
 

  

Abstract— In this study, we provide a revised insight into the 

performance of the ResNet50 model in identifying pests 

affecting oil palm plants. This issue is particularly critical due 

to the significance of monitoring and early detection of pests to 

enhance oil palm productivity. This study aims to assess and 

enhance the performance of the ResNet50 model in identifying 

pests that affect oil palm plants. We aim to explore how the 

integration of Depthwise Separable Convolution and the 

Convolutional Block Attention Module (CBAM) techniques 

can enhance the model's accuracy and capability in effectively 

identifying pest classes. This study employed an experimental 

approach utilizing ResNet50 as the foundational model. The 

impact of incorporating Depthwise Separable Convolution and 

the CBAM was assessed to evaluate its effect on model 

performance. The experiments were conducted using a dataset 

that featured a diverse array of images depicting oil palm 

pests. The assessment of model performance involved a 

detailed examination of the Confusion Matrix and the 

classification report. The results surprisingly showed 

significant improvements in accuracy, precision, recall, and F1-

score. The improvement was observed in each pest class, with 

the best final result achieved by combining both techniques, 

resulting in an average accuracy of 99.07%. This study 

demonstrated that the addition of Depthwise Separable 

Convolution and CBAM techniques significantly enhanced the 

ResNet50 model's ability to classify pests in oil palm. The 

results are noteworthy. However, additional analysis is 

required to identify the factors contributing to specific 

misclassifications. Future recommendations include exploring 

additional model architectures and further evaluating the 

factors that influence model decisions. 
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I. INTRODUCTION 

il palm is an product that thrives in tropical regions, 

like Indonesia and Malaysia along with other countries 

such as Papua New Guinea and Thailand where it plays a 

significant role, in the plantation sector of Indonesia [1]. 

Indonesia has seen an increase, in the growth of oil palm 

plantations lately. Has become the top global producer of 

palm oil with a contribution of more than 44% to the total 

palm oil production worldwide. Oil palm is known for being 

highly productive as it yields oil per hectare compared to oil 

producing plants. Indonesia plays a role, in the crude palm 

oil (CPO) market [2]. 

Currently, oil palm production encounters several 

challenges, including pest attacks and diseases that can 

damage oil palm plants. Despite their inherent resistance, 

these plants are not immune to pests and diseases that can 

potentially reduce productivity [3]. Oil palms are also 

sensitive to insect attacks that can inhibit plant growth and 

reduce production. Typically, pest-related damage can lead 

to a production decrease of as much as 70%, and when 

coupled with disease outbreaks, total losses may escalate to 

100% [4]. 

In the context of agricultural production, pest detection 

has become a serious concern, resulting in crop losses of up 

to 20% annually worldwide [5], [6]. In 2021, China faced a 

challenge with plant pests and diseases affecting 400 million 

hectares of land about a quarter of the country’s total area. 

This underscores the need to promptly and precisely detect 

crop diseases and pests for maintaining productivity and 

sustainability. Beyond crop damage this issue plays a role, 

in advancing agriculture growth and boosting farmers’ 

incomes. [7]. Apart from that, developing artificial 

intelligence models via agricultural image processing is 

regarded as one of the most effective approaches. These 

models are capable of detecting pests and categorizing them 

into various classifications. [8]. This enables a more 

efficient response and intervention strategy against pests in 

agricultural production, leading to improved efficacy in pest 

detection and mitigation. Consequently, it helps minimize 

the losses incurred in agricultural production. 

Many researchers have embraced both traditional 

machine learning (ML) techniques and deep learning models 
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to create more effective pest detection systems [9], [10]. 

However, the traditional methods of detecting insects based 

on morphological characteristics may requires some trained 

taxonomists to perform accurate identification. Hence, it can 

be restrictive. [7], [11]. It is important to note that traditional 

methods have some constraints that must be addressed. 

Recently, a number of automated methods for pest detection 

using traditional machine learning have been proposed [12]. 

For example, Faithpraise et al. [13] proposed a K-means 

clustering algorithm for pest detection. However, this 

method requires manual feature extraction and the 

application of filters, which can be time-consuming, 

especially when dealing with large datasets. Moreover, 

Rumpf et al. [14] proposed the use of Support Vector 

Machines for disease recognition in sugar beet crops based 

on vegetation spectra. The method is effective for detecting 

pests. Nevertheless, the efficiency of traditional machine 

learning-based models can be affected by various 

limitations. In traditional ML-based methods, the processes 

of manual feature extraction and classification are time-

consuming, monotonous, prone to errors, and require a high 

level of computer proficiency. Therefore, the use of deep 

learning-based approaches with machine learning is 

becoming increasingly important to overcome these 

constraints and achieve more efficient pest detection [15]. 

Technology has great potential in helping farmers 

efficiently detect destructive insects and prevent diseases at 

an early stage [16]. Imaging and computer vision 

technologies have emerged as pivotal tools with wide-

ranging applications, particularly in contemporary 

agriculture. Various detection techniques that combine 

mechanization with image processing, are currently meeting 

the initial demands for effectively managing pest 

infestations. For example, Kasinathan et al. [17] harnessed 

machine learning methodologies for the classification of 

insect pests, focusing on their morphological attributes. 

