
 

  

Abstract—Point cloud completion is crucial in point cloud 

processing, as it can repair and refine incomplete 3D data, 

ensuring more accurate models. However, current point cloud 

completion methods commonly face a challenge: they fail to 

fully utilize multi-scale information from local features, leading 

to limitations in accuracy and detail preservation. To address 

this issue, this paper proposes a multi-scale feature optimization 

algorithm for point cloud completion that integrates 

SoftPool.Based on DGCNN, the method combines dilated 

convolution and bottleneck attention mechanisms to extract 

features at different scales, enhancing the ability to capture 

detailed information in point clouds. The bottleneck attention 

mechanism is used to optimize important detail features. The 

extracted local features are concatenated with their 

corresponding positional information to form point proxies, 

enhancing the effective extraction of local geometric features, 

resulting in more refined completed point cloud shapes. A 

Transformer architecture is employed to model these 

features.Finally, SoftPool is introduced for fine-grained feature 

downsampling, improving the network's ability to recover point 

cloud details. FoldingNet is used to reconstruct missing 

structures and output the completed point cloud. To validate 

the model's completion performance, training and testing are 

conducted on the PCN and ShapeNet55 datasets. Experimental 

results demonstrate that the model has better feature detail 

retention and more accurate completion results. On the PCN 

dataset, the average CD value is reduced by 6.5% compared to 

the best-performing model among the comparison methods. On 

the ShapeNet55 dataset, the average CD value across three 

difficulty levels is reduced by 6.9% compared to the 

best-performing model among the comparison methods. 

Additionally, the model also achieved a 2.1% improvement in 

F-score. 

 
Index Terms—Multi-Scale Feature, Point Cloud Completion, 

SoftPool, Transformer, Bottleneck Attention 

 

I. INTRODUCTION 

ITH the rapid development of 3D vision technology, 

depth sensors such as LiDAR and RGB-D cameras 

have been widely applied in fields like autonomous driving 

and robotics, enabling efficient acquisition of 3D point cloud 
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data. However, factors such as device accuracy, acquisition 

angles, occlusion, reflection, transparency, and lighting 

conditions often result in sparse and incomplete point cloud 

data, which negatively impacts the accuracy and reliability of 

downstream tasks. Point cloud completion plays a 

fundamental role in complex tasks such as high-resolution 

3D map reconstruction and underground mining environment 

reconstruction. And it is crucial for the performance of 3D 

object detection and 3D shape classification. Therefore, 

conducting in-depth research on point cloud completion is of 

great significance. 

 In recent years, with the development of deep learning, 

point cloud completion methods have made continuous 

progress, gradually shifting from traditional geometric 

inference and model alignment methods to deep 

learning-based techniques. These methods achieve 

high-quality completion of sparse and incomplete point 

clouds by extracting global and local features from 

large-scale data to establish mapping relationships between 

incomplete and complete point clouds. PCN [1] is an early 

deep learning-based point cloud completion network. Its 

encoder consists of multiple PointNet [2] units, and its 

decoder divides the point cloud generation task into two 

stages: coarse generation and fine generation. In the fine 

stage, FoldingNet [3] is used to generate denser point cloud 

predictions, effectively completing the missing point clouds. 

However, PCN's feature extraction module relies on 

multilayer perceptrons to process point clouds, which 

neglects the local information of incomplete point clouds, 

resulting in poor completion of local details and difficulty in 

generating high-fidelity point cloud results. Methods such as 

PoinTr [4] and PF-Net [5] have achieved significant results in 

point cloud completion, but these methods typically only 

address local incompleteness and fail to consider geometric 

shape loss and sparsity simultaneously when generating 

complete point clouds or filling missing areas. Consequently, 

these methods do not perform well in cases where the point 

cloud is sparse. Furthermore, current Transformer-based 

point cloud completion networks perform well but mostly use 

max pooling for downsampling. Max pooling keeps only the 

most prominent features, often causing a loss of many 

detailed features. 

In summary, many existing point cloud completion 

methods extract only single features from the input point 

cloud, failing to fully exploit the intrinsic multi-level 

structure and semantic information, leading to limitations in 

accuracy and detail preservation. To improve the 

effectiveness of point cloud completion, a method capable of 

capturing rich features and semantic information is needed to 

achieve more accurate and detailed completion results. 

Therefore, this paper proposes a Multi-Scale Feature 
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Optimization Point Cloud Completion Network with 

SoftPool integration, abbreviated as MFOSNet. The 

Multi-Scale Feature Optimization (MSFO) module is 

designed based on the DGCNN architecture, combining 

dilated convolution [6] and the Bottleneck Attention Module 

(BAM) [7]. By extracting and integrating features at different 

scales, the method enhances the ability to capture detailed 

information in the point cloud, and the bottleneck attention 

mechanism is used to enhance important detail features, 

thereby improving the detail preservation of the completion 

results. During the downsampling stage, the SoftPool pooling 

method is used to ensure that the features of each element 

influence the downsampling result. This allows for more 

detailed feature downsampling without losing important 

details, thereby enhancing the network's ability to restore 

point cloud details.  

