed-itemset
mining algorithm, was used in the same manner as in the
previous method.

IV. EXPERIMENTS

In this study, the proposed method was evaluated and
compared with previous methods in terms of extraction
accuracy and computation time using artificially created
sequential datasets. Note that the artificial datasets used in
these experiments are new additions to the datasets used by
Lee et al.

A. Artificial Datasets

The artificial datasets used in these experiments are
described by Lee et al. [9] as follows:

Each artificial dataset has a data length of 1000 points per
sequence and comprises three sequential sets of data. The
datasets were generated by inserting 10 linkage patterns
(embedded linkage patterns) into random sequential data
created using uniform random numbers. For the experiments,
five non-noisy artificial datasets (Dataset 1 to Dataset 5) and
five noisy datasets (Dataset]l noise to Dataset5 noise),
which were fluctuations based on normal random numbers
with a standard deviation (SD) of 0.01, were added to each
non-noisy dataset created. Fig. 4 shows a cross-section of
each non-noisy artificial dataset. In Dataset 1, frequent
patterns of the same length are embedded with identical start
times across the three sequential sets of data (Fig. 4a). In
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Fig. 4. Artificial datasets (redrawing based on [9])

Dataset 2, frequent patterns of the same length are embedded
with different start times across three sequential sets of data
(Fig. 4b). In Dataset 3, frequent patterns of different lengths
are embedded with identical start times for three sequential
sets of data (Fig. 4c). In Dataset 4, frequent patterns of
different lengths are embedded with different start times in
each of the three sequential sets of data (Fig. 4d). In Dataset 5,
a few types of frequent patterns are embedded with different
lengths and different start times in each of the three
sequential sets of data (Fig. 4e).

In these experiments, new datasets—Dataset 6 and dataset
6_noise—were also added for application to real data.
Dataset 6 has a few types of short-length frequent patterns
embedded with different lengths and different start times in
each of the three sequential sets of data. In Dataset 6, five
different types of embedded linkage patterns are contained to
make it more complex and the extraction of patterns more
difficult than other datasets. Dataset6 noise results from
fluctuations being added to Dataset6 with an SD of 0.01.

B. Parameter Settings

Experiments were conducted to compare the previous and
proposed methods by setting the best-performing parameters
for each method. The best-performing parameters were
selected using a grid search. The previous method set the
minimum number of occurrences € and window width w,
which are parameters typically used for frequent pattern
extraction, and the minimum number of occurrences minsup,
which is used in closed-itemset mining. Conversely, the
proposed method does not require w; thus, only @ and minsup
were set. In the experiments, the computation time was
represented as the average computation time for 10 runs. The
parameter with the highest F-measure was also selected as the
optimal parameter for determining extraction accuracy. Table
I lists the parameters used in the evaluation experiments.
Tables Ia and Ib list the parameters used to evaluate the
extraction accuracies for the non-noisy and noisy datasets,

respectively. Similarly, Tables Ic and Id show the parameters
used to evaluate the computation time for the noisy and
non-noisy datasets, respectively.

C. Extraction Accuracy of Linkage Patterns

The previous and proposed methods were compared in
terms of their accuracy in extracting embedded linkage
patterns using the artificial dataset described in Section IV.A.
Precision, recall, and F-measure were used as the evaluation
indices. These values were calculated as follows:

.. CDP
Precision = ——
DDP
Recall = %
EDP
2* Precision* Recall
F —measure =
(Precision + Recall )

where CDP represents the number of data points in the
embedded linkage patterns correctly detected by each method,
DDP represents the number of data points in the embedded
linkage patterns extracted by each method, and EDP
represents the total number of data points in the embedded
linkage patterns in each dataset.

D. Overall Experiments Flow

The evaluation experiments were conducted as follows.
Extraction accuracies and computation time were compared
for each case.

Case 1 comprises experiments that were conducted in the
same manner as the previous method’s evaluation
experiments using non-noisy and noisy datasets (Datasetl—6
and Dataset]_noise—Dataset6_noise), respectively.