Similarly, Chiwamba and Nkunika [18] proposed the 

development of an automated system proficient in on-field 

moth identification by leveraging supervised machine 

learning techniques. On a different note, Tageldin et al. [19] 

employed machine-learning algorithms to forecast leafworm 

infestations in greenhouse environments. In general, 

machine learning models are designed to operate 

autonomously, requiring redevelopment when attributes and 

data change. On the other hand, the Transfer Learning 

approach aims to re-utilize existing models and gain existing 

knowledge, which can ultimately reduce the time and effort 

to develop new models. It can also improve the model's 

performance compared to a stand-alone learning model. 

Fine-tuning, a concept in Transfer Learning, has been 

shown to be a faster and more accurate method of building 

models when compared to building models from scratch 

[20]. In the process of fine-tuning, a Convolutional Neural 

Network (CNN) undergoes initial training for a related task. 

Subsequently, the last layer of the model is modified to 

better align with the characteristics of the new dataset [21]. 

According to Kamilaris and Prenafeta-Boldú [22], a CNN 

Transfer Learning-based models is acceptable to be 

employed in various agricultural problems such as plant 

disease recognition [23], fruit classification [24], weed 

identification [25], and crop pest classification [26], [27]. 

Hence, it can be argued as the powerful tools for classifying 

images in an agricultural context. The use of these models 

has positively impacted farmers by helping them identify 

effective and efficient pest control strategies, as well as 

reducing significant economic losses. 

The classification of pests in oil palm plants plays an 

important role in determining the types of pests that infest 

them, the patterns of their attacks, and the level of the 

damage caused [28]–[30]. This information helps farmers in 

choosing the most effective and efficient pest control 

strategy. Hence, research on deep learning techniques is 

currently underway to enhance pest recognition technology 

in oil palm crops [31]–[34]. An approach to address the 

challenge of automatic classification of pests in oil palm 

involves the development of deep learning-based oil palm 

pest recognition technology. Deep learning methods are 

used to train computer algorithms to recognize patterns and 

features [35] that appear in images of insect pests that attack 

oil palm plants [36]–[38].  

Authors should consider the following points: 

1) Classify pest cases on oil palm plants, including Metisa 

plana, Setora nitens, Parasa lepida, Pteromas pendula, 

and Setothosea asigna, based on visual images using 

Convolutional Neural Network (CNN) architecture, 

specifically ResNet50. 

2) Evaluate the performance of the ResNet50-based 

classification method in identifying pests in oil palm 

with improvements through the addition of Depthwise 

Separable Convolution and Convolutional Block 

Attention Module (CBAM) in the ResNet50 

architecture. 

3) Contribute to efforts to identify and control pests in oil 

palm plants through the analysis of relevant visual 

features. This analysis is expected to help farmers and 

agricultural practitioners in making more informed and 

efficient decisions.    

II. METHODOLOGY 

A. Research Framework 

The research framework developed in this study is 

illustrated in Figure 1. 

Figure 1 shows the research architecture model used in 

this study to classify pests in oil palm plantations. The initial 

step in the research process involves gathering data, which 

is subsequently preprocessed to construct a dataset 

comprising images that match or do not match pest samples. 

The dataset is then divided into three subsets: training, 

validation, and testing. In the training stage, the neural 

network model uses the ResNet50 architecture and is trained 

using the training dataset. Then, the model’s performance is 

evaluated using the validation dataset to confirm its ability 

to generalize well. This evaluation includes some metrics 

such as accuracy, precision, recall, and F1-score (Equations 

1-4). Ultimately, to test the effectiveness of the model, the 

model is tested using an independent testing dataset. This 

approach ensures that the developed model is reliable and 

has good performance in classifying pests in oil palm 

plantations. 
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B. Data collection and Pre-Processing data 

In this study, pest-related data in the oil palm plantation 

of the Siantar Oil Palm Research Center was collected 

through a detailed technical approach. The data included 

images of the pests Metisa plana, Setora nitens, Parasa 

lepida, Pteromas pendula, and Setothosea asigna, which are 

the main pests that are the focus of our research. Each pest 

was carefully photographed to document its distinctive 

characteristics. The shooting distance was maintained at 

about 15-20 cm to allow us to obtain accurate and relevant 

details. 

During the data preprocessing phase, maintaining the data 

quality is quite important to go through the process. Firstly, 

the subject data is prepared by performing data cleaning and 

identifying and addressing noise or anomalies that may be 

present in the dataset. This step aims to ensure the integrity 

of the data before proceeding with the analysis. Next, the 

image data is treated by resizing the images to consistent 

dimensions, allowing further processing with a uniform size. 

Resizing ensures that all images have the same dimensions, 

which is important in the context of image recognition or 

image analysis tasks. 