II. RELATED JOBS 

Geometry-based methods, including the approach used by 

Thrun et al. in 2005 [8] to reconstruct occluded surfaces by 

leveraging object symmetry, the method proposed by 

Schnabel et al. in 2009 [9] that completes missing regions by 

extending the surrounding structures, and the arterial snake 

model introduced by Li et al. in 2010 [10] which combines 

topological and geometrical information to fill large missing 

areas, have been developed for completion tasks. While these 

methods are computationally simple and efficient, they 

perform poorly in cases of large missing areas or asymmetry, 

limiting their practical applicability. 

Template matching-based methods achieve completion by 

retrieving the most similar template point cloud from a 

database. In 1999, Blanz et al. [13] deformed the retrieved 

model to synthesize a consistent shape. In 2005, Pauly et al. 

[11] used non-rigid alignment methods to complete missing 

parts. In 2014, Yin et al. [14] employed geometric primitives 

instead of a shape database for repair, while in 2015, Sung et 

al. [12] retrieved the best-fitting parts through part alignment. 

These methods yield good completion results, but the 

retrieval process from large databases consumes significant 

computational resources, making real-time processing 

difficult. The optimization process is particularly expensive 

in the presence of noise. 

Specifically, geometric methods and template matching 

methods each have their own advantages and disadvantages. 

Geometric methods are computationally simple but perform 

poorly when dealing with large missing areas or 

asymmetrical structures. Template matching methods yield 

better completion results, but they require significant 

computational resources, making real-time processing 

difficult. For practical applications, it is essential to find a 

balance between accuracy and computational efficiency. The 

rise of deep learning methods has brought new breakthroughs. 

In 2017, Wang et al. [15] proposed a hybrid framework to 

generate 3D models with semantic coherence and contextual 

details. This framework combines a 3D Encoder-Decoder 

Generative Adversarial Network (3D-ED-GAN) with a 

Long-term Recurrent Convolutional Network (LRCN). The 

3D-ED-GAN is responsible for filling in missing 3D data at 

low resolution, while the LRCN is used to localize 

fine-grained details. However, voxel-based techniques 

cannot achieve fine detail in 3D reconstruction because as 

resolution increases, the network's complexity and 

computational requirements grow sharply, limiting the 

resolution of the reconstructed voxels due to memory and 

computational constraints. In 2018, Achlioptas et al. [16] 

were the first to apply deep learning to point cloud 

completion, proposing the LGAN-AE network model, which 

effectively completes point clouds using a Generative 

Adversarial Network (GAN). However, its decoder struggles 

to recover rare geometric structures. 

In recent years, new methods have continuously emerged. 

In 2020, Xie et al. [17] proposed GRNet, which converts 

unordered point cloud data into a regular voxel grid, 

generating predicted point clouds through 3D convolutional 

layers. In 2021, Wang et al. [18] introduced a point cloud 

completion method based on style and adversarial 

differentiable rendering. In 2023, Ma et al. [19] proposed the 

MFCPNet network, which progressively integrates features 

at different scales and utilizes the Transformer’s 

Encoder-Decoder structure to generate missing point clouds, 

further improving completion results. However, the 

aforementioned methods still have limitations. To address 

these issues, a Multi-Scale Feature Optimization Point Cloud 

Completion Network Integrating SoftPool is proposed. This 

approach aims to overcome the current models’ inability to 

deeply explore complex structures and semantic information 

within point clouds, which has led to limitations in the 

accuracy and detail preservation of completion results, 

thereby affecting the overall effectiveness of point cloud 

completion. 

III. MODEL DESIGN 

The structure of the Multi-Scale Feature Optimization 

Point Cloud Completion Network with SoftPool integration 

is shown in Figure 1. The overall network architecture 

consists of two main parts. The first part involves feature 

extraction and point proxy generation. Initially, the Farthest 

Point Sampling (FPS) method is used to extract central points 

from the incomplete point cloud to ensure representative 

coverage of the entire point cloud. Subsequently, the 

Multi-Scale Feature Optimization (MSFO) module is 

employed to extract local features around the central points, 

capturing the geometric information and local structures of 

the point cloud. To further enhance the expressiveness of the 

features, a simple Multilayer Perceptron (MLP) is used to 

extract positional embeddings for each local feature, which 

are then fused with the local features extracted by the MSFO, 

ultimately generating the point proxies. The second part 

focuses on the fine reconstruction of the point cloud. The 

point proxies are fed into the Transformer encoder for global 

feature modeling. The output of the query generator is then 

passed to the decoder to generate the predicted point proxies. 

Subsequently, SoftPool is used for downsampling, which 

reduces redundant data while retaining critical features. 

Finally, the FoldingNet network is employed to progressively 

refine the point cloud structure through a series of folding 

operations, ensuring that the final output is a complete and 

detailed point cloud. 
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Fig. 1. The overall structural diagram of the Multi-Scale Feature Optimization Point Cloud Completion Network Integrating SoftPool 

 

A. Multi-Scale Feature Optimization Module 

The standard DGCNN network [20] employs EdgeConv to 

extract local geometric features from point cloud data. 