Case 2 comprises experiments that were conducted on
Dataset] noise-Dataset6 noise, increasing the data length
from 1000 to 10000 in increments of 1000 while the SD was
fixed at 0.01.
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TABLE I
PARAMETERS USED IN THE EXPERIMENTS

(a) Parameter used to evaluate extraction accuracies (without noise)

Previous Method Proposed Method

0 w minsup 0 minsup
Datasetl 5 5 5 4 3
Dataset2 5 5 5 5 2
Datasetd 5 3 51 5 4
Datasetd 5 5 5 5 3
Dataseth 3 5 5 4 2
Dataset6 9 5 5 5 3

(c) Parameter used to evaluate computation time (without noise)

Previous Method Proposed Method

(b) Parameter used to evaluate extraction accuracies (with noise)

Previous Method Proposed Method

0 w minsup 0 minsup
Dataset]l noise 6 3 2 3 2
Dataset2 noise 7 3 2 4 2
Dataset3 noise 7 3 2 4 2
Dataset4d noise 7 3 2 4 2
Dataset5 noise 5 3 2 3 2
Dataset6b noise 7 3 2 4 2

(d) Parameter used to evaluate computation time (with noise)

Previous Method Proposed Method

0 w i minsup 0O minsup 0 w minsup 0O minsup
Datasetl 10 3 10 10 10 Datasetl noise 10 3 10 10 9
Dataset2 10 3 9 10 9 Dataset2 noise 10 3 10 10 10
Dataset3 10 3 10 10 4 Dataset3 noise 10 3 9 10 9
Datasetd4 10 3 8 10 6 Dataset4 noise 10 3 10 10 5
Dataseth 10 3 10 10 8 Datasetd noise 10 3 10 10 6
Dataset6 10 3 10 10 2 Dataset6 noise 10 3 10 9 3
TABLE II

COMPARISON OF THE EXTRACTION ACCURACIES OF THE PREVIOUS AND PROPOSED METHODS ON NON-NOISY DATASETS

Datasetl Dataset2 Dataset3 Datasetd Dataseth Datasetf

Precisi Previous Method 1 1 1 1 1 1
eSO proposed Method 1 1 1 1 1 1
Recall Previous Method 1 1 1 1 1 1
ca Proposed Method 1 1 1 1 1 1

F Previous Method 1 1 1 1 1 1
TMEAse  pyoposed Method 1 1 1 1 1 1

TABLE III

COMPARISON OF THE EXTRACTION ACCURACIES OF THE PREVIOUS AND PROPOSED METHODS ON NOISY DATASETS

Datasetl n Dataset2 n Dataset3.n Datasetd n Dataseti.n

Preodion Previous Method 0.880
Proposed Method 0.932

Previous Method 0.929

Recall Proposed Method 0.774
T Previous Method 0.904
Proposed Method 0.845

0.879 0.845 0.820 0.812
0.947 0.904 0.952 0.914
0.903 0.860 0.838 0.913
0.778 0.752 0.739 0.775
0.891 0.852 0.829 0.860
0.854 0.821 0.832 0.838

Case 3 comprises experiments that were conducted on
Dataset] noise—Dataset6 noise, increasing the noise by
SD=0.01 to SD=0.1 in increments of 0.01 while the data
length was fixed at 1000.

V. RESULTS AND DISCUSSION

The results for Case 1-Case 3 are explained in order. Note
that the results in each Table is rounded to the third decimal
place. Note that noisy datasets are marked with “_noise” or
“ n” in the table and figure.

A. Results and Discussion on Case 1

1) Extraction accuracies

Tables II and III show the extraction accuracies of the
previous and proposed methods on non-noisy and noisy
artificial datasets, respectively. Table II shows that the
linkage patterns were extracted perfectly from the non-noisy
datasets using both the previous and proposed methods.
Conversely, for noisy datasets (Table III), although the

precision marginally improved for all datasets, the recall and
F-measure were lower than those of the previous method.

One reason for the higher recall of the previous method is
that a search with a small w increases comprehensiveness and
reduces the number of missed frequent patterns. The previous
method performed an exhaustive search; however, its
precision was reduced by the extraction of pseudo-patterns
accidentally created by noise. In the proposed method,
frequent patterns were searched by combining episodes.
Therefore, pseudo-patterns were not extracted, and a higher
precision was achieved than that of the previous method.
However, the proposed method is less exhaustive than the
previous method, which is thought to have reduced recall and
affected the F-measure as well.