However, EdgeConv is constrained to Single-Scale Feature 

extraction, meaning it aggregates features solely within a 

fixed neighborhood. This limitation hinders its ability to 

capture Multi-Scale spatial information, resulting in 

inadequate detail representation—particularly for critical 

features in incomplete point clouds where essential details 

may be absent or obscured. To address this challenge, this 

paper introduces the Multi-Scale Feature Optimization 

(MSFO) module. By implementing a Multi-Scale Feature 

extraction mechanism, MSFO effectively captures both local 

and global features across various scales. This approach not 

only enhances the feature representation of point clouds but 

also preserves and refines crucial detail features in 

incomplete point clouds, thereby augmenting the network’s 

overall capability to interpret point cloud data. This module 

successfully mitigates the limitations inherent in traditional 

EdgeConv by emphasizing critical detailed features. The 

architecture and workflow of the MSFO module are 

illustrated in Figure 2. 

Inspired by the set abstraction mechanism in PointNet++ 

[21], we first select several center points in the incomplete 

point cloud using the Farthest Point Sampling method. A 

feature transformer is then used to expand the feature 

dimension of the center points from 3D to 8D, enriching the 

input features for subsequent network layers. The features are 

then fed into multiple EEC modules. Finally, the refined local 

region features are obtained through the bottleneck attention 

module. 

The EEC module integrates dilated convolution into 

EdgeConv to extract features at different scales. First, using 

the KNN algorithm [22], the K  nearest points 

( )
1 2
, ,

ki i ig g g  are selected around the point 
ig  as the center. 

The feature of each point 
ig  is denoted as 

ix  , and the 

features of its K  nearest points are denoted as 
ks . The 

difference features  k is x−  between point 
ig  and the K  

points are calculated and concatenated with the features of 

point 
ig  to construct the local neighborhood feature edgF , 

thereby capturing the local geometric information in the point 

cloud. The formula is: 

 ( )edg i k iF x s x=  −  (1) 

 

 

 
Fig. 2. The structure diagram of the Multi-Scale Feature Optimization Module
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The local neighborhood features are fed into both 2D 

convolution and dilated convolution for multi-scale feature 

extraction. Group normalization and LeakyReLU activation 

functions are applied to the 2D convolution layers for 

non-linear transformation. Dilated convolution with a 

dilation rate of 2 is used to extract features over a larger 

receptive field, allowing for the capture of different details 

within the point cloud. Finally, the features from the two 

scales are concatenated to obtain the fused local region 

features. The formula is: 

 ( )( )( ) ( )1 2 edg edgF LReLU Group Conv d F DConv F=  (2) 

Where LRelu  represents the  LeakyReLU  activation 

function, Group  stands for the group normalization layer, 

2Conv D  denotes the 2D convolution, DConv  represents 

the dilated convolution, and   indicates the concatenation 

operation. 

The local regional features 1F  obtained from the first layer 

of the EEC module are sequentially passed through the other 

three layers of EEC modules, with two FPS operations in 

between, ultimately resulting in the local regional features 

EF . 

The local region features EF  are fed into the Bottleneck 

Attention Module (BAM), which employs parallel spatial 

and channel attention mechanisms to enhance critical local 

features, as illustrated in Figure 3. The channel attention 

mechanism adjusts the channel weights to emphasize key 

detailed features while suppressing redundant information, 

thereby enhancing the feature representation capabilities. 

Meanwhile, spatial attention assigns varying attention 

weights across the spatial dimension, facilitating a better 

understanding of local structures and enabling the extraction 

of more precise point cloud details. Consequently, this 

improves the representation of point cloud features. The final 

refined local region features are obtained, and the formula is: 

 ( ) ( )( )r c sF F F M F M F= +  +  (3) 

Where rF  represents the refined local region features,   

is the sigmoid function, ( )CM F  and ( )SM F  represent the 

channel attention map and spatial attention map, respectively, 

and   denotes element-wise multiplication. The expressions 

for ( )CM F  and ( )SM F  are as follows: 

 ( ) ( )( )( )cM F BN MLP AvgPool F=  (4) 

 ( ) ( )( )( )1 1 3 3 3 3 1 1
3 2 1 0sM F BN f f f f    =  

 
 (5) 

Where BN  represents the batch normalization 

layer, MLP  stands for the multilayer perceptron, AvgPool  

denotes global average pooling, and f  refers to the 

convolution operation, with the superscript indicating the 

size of the convolution kernel. 

B. Point Proxy Generation 

Adopting the Transformer architecture for point cloud 

completion tasks takes full advantage of its ability to capture 

global information, position invariance, scalability, parallel 

processing capabilities, and robust modeling power. By 

leveraging these strengths, the Transformer effectively 

establishes connections between global contextual 

information and local details, enabling efficient and precise 

point cloud completion. Point proxies play a critical role in 

providing the Transformer with structured, dense, and 

fixed-size input representations, addressing challenges such 

as data sparsity, irregularity, and computational complexity. 

This design ultimately enhances the model's efficiency and 

overall performance. 

Define the point cloud as a series of "point proxies," with 

each point proxy representing the features of a local region 

within the point cloud. The position embedding for each local 

region is extracted using an MLP network. Finally, the point 

proxy is obtained by adding the position information to the 

local region features rF  derived from the MSFO module. 

The formula for the point proxy is given as: 

 ( )r r iF F g = +  (6) 

The term rF  represents the local region feature, centered 

at ig and extracted by the MSFO module, which 

encapsulates the semantic information of each point’s local 

region. The parameter   denotes the MLP used to capture 

the position information of the point proxy. 