2) Computation time
Tables IV and V show a comparison of the computation
time of the previous and proposed methods on non-noisy and
noisy artificial datasets, respectively. From Table IV, we can
observe that the computation time of the proposed method is
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TABLE IV
COMPARISON OF THE COMPUTATION TIME OF THE PREVIOUS AND PROPOSED METHODS ON NON-NOISY DATASETS

computation time (unit: seconds)
Datasetl Dataset2 Dataset3 Datasetd Datasetd Dataset6

Previous Method 3.067 2.901 2.524 2.178 3.486 2.057
Proposed Method 6.211 6.509 3.079 3.109 4.509 0.682
TABLE V

COMPARISON OF THE COMPUTATION TIME OF THE PREVIOUS AND PROPOSED METHODS ON NOISY DATASETS

computation time (unit: seconds)
Datasetl n Dataset2n Dataset3 n Datasetd n Datasetb n Dataset6_n

Previous Method 2.005 2.562 1.679 1.431 2.057 1.053
Proposed Method 0.480 0.338 0.248 0.238 0.194 0.226
TABLE VI
COMPARISON OF THE PRECISION IN DIFFERENT DATA LENGTHS
data length
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Daasetin Previous Method 0.880 0.873 0.873 0.873 0.873 0.873 0.873 0.873 0.873 0.873
o Proposed Method 0.932 0.924 0924 0924 0924 0924 0924 0924 0924 0924
Dataset2 Previous Method 0.879 0.832 0.832 0.832 0.832 0.832 0.832 0.832 0.832 0.832
ataselen - proposed Method  0.947 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903
Dataset3n FPrevious Method  0.845 0.837 0.837 0837 0.837 0837 0837 0.837 0837 0837
- Proposed Method 0.904 0.906 0.906 0906 0.906 0.906 0.906 0.906 0.906 0.906
Datussta Previous Method 0.820 0.817 0.817 0.817 0.817 0.817 0.817 0.817 0.817 0.817
ataseldn - proposed Method  0.952 0.934 0934 0934 0934 0934 0934 0934 0934 0934
Datasots.n Previous Method 0812 0.806 0.806 0.806 0.806 0.806 0.806 0.806 0.806 0.806
Proposed Method 0.914 0.905 0.905 0905 0905 0905 0905 0.905 0905 0.905
Dataset6.n Previous Method 0.831 0.823 0.823 0.823 0.823 0.823 0.823 0.823 0.823 0.823
O proposed Method  0.920 0919 0919 0919 0919 0919 0919 0919 0919 0.919

3 s longer computation time than that of the previous method
for Dataset 1 and Dataset 2, which is approximately double
the computation time of the previous method. However, the
computation time of the proposed method is only
approximately 1 s longer than that of the previous method for
Dataset 3 to Dataset 5. Conversely, the proposed method has
a shorter computation time than that of the previous method
on Dataset 6. Table V shows a comparison of the
computation time for the noisy datasets. Using the proposed
method, linkage patterns could be extracted in less than half
the computation time of the previous method for all noisy
datasets.

The difference in computation time between the previous
and proposed methods is attributed to the differences in the
episode mining methods, the Mannila's algorithm and
EMMA. The algorithm proposed by Mannila searches for a
sequence multiple times while extending the w width. By
contrast, EMMA searches for a sequence once and then
combines and extends the episodes using a recursive
processing based on the searching results. Therefore, when
using the previous method, the computation time depended
on the length of the sequential data, whereas in the proposed
method, it depended on the length of the embedded linkage
pattern. The difference between the two algorithms causes
the computation time of the previous method to be shorter
than the proposed method on non-noisy datasets because the
search space of the algorithm proposed by Mannila is smaller
than that of EMMA by being absent of noise. Conversely, the
search space of EMMA is smaller than that of the algorithm
proposed by Mannila on noisy datasets because short
episodes are extracted owing to noise. Thus, the computation
time of the proposed method was significantly reduced on
noisy datasets.

Furthermore, the proposed method exhibits the potential to
further reduce the computation time. For example, the
algorithm can be improved to terminate a search when it
retrieves a subset that is included in the largest set of episodes
that are currently held. By improving the program in this
manner, the proposed method is expected to extract linkage
patterns faster than the previous method even for non-noisy
datasets.