This representation effectively integrates local features 

with spatial position information, enabling the model to 

capture essential details in point clouds at both global and 

local levels. By leveraging point proxy design, the 

Transformer significantly improves its ability to process 

point cloud data, excelling in the completion of complex 

shapes and sparse point clouds. 

 

 

 

 
Fig. 3. The structure diagram of the Bottleneck Attention Module
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Fig. 4. SoftPool Diagram 

 

C. Fine Reconstruction of the Point Cloud 

The obtained point proxies are used as input to the 

Transformer encoder for global feature modeling. The output 

from the query generator is then passed to the decoder to 

generate the predicted point proxies. The expression is as 

follows: 

 ( , )DP T Q V=  (7) 

The symbols are defined as follows: Q  represents the 

dynamic queries, V  denotes the feature vectors output by the 

encoder, TD  refers to the decoder, and  1 2, , MP P P P=  

represents the predicted point proxies, where M  indicates 

the number of predicted points. 

Most point cloud completion networks typically use max 

pooling or average pooling methods to downsample point 

cloud data before feeding the features into FoldingNet. Max 

pooling reduces data dimensionality by selecting the 

maximum value within the pooling region, maintaining data 

permutation invariance, while average pooling achieves 

feature downsampling by calculating the average value of all 

elements. However, max pooling retains only the maximum 

value from the region's features, leading to a significant loss 

of detailed information, and average pooling, which averages 

all elements within the region, also results in the loss of many 

critical details. Therefore, this paper adopts the Softpool 

pooling method to process the input feature vectors, as 

illustrated in Figure 4. Compared to max pooling and average 

pooling, Softpool better preserves the feature information 

during the downsampling process, allowing for detailed 

feature downsampling without losing important feature 

information. Unlike methods that focus solely on the 

maximum value or average of all features, Softpool assigns 

weights to each feature, giving more importance to features 

with higher weights, which have a more significant impact on 

the final output, while features with lower weights have a 

smaller influence. This approach better preserves the local 

structure and global features of the point cloud. 

First, the input feature dimensions are expanded to 1024, 

and the Softmax function is used to calculate the weight of 

each feature element, converting the input feature values into 

a probability distribution where larger values are assigned 

higher weights. The formula is as follows:  

 

1

i

j

x

i n
x

j

e
w

e

=

=



 (8) 

The symbols are defined as follows: ix  is the value of the 

i -th input feature element, 

1

j

n
x

j

e

=

  represents the sum of the 

exponential functions of all elements jx , and iw  is the 

weight of the element. Based on the calculated weights, the 

input values are weighted and averaged to produce the 

pooling result. The formula is: 

 

1

n

i i
i

y w x

=

=   (9) 

Finally, the features are fed into FoldingNet, where a series 

of folding operations progressively refine the point cloud 

structure layer by layer, generating a complete and detailed 

point cloud. 

D. Loss Function and Evaluation Metrics 

The loss function for point cloud completion needs to 

evaluate the difference between the reconstructed point cloud 

and the original point cloud to ensure the accuracy and 

quality of the reconstruction. The two most commonly used 

metric functions are Chamfer Distance (CD) and Earth 

Mover’s Distance (EMD) [23]. 

The Chamfer Distance is a computationally efficient 

method used to measure the difference between the 

reconstructed point cloud and the original point cloud. 

Specifically, it calculates the distance from each point in the 

reconstructed point cloud to its nearest point in the original 

point cloud, and then averages or sums these minimum 

distances. Similarly, for each point in the original point cloud, 

the nearest point in the reconstructed point cloud is found, 

and the same calculation process is repeated. The sum of 

these two parts is the Chamfer Distance. On the other hand, 

the Earth Mover's Distance treats point clouds as probability 

distributions and measures the minimum "work" required to 

transform one distribution into another by finding an optimal 

matching. This method involves solving an optimization 

problem, which typically has a high computational 

complexity and is often solved using the Optimal Transport 

algorithm. Although the Earth Mover's Distance can more 

accurately reflect the global matching relationship between 

point clouds, its computational cost is high. 

To save computational resources, this paper chooses the 

Chamfer Distance as the loss function. The Chamfer Distance 

function not only effectively measures the difference 

between the reconstructed point cloud and the original point 

cloud but also improves the effectiveness and performance of 
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point cloud completion while ensuring computational 

efficiency. The calculation formulas are as follows: 

 
1 1

|| || || ||s
g G s SS Gs G g G

J min s g min g s
n n  

= − + −   (10) 

 
1 1

|| || || ||k
g G k KK Gk K g G

J min k g min g k
n n  

= − + −   (11) 

Where S  represents the set of local center points, 

containing Sn  points, formed by concatenating the predicted 

local centers and the center points of the input point cloud; 

K  represents the completed point cloud, containing Kn  

points; and G  represents the ground truth point cloud. SJ  is 

used to compare the local centers with the ground truth point 

cloud, where a high-resolution ground truth point cloud 

supervises the sparse point cloud, and KJ  is used to compare 

the completed point cloud with the ground truth point cloud. 

The overall objective is to make the distribution of the 

predicted point cloud as similar as possible to the ground 

truth point cloud. Therefore, the final loss function is 

composed of SJ  and KJ : 

 s kJ J J= +  (12) 

This experiment uses Chamfer Distance (CD) and F-Score 

(F1) as evaluation metrics. CD measures global consistency 

by comparing completed and original point clouds but is less 

sensitive to local details. In contrast, F-Score evaluates local 

geometric accuracy and surface matching quality. Together, 

these metrics assess both global and local completion 

performance. Lower CD values indicate higher similarity, 

while higher F-Score values reflect better accuracy and 

quality. 

IV. EXPERIMENTS AND RESULTS ANALYSIS 

To comprehensively validate the effectiveness of the 

proposed model, extensive comparative experiments were 

conducted on the widely used PCN and ShapeNet55 datasets. 

Visualized results on the PCN dataset demonstrate the 

model's ability to restore global structures and fine details, 

even in challenging scenarios. Additionally, ablation studies 

were performed to evaluate the contribution of individual 

components, revealing their importance to the model's 

performance. The results confirm that MFOSNet excels in 

handling complex point cloud completion tasks, showcasing 

its reliability and potential for practical applications. 

A. Dataset 

1) PCN Dataset: This dataset is derived from the 

ShapeNet database [24] and comprises 8 object categories 

(e.g., airplanes, cars, chairs, etc.), with a total of over 30,000 

point cloud pairs. For each object, the data includes both 

partial point clouds (2048 points) and complete point clouds 

(16,384 points). The partial point clouds are generated by 

simulating common real-world occlusions and noise, while 

the complete point clouds represent their corresponding 

lossless versions. 

2) ShapeNet55 Dataset: As one of the largest publicly 

available 3D datasets, ShapeNet55 consists of approximately 

52,500 3D object samples spanning 55 categories. The 

dataset is created through a combination of automated 3D 

scanning and manual CAD modeling, ensuring high diversity 

and quality. Categories include furniture, vehicles, and 

various everyday objects, encompassing nearly all types of 

items encountered in daily life. The extensive quantity and 

variety of ShapeNet55 make it a valuable resource for 

research in point cloud completion tasks. 

B. Experimental Environment and Parameter Settings 

The experimental environment described in this paper uses 

Ubuntu 20.04 as the operating system, with hardware 

configured as an i9-13900KF processor, 32GB of memory, 

and an NVIDIA GeForce RTX 4060TI graphics card. The 

training environment includes CUDA 11.3, Python 3.8.5, and 

PyTorch 1.11.0. MFOSNet does not require any pre-training 

and is an end-to-end trainable model. The AdamW optimizer 

is employed with an initial learning rate set to 5×10^(-4) and 

appropriate weight decay. To achieve an optimal balance 

between performance and resource utilization, the depths of 

the Transformer encoder and decoder are set to 6 and 8, 

respectively, with each using 6 attention heads and a hidden 

dimension of 384. In the KNN operation, the k values are set 

to 16 and 8. 

For the PCN dataset, the batch size is set to 48 with 

training for 300 epochs, reducing the learning rate by a factor 

of 0.9 every 21 epochs. For the ShapeNet55 dataset, the batch 

size is 96 with training for 200 epochs. During training, the 

loss function is iteratively optimized to update network 

parameters. At the end of each epoch, the best model is 

selected using the validation set and evaluated on the test set 

to assess network performance. 

C. Analysis of Experimental Results 

1) Experimental Results of the PCN Dataset: To 

comprehensively validate the effectiveness of the MFOSNet 

model, we conducted comparative experiments on the PCN 

dataset and analyzed its performance against several 

state-of-the-art point cloud completion networks. The PCN 

dataset simulates point cloud deficiencies caused by view 

occlusions, providing a benchmark for evaluating model 

performance in reconstructing global structures and handling 

complex missing regions. This dataset encompasses eight 

common categories, including airplanes, chairs, and tables, 

with a standardized point cloud resolution of 2048 points and 

a moderate data size, ensuring consistent experimental 

conditions and fair comparisons. 

In our experiments, we employed Chamfer Distance 

(Manhattan norm, CD-L1) as the primary evaluation metric 

to quantitatively assess the geometric accuracy of the models. 

Furthermore, we performed visualization experiments to 

intuitively illustrate the effectiveness of each model in 

reconstructing global shapes. To comprehensively evaluate 

model performance, we selected the following representative 

point cloud completion networks for comparative analysis, 

including: FoldingNet [3], PCN [1], TopNet [25], GRNet 

[17], PMP-Net [26], CRN [27] and PoinTr [4]. 

The experimental results presented in Table I indicate that 

MFOSNet outperforms PoinTr, CRN, and PMP-Net in terms 

of average CD values across several categories, such as 

airplane, table, chair, etc. Specifically, MFOSNet reduces the 

CD value by 6.5% compared to PoinTr, by 7.8% compared to 

CRN, and by 10.0% compared to PMP-Net. These results 

demonstrate that MFOSNet significantly improves the 

accuracy of point cloud completion tasks, particularly in 

handling complex shapes. 