B. Results and Discussion on Case 2

Before conducting the evaluation experiments of Case 2, a
grid search was conducted to find the best-performing
parameter to fit the long length of datasets again. In the
results of the grid search, constant high extraction accuracies
were obtained for each dataset, independent of the data length
by increasing 6 by a specific width. Therefare, the two
experiments described below were conducted using the
parameters obtained from this grid search, not those shown in
Table 1.

1) Extraction accuracies

Tables VI, VII, and VIII present the precision, recall, and
F-measure of the previous and proposed methods,
respectively, on noisy artificial datasets with different data
lengths. As shown in Table VI, for all datasets, the precision
was higher in the proposed method than in the previous
method, even when the data length changed. Additionally,
from Tables VII and VIII, the recall of the proposed method
tends to be higher after a data length of 2000, and as a result,
the F-measure of the proposed method outperforms that of
the previous method after a data length of 2000. For this
reason, the proposed method outperforms the previous
method for datasets with long data lengths, such as real data
in terms of extraction accuracies.
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TABLE VII
COMPARISON OF THE RECALL IN DIFFERENT DATA LENGTHS
data length
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Distasatl Previous Method 0.929 0.946 0.946 0.946 0.946 0946 0.946 0.946 0.946 0.946
atasetil proposed Method 0.774 0.952 0.952 0.952 0.952 0952 0952 0952 0.952 0.952
Dataset2 n  Previous Method 0903 0933 0933 0933 0933 0933 0933 0933 0933 0.933
T Proposed Method 0.778 0.947 0.947 0.947 0.047 0947 0947 0.947 0.947 0.947
Datasetan Previous Method  0.860 0.869 0.869 0.869 0.869 0.869 0.869 0.869 0.869 0.869
Proposed Method 0.752 0.836 0.836 0.836 0.836 0.836 0.836 0.836 0.836 0.836
Datasetd n  Previous Method — 0.838 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858 0.858
' Proposed Method 0.739 0.818 0.818 0.818 0.818 0.818 0.818 0.818 0.818 0.818
T Previous Method 0.913 0.949 0.949 0.950 0.950 0.950 0.950 0.950 0.950 0.950
ataselo-dl - proposed Method  0.775  0.901 0.901 0.901 0.901 0901 0901 0.901 0.901 0.901
— Previous Method 0.884 0.892 0.892 0.892 0.892 0.892 0.802 0.802 0.892 0.892
atasetd - proposed Method  0.758 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855 0.855
TABLE VIII
COMPARISON OF THE F-MEASURE IN DIFFERENT DATA LENGTHS
data length
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Datasotln  Previous Method 0904 0.908 0.908 0.908 0.908 0.908 0.908 0908 0.08 0.908
' Proposed Method 0.845 0.938 0.938 0.938 0938 0.938 0938 0.938 0.938 0.938
Datasetzn Previous Method — 0.891 0.880 0.880 0.880 0.880 0.880 0.880 0.880 0.880 0.880
Proposed Method 0.854 0.924 0.924 0.924 0.924 00924 0924 0924 0924 0.924
Datasotan Frevious Method 0.852 0.853 0.853 0.853 0.853 0.853 0.853 0853 0.853 0.853
atasels-n - proposed Method 0.821 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.870 0.870
Datasetd n  Previous Method  0.829 0.837 0.837 0837 0.837 0837 0.837 0837 0.837 0837
Proposed Method 0.832 0.872 0.872 0.872 0.872 0.872 0.872 0.872 0.872 0.872
Datasots.n Frevious Method 0.860 0.872 0.872 0.872 0872 0.872 0872 0872 0872 0872
alaselv- - proposed Method 0.838 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903 0.903
Dataset6n Previous Method — 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857 0.857
Proposed Method 0.831 0.886 0.886 0.886 0.886 0.886 0.886 0.886 0.886 (0.886

2) Computation time

Fig. 5 presents a comparison of the computation time of the
previous and proposed methods on data length-changed noisy
artificial datasets. From Fig. 5, for all datasets, the
computation time of the proposed method is shorter than that
of the previous method. The computation time of the
proposed method is shorter than that of the previous method
because of the episode mining advantage of the proposed
method described in Section V.A.2, even when the data
length is changed. Note that in terms of time complexity, the
proposed method is expected to eventually become larger
than the previous method due to the property of the algorithm.
Although the recursive process is becoming a bottleneck
because the embedding pattern increases linearly with
increasing data length on artificial datasets, real data does not
necessarily show a linear increase in the length of the linkage
pattern with increasing data length, the proposed method is
expected to be more significant in terms of computation time
than the previous method. The results of Case 2 experiments
indicate that the proposed method outperforms the previous
method in both extraction accuracies and computation time
on large-scale datasets, such as real data.