IAENG International Journal of Computer Science

Volume 52, Issue 1, January 2025, Pages 233-243

 
______________________________________________________________________________________ 



 

TABLE I 
CHAMFER DISTANCE OF DIFFERENT MODELS UNDER THE PCN (CD-L1) 

Categories FoldingNet PCN TopNet GRNet PMP-Net CRN PoinTr MFOSNet 

plane 9.49 5.50 7.61 6.45 5.65 4.79 4.75 4.54 

Cabinet 15.80 22.70 13.31 10.37 11.24 9.97 10.47 9.94 

Car 12.61 10.63 10.90 9.45 9.64 8.31 8.68 8.25 

Chair 15.55 8.70 13.82 9.41 9.51 9.49 9.39 8.49 

Lamp 16.41 11.00 14.44 7.96 6.95 8.94 7.75 6.68 

Sofa 15.97 11.34 14.78 10.51 10.83 10.69 10.93 9.96 

Table 13.65 11.68 11.22 8.44 8.72 7.81 7.78 7.13 

Watercraft 14.99 8.59 11.12 8.04 7.25 8.05 7.29 6.87 

Avg 14.31 9.64 12.15 8.83 8.73 8.51 8.38 7.73 

 

Compared to other methods, MFOSNet enhances the 

capture of point cloud details by extracting and fusing 

multi-scale features. It also incorporates a Bottleneck 

Attention Module to further emphasize and refine key detail 

features, thus optimizing the retention of fine details in the 

completed point cloud. As a result, MFOSNet significantly 

improves completion performance, reduces geometric 

distortions, and further lowers the CD value when processing 

incomplete point clouds, thereby validating its superior 

performance in point cloud completion tasks. 

The visualization results, as shown in Figure 5, compare 

the point cloud completion performance of different 

networks with our proposed MFOSNet method on the PCN 

dataset. It can be observed that various traditional methods 

exhibit different characteristics and limitations when 

handling missing point cloud data:  

FoldingNet, PCN, and TopNet employ encoder-decoder 

architectures for point cloud reconstruction. However, these 

architectures tend to lose local structural features during the 

completion process, particularly when dealing with complex 

geometries or fine details (e.g., the legs of a chair or the 

wings of an airplane). The completion results from these 

networks typically show smooth transitions but lack 

necessary local details, leading to deficiencies in the finer 

parts of the completed point cloud. 

GRNet, based on graph convolutional networks (GCNs), is 

good at capturing local geometric features. However, it 

occasionally generates spurious structures that do not align 

with the original object’s geometry, resulting in unnatural 

geometric distortions or unnecessary details (such as edges or 

protrusions that should not exist). This can affect the overall 

quality of the completion. 

PMP-Net, while generating denser point clouds to 

compensate for local missing areas, produces results that 

appear more refined in some regions (e.g., the surface of a 

table or an object’s surface). However, the overall point cloud 

distribution is not uniform. In some cases, the completed 

point cloud exhibits overly dense or concentrated regions, 

causing an imbalance in the overall shape. 

CRN is based on Generative Adversarial Networks (GANs) 

and aims to improve point cloud completion through 

adversarial training. While CRN is capable of producing 

more natural global structures in the completed point clouds, 

it often falls short in detail recovery. Especially when 

handling complex geometries, CRN occasionally generates 

artifacts that do not align with the original object's geometry, 

manifesting as unnatural geometric distortions or excessive 

smoothing, such as smooth surfaces that should not exist or 

unreasonable edges. This phenomenon can lead to a lack of 

essential local details in the completed point clouds, causing 

the final result to lose precision and affecting the overall 

quality and reliability of the completion. 

PoinTr, a method based on the Transformer architecture, 

shows rougher completion results when a significant amount 

of point cloud data is missing. While it excels in global 

feature capture, it fails to recover fine details, especially 

when the input point cloud is sparse. The generated 

completed point cloud often lacks subtle features, and edges 

and details appear blurry, failing to effectively restore 

complex structures. 

From the visualization results in Figure 5, it is evident that 

MFOSNet outperforms these methods. The model not only 

restores missing local details effectively but also maintains 

the coherence of the global structure. Specifically, in the 

completion of complex shapes (e.g., airplane wings and chair 

legs), the point clouds generated by MFOSNet preserve 

important geometric features while maintaining a uniform 

distribution and detailed structure, avoiding excessive 

smoothing or the introduction of spurious structures. 

Compared to other methods, MFOSNet’s completed point 

clouds appear more natural, with more accurate detail 

recovery and a more balanced overall structure. MFOSNet is 

capable of more accurately restoring details such as object 

edges, depressions, and protrusions during the completion 

process. When faced with large areas of missing data, 

MFOSNet can estimate the global structure of the missing 

region effectively and fill in the missing points in a 

reasonable manner, avoiding significant geometric 

distortions or unnatural transitions. These advantages stem 

from the innovative design of the MFOSNet model, which 

captures both local and global features, enabling it to 

simultaneously optimize completion results at multiple 

levels. 

Overall, MFOSNet not only outperforms traditional 

methods in accuracy and detail recovery, but also provides 

more reliable and uniform completion results for point cloud 

data with large-scale missing regions or complex structures. 

By effectively capturing both local and global features, the 

point clouds generated by MFOSNet exhibit higher 

consistency and balance in their structure. These advantages 

make MFOSNet highly promising for practical applications 

such as autonomous driving and robotic grasping, especially 

in tasks that require high-precision completion, where it 

performs exceptionally well. 
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Fig. 5. Visualization results of the PCN dataset 

 

2) Experimental Results on the ShapeNet55 Dataset: To 

evaluate performance on both well-represented and scarce 

categories, 10 categories are selected from the ShapeNet-55 

dataset for experimentation. Among these, Table, Chair, 

Airplane, Car, and Sofa are classified as well-represented 

categories. These categories have a large amount of data, 

providing sufficient training samples for the model to better 

learn their features. In contrast, Birdhouse, Bag, Remote, 

Rocket, and Keyboard are classified as scarce categories. 

Due to the limited data, the model may not fully learn the 

features of these categories during training, which can impact 

performance. The completion task of the ShapeNet55 dataset 

presents significant geometric complexity and category 

diversity, imposing higher requirements on models’ abilities 

to restore global shapes and capture local details. To evaluate 

model performance, six representative models—FoldingNet, 

PCN, TopNet, PFNet, GRNet, and PoinTr—were selected for 

comparative analysis. These models encompass diverse 

network architectures and completion strategies, making 

them highly valuable for comparison. 

The experiment categorized point cloud deficiencies into 

three difficulty levels: simple (25% missing), medium (50% 

missing), and difficult (75% missing). This classification 

provides an intuitive assessment of the models’ completion 

capabilities across different scenarios. Additionally, Chamfer 

Distance (Euclidean norm, CD-L2) and F-Score were 

adopted as evaluation metrics to measure the geometric 

distance between the completed and ground-truth point 

clouds, as well as the accuracy and completeness of the point 

cloud distribution. The combination of these two metrics 

enables a comprehensive evaluation of model performance, 

from global consistency to local detail restoration. 

To further analyze the performance of models on 

categories with abundant and scarce samples, 10 categories 

were selected from the ShapeNet55 dataset. Table, Chair, 

Airplane, Car, and Sofa were classified as sample-rich 

categories, with large amounts of data facilitating models to 

fully learn their features. In contrast, Birdhouse, Bag, Remote, 

Rocket, and Keyboard were categorized as sample-scarce 

categories, where the limited data may constrain the models’ 

completion performance. 

Table II highlights the comparative performance of various 

methods under different difficulty levels, demonstrating that 

the proposed MFOSNet model consistently outperforms its 

counterparts. Notably, MFOSNet achieves an impressive 

score of 0.53 under the easy setting, 0.81 in the medium 

setting, and a CD value of 1.73 in the difficult setting. These 

results reveal a decline in performance as difficulty increases; 

however, the model consistently maintains a high level of 

accuracy. Furthermore, MFOSNet excels in terms of the 

F-score, reaching 0.49, showcasing its robust precision and 

recall capabilities. 

Table III provides a detailed breakdown of average results 

across 10 categories under varying difficulty levels. The data 

underscores MFOSNet's superior ability to handle point 

cloud data across diverse perspectives, categories, missing 

patterns, and degrees of missingness. These findings confirm 

the model's adaptability and exceptional performance in 

handling complex and varied environments. 

TABLE II 
COMPARISON RESULTS OF SHAPENET55 DATASET UNDER DIFFERENT DIFFICULTY LEVELS (CD-L2) 

 FoldingNet PCN TopNet PFNet GRNet PoinTr MFOSNet 

CD-S 2.67 1.94 2.26 3.83 1.35 0.58 0.53 

CD-M 2.66 1.96 2.16 3.87 1.71 0.89 0.81 

CD-H 4.05 4.08 4.30 7.97 2.85 1.79 1.73 

CD-Avg 3.12 3.12 2.66 2.91 1.97 1.09 1.02 

F1 0.08 0.13 0.13 0.34 0.24 0.46 0.49 
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TABLE III 
COMPARISON OF THE MEAN VALUES OF 10 CATEGORIES OF SHAPENET55 DATASET UNDER DIFFERENT LEVELS OF DIFFICULTY (CD-L2) 

Categories FoldingNet PCN TopNet PFNet GRNet PoinTr MFOSNet 

Table 2.531 2.130 2.216 3.956 1.632 0.811 0.772 

Chair 2.812 2.292 2.530 4.242 1.882 0.953 0.930 

Airplane 1.432 1.023 1.144 1.817 1.026 0.446 0.421 

Car 1.983 1.850 2.184 2.530 1.641 0.917 0.864 

Sofa 2.481 2.062 2.366 3.341 1.727 0.792 0.762 

Birdhouse 4.714 4.507 4.830 6.212 2.976 1.868 1.782 

Bag 2.792 2.861 2.932 4.960 2.060 0.930 0.880 

Remote 1.441 1.333 1.496 2.911 1.098 0.530 0.485 

Rocket 1.486 1.324 1.320 2.363 1.036 0.571 0.547 

Keyboard 1.242 0.891 0.954 1.295 0.890 0.381 0.342 

 

3) Ablation Study: To further evaluate the impact of the 

dilated convolution layer, bottleneck attention layer, and 

Softpool module on the experimental results, four sets of 

ablation experiments were conducted on the PCN dataset. 