C. Results and Discussion on Case 3

1) Extraction accuracies

Tables IX, X, and XI show the precision, recall, and
F-measure of the previous and proposed methods on
noise-changed artificial datasets, respectively. From Table IX,
for all datasets, although the precision of the proposed
method is higher than that of the previous method. As shown
in Tables X and XI, the recall and F-measure are lower than

those of the previous method. These results are consistent
with the result of Section V.A.1 and are due to the fact that as
in Section V.A.1, Mannila’s algorithm exhaustively searches
for patterns, whereas EMMA searches for exact patterns.
However, it should be noted that even if real data are the
target, large noise is not realistic because linkage pattern
mining is excuted after noise is removed by multiple
preprocessing step, such as smoothing or detrending.
Furthermore, another reason why large noise is not realistic is
that the linkage pattern with large noise added may not satisfy
the definition of the linkage pattern because each embedded
frequent pattern is identified as different patterns by affecting
noise.
2) Computation time

Fig. 6 compares the computation time of the previous and
proposed methods on noise-changed artificial datasets. Note
that the parameters that are used in these experiments were
not parameters for computation time (Table Id), but
parameters for extraction accuracies (Table Ib) were used
because when the noise is large, linkage pattems were not
extracted under the computation time parameters. From Fig.
6, for all datasets, the computation time of the proposed
method is shorter than that of the previous method. Because
the patterns extracted decrease as the noise increases, the
computation time tends to decrease for both methods.

In summary, the proposed method reduced the
computation time while maintaining an extraction accuracy
comparable to that of the previous method. The results of
Section V.B show that the proposed method outperforms the
previous method in both extraction accuracies and computa-
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Fig. 5. Comparison of the computation time in different data length

TABLE IX
COMPARISON OF THE PRECISION IN DIFFERENT NOISE

noise level
0.01 0.02 0.03  0.04 0.05 0.06 0.07 0.08 0.09 0.1
Previous Method (0.880 0.780 0.752 0.731 0.695 0.673 0.655 0.630 0.595 0.590

Datasetl.n Proposed Method 0.936 0.874 0.822 0.773 0.735 0.726 0678 0638 0617 0617
Datasotgn Previous Method 0.879 0810 0.817 0775 0745 0.721 0.679 0.675 0676 0.670
Proposed Method 0.947 0.913 0.891 0.841 0805 0.768 0.735 0725 0.691 0.709
Datasetan Previous Method 0845 0842 0.753 0686 0.603 0.687 0.496 0479 0470 0415
Proposed Method 0.904 0.907 0.827 0.761 0.702 0.691 0.621 0537 0.516 0.510
Datasetd n Previous Method 0.820 0750 0.704 0.672 0.652 0549 0514 0506 0527 0.423
Proposed Method 0.952 0.808 0.860 0.768 0.745 0.587 0.679 0.573 0.560 0.458
Datasetsn Previous Method 0812 0728 0.703 0.663 0.643 0612 0.624 0590 0.593 0.566
Proposed Method 0.914 0.812 0.765 0712 0712 0.676 0.667 0.652 0.663 0.617
Datasetgn Previous Method 0.812 0842 0.753 0.686 0.603 0.687 0.496 0479 0470 0.415
; Proposed Method  0.914 0.878 0.833 0.804 0.678 0.531 0.381 0428 0.430 0.381
TABLE X
COMPARISON OF THE RECALL IN DIFFERENT NOISE
noise level