These experiments were designed to assess the effect of 

removing each of these components on the model's 

performance and to compare the outcomes with the complete 

proposed model. By systematically excluding each module, 

the individual contributions to the overall performance 

enhancement are clearly identified, providing deeper insights 

into their significance for point cloud reconstruction. 

Table IV details the results of the ablation experiments, 

showcasing the influence of each module on the model's 

performance. The findings offer valuable theoretical 

guidance for further optimization of the model. These 

experiments not only confirm the critical role of each module 

but also highlight the effectiveness and robustness of the 

proposed model in processing point cloud data. 

 
TABLE IV 

COMPARISON OF RESULTS OF ABLATION EXPERIMENTS (CD-L1) 

Method Description CD 

(A) complete model 7.73 

(B) without dilated convolution 7.98 

(C) without bottleneck attention 8.11 

(D) without softpool 8.26 

 

(B) and (C) illustrate the results of removing the dilated 

convolution and bottleneck attention modules from the 

multi-scale feature optimization module, respectively. The 

experimental findings reveal that the average CD values 

increased by 2.5% and 3.8%, respectively, highlighting the 

critical role these components play in maintaining low error 

rates and enhancing the accuracy of reconstruction. (D) 

demonstrates the effects of replacing Softpool with max 

pooling, where the average CD value increased significantly 

by 5.3%. This result underscores the pivotal role of the 

Softpool module in refining feature representations, 

preserving geometric fidelity, and ensuring smooth and 

accurate shape predictions. In contrast, (A) represents the 

results of the complete MFOSNet model, which achieved the 

lowest values across all evaluation metrics. This outcome 

strongly validates the effectiveness of integrating all 

proposed modules into a cohesive framework, showcasing its 

superior performance in point cloud completion tasks. 

The analysis underscores the substantial contributions of 

both the multi-scale feature optimization module and the 

Softpool module to the accuracy of point cloud completion. 

Together, these three modules significantly bolster the 

network's capacity to reconstruct detailed and intricate 

structures, further demonstrating the robustness, efficiency, 

and adaptability of the proposed model. 

Figure 6 provides a visual representation of the ablation 

experiment results, offering further insight into the roles and 

significance of the individual modules. In method (D), the 

absence of the Softpool module results in less smooth 

predicted shapes, particularly evident in the finer geometries 

of the airplane and lamp. This observation highlights the 

critical role of Softpool in extracting and optimizing fine 

details, which enables the model to produce smoother, more 

coherent, and visually natural shapes. In method (C), 

removing the bottleneck attention mechanism leads to 

blurred and poorly defined boundaries, as seen in objects like 

the chair and lamp. This limitation further underscores the 

importance of the bottleneck attention mechanism in 

emphasizing local features and ensuring the preservation of 

critical fine details. Method (B), which employs single-scale 

feature extraction, struggles to capture intricate details 

effectively and suffers from feature loss, particularly in 

complex scenes. This limitation is most apparent in 

challenging scenarios, where the inability to capture 

multi-scale information leads to suboptimal completion 

results. 

In contrast, method (A), representing the complete 

MFOSNet model, demonstrates outstanding performance 

across all metrics. It excels in detail preservation, boundary 

clarity, and shape smoothness, delivering the most accurate, 

visually consistent, and appealing reconstructions. The 

complete model effectively integrates the unique strengths of 

all modules, optimizing both feature extraction and 

generation processes to achieve the best possible completion 

results. 

In conclusion, the differences in performance among the 

various methods in handling shape and detail features vividly 

highlight the indispensable roles of the individual modules 

and their synergistic integration. These findings not only 

confirm the necessity and effectiveness of each component in 

optimizing model capabilities but also provide valuable 

insights for future research. By leveraging these observations, 

further refinements and advancements can be made, 

enhancing the model's performance and expanding its 

potential applications in real-world scenarios across diverse 

domains. 

IAENG International Journal of Computer Science

Volume 52, Issue 1, January 2025, Pages 233-243

 
______________________________________________________________________________________ 



 

 
Fig. 6. Visualization results of ablation experiments 

 

V. CONCLUSION 

The proposed MFOSNet introduces a multi-scale feature 

optimization module that enhances the DGCNN module by 

integrating dilated convolutions and bottleneck attention 

mechanisms. This improvement effectively boosts the 

network’s ability to extract local features and understand 

geometric relationships in incomplete point clouds. 

Additionally, the network uses Softpool technology instead 

of traditional max pooling methods, which further retains 

more detailed features and improves the quality of point 

cloud completion, achieving the desired results. 

Through extensive comparative experiments and ablation 

studies, the proposed point cloud completion network has 

demonstrated higher efficiency and accuracy in processing 

large-scale, complex, and incomplete point cloud data. It has 

potential applications in various industrial and research fields, 

such as robot navigation [28], environmental perception for 

autonomous vehicles [29], and 3D reconstruction for cultural 

heritage preservation [30] . However, despite the excellent 

performance of the proposed network, some issues remain to 

be addressed. For instance, networks based on the 

Transformer architecture typically have a large number of 

parameters, which may significantly increase training time. 

In future research, we plan to implement Gated Attention 

Units [31] to reduce the complexity of the network, thereby 

improving both the performance and efficiency of the model. 
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