- 001 002 003 004 005 006 007 008 009 0.1
Datasetln Previous Method 0929 0781 0.724 0570 0534 0484 0485 0433 0480 0.444
Proposed Method 0774 0.759 0.723 0.590 0.525 0466 0.445 0399 0.444 0.353
Datasetan Previous Method  0.903 0.743 0546 0464 0346 0365 0271 0392 0363 0.307
Proposed Method 0778 0.665 0.460 0.315 0.273 0231 0.152 0172 0.170 0.158
Datasetan Previous Method 0860 0.649 0541 0.472 0377 039 0315 0272 0295 0.223
' Proposed Method 0.752 0.552 0.408 0.347 0.243 0222 0.218 0133 0.181 0.115
Dataset4 n Frevious Method  0.838 0.652 0582 0475 0449 0342 0373 0297 0285 0.267
aAsetEN - proposed Method  0.739  0.568 0.461 0.361 0.280 0.161 0.202 0.142 0.170 0.113
Datasetsn Frevious Method 0913 0.732 0621 0540 0575 0527 0.561 0.496 0.607 0.516
L Proposed Method 0.775 0.625 0.501 0.409 0.414 0380 0.358 0319 0391 0.302
Previous Method 0.913 0.649 0.541 0.472 0.377 0390 0315 0272 0205 0.223

Dataset6_n

Proposed Method 0.775 0.565 0.422 0.286 0.260 0.121 0.072 0.095 0.095 0.085
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TABLE X1
COMPARISON OF THE F-MEASURE IN DIFFERENT NOISE
noise level
001 0.02 003 004 005 006 007 0.08 0.09 0.1
Dataseti.n Previous Method 0.904 0.781 0.737 0.640 0.604 0.563 0.557 0.513 0.531 0.507
e Proposed Method 0.845 0.813 0.769 0.669 0.613 0.568 0.537 0.491 0.517 0.449
Dataset?.n Previous Method 0.891 0.775 0.654 0.581 0.473 0.484 0.388 0.495 0473 0.421
Proposed Method 0.854 0.770 0.614 0458 0407 0356 0.252 0.278 0.273 0.258
Ditastin Previous Method 0.852 0.733 0.630 0.559 0464 0497 0.38 0347 0363 0.290
) Proposed Method 0.821 0.686 0.546 0.476 0.361 0.336 0.323 0.213 0.268 0.187
Datasetdn Previous Method 0.829 0.698 0.637 0.557 0.532 0422 0.432 0374 0370 0.327
Proposed Method 0.832 0.667 0.601 0491 0407 0.253 0.312 0.228 0.261 0.181
Datasets.n Previous Method 0.860 0.730 0.659 0.595 0.607 0.566 0.591 0539 0.600 0.540
g Proposed Method 0.838 0.707 0.606 0.520 0.523 0487 0.466 0.429 0.492 0.405
Dataset6.n Previous Method 0.860 0.733 0.630 0.559 0464 0497 0.385 0347 0.363 0.200
Proposed Method 0.838 0.688 0.560 0.422 0.376 0.197 0.121 0.155 0.155 0.139
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Fig. 6. Comparison of the computation time in different noise

tion time, especially when targeting datasets with long length
data such as real data. Therefore, the problem that the
previous method had in applying linkage pattern mining to
real data is solved by the proposed method.

VI. CONCLUSION

In this study, we have proposed an efficient and robust
linkage pattern-mining method to reduce the computation
time and number of parameters, which are the limitations of
the previous method. We employed EMMA as a search
method for frequent episodes to reduce the search space and
dimensionality of configuration parameters, as compared to

those of the previous method that uses Mannila for episode
mining. In the experiments, the best parameters were selected
based on a grid search, and the extraction accuracy and
computation time of the previous and proposed methods were
compared and evaluated using artificial datasets. The
experimental results showed that the proposed method
exhibited the same level of extraction accuracy as the
previous method, although the number of parameters was
reduced by one. Moreover, a comparison of computation
time showed a significant reduction in computation time for
the noisy datasets. Particularly, when the data length of the
dataset was increased, the proposed method outperformed the
previous method in both extraction accuracy and
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computation time. This implies that the significant increase in
the computation time depending on the data length, whichisa
limitation of the previous method, was resolved, and the
results are expected to be applicable to large real data with
noise.

In the future, we will apply the proposed method to real
sequence data with noise, such as vital, sensor, and log data,
and evaluate the practicality of the proposed method in terms
of extraction accuracy and computation time.
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