Ultimately, data augmentation techniques are employed to 

enhance the diversity within the image dataset. Data 

augmentation includes operations such as rotation, width 

shift, height shift, shearing, zoom, and vertical flip. This 

generates variations in the training data that can help 

machine learning models understand different variations of 

images that may be encountered in the real world. Data 

augmentation is a very useful method in image recognition 

and image processing, which can improve model 

performance and prevent overfitting. Through the 

integration of cleaning, resizing, and augmentation steps, the 

data is prepared for further analysis or training of deep 

learning models. 

C. Split Data 

To prepare the data for analysis and training of the 

ResNet deep learning model, the dataset consists of 7500 

images including three pest categories, with each category 

covering 1500 images. These categories include Metisa 

plana, Setora nitens, Parasa lepida, Pteromas pendula, and 

Setothosea asigna. This dataset was then divided into three 

separate sets. The first dataset is the training data, which is 

utilized to train the model and help it understand the patterns 

in the data. The second dataset is the validation data, which 

is used to assess the model's performance during training, 

determine the best parameters, and prevent overfitting. 

Ultimately, the test data is employed to validate the trained 

model's effectiveness on unfamiliar data, thereby providing 

a more accurate gauge of the model's capacity to generalize 

to real-world data. The 80:10:10 split ensures that models 

are trained with sufficient datasets, objectively evaluated, 

and carefully tested before being used in practical 

applications. 

D. Performance Measure 

The Confusion Matrix utilized as an effective tool for 

evaluating the accuracy of an object estimation model. It 

provides a comprehensive elaboration into the model's 

performance by comparing predicted classification 

outcomes against the actual class labels [39]. The accuracy 

of the model, indicating the extent to which its predictions 

align with the actual values, is a key metric provided by this 

method. Accuracy, as represented by Equation 1, calculates 

the ratio of correctly predicted instances (TP + TN) to the 

total instances (TP + TN + FP + FN), offering a fundamental 

measure of overall correctness. Precision, on the other hand, 

measures the accuracy of a prediction or its proportion, 

offering a valuable perspective on the model's capability to 

make accurate positive predictions. Precision, as indicated 

by Equation 2, assesses the ratio of true positive instances 

(TP) to the total predicted positive instances (TP + FP), 

emphasizing the model's ability to avoid false positives. The 

model's recall quantifies its ability to recognize true positive 

instances. Recall, as defined by Equation 3, calculates the 

ratio of true positive instances (TP) to the total actual 

positive instances (TP + FN), providing insights into the 

model's capacity to capture all relevant instances. The 

combination of recall and precision yields the F1-Score, a 

metric that provides a balanced and comprehensive 

evaluation of the model's overall performance. The F1-

Score, as depicted by Equation 4, is the harmonic mean of 

precision and recall, offering a holistic measure of a model's 

effectiveness in both positive and negative predictions. The 

calculation of these metrics involves the use of specific 

formulas, where TP (true positive), TN (true negative), FP 

(false positive), and FN (false negative) are essential 

components in the assessment process. These metrics 

contribute to a nuanced understanding of the model's 

strengths and areas for improvement in object estimation 

tasks. 

E. ResNet 

ResNet, or Residual Network, is one of the most 

influential Convolutional Neural Network (CNN) 

architectures in the world of deep learning. It firstly 

emerged by Kaiming He and his team in 2015, ResNet 

presents a breakthrough that overcomes training problems in 

very deep neural networks. ResNet's main advantage lies in 

the use of residual blocks, which allow information to flow 

more smoothly through the layers of the network. This 

 
Fig. 1.  Research framework model utilized in this study for oil palm pests 

classification. 
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overcomes the gradient constraints that often arise in very 

deep networks [40]. ResNet is often used in various image 

recognition tasks, including image classification, object 

detection, and image segmentation, and has become one of 

the basic architectures in deep learning that is often used in 

various applications [41]. The capability of ResNet to tackle 

deep network training challenges solidifies its significance 

as a key milestone in the evolution of Convolutional Neural 

Networks [42]. 

F. Depthwise Separable Convolution 

Depthwise separable convolution is a technique in image 

processing used to reduce the number of parameters 

required in Convolutional Neural Networks (CNNs). This 

technique replaces standard convolution with two separate 

operations: Depthwise Convolution and Pointwise 

Convolution. Depthwise Convolution: In this stage, each 

input channel is handled separately with a small filter 

kernel. This means each input channel is connected to one 

filter of a small size. This operation aims to extract spatial 

features from each input channel separately. Pointwise 

Convolution: After depthwise convolution, the results are 

then fed into pointwise convolution. In this stage, 

convolution is performed on the entire output channels from 

the depthwise convolution using filter kernels with a size of 

1x1. This operation aims to perform linear adjustments to 

the spatial features extracted earlier [43]. 

The depthwise separable convolution technique has 

several significant advantages. Firstly, its use results in a 

reduction of the parameters required in the network, 

compared to standard convolution. This reduces the overall 

model complexity and computational requirements. 

Secondly, by reducing the number of parameters, the 

technique also improves computational efficiency, thus 

making it more suitable for devices with limited resources 

such as mobile phones or IoT devices. Finally, this 

technique enables better feature-representation learning by 

neural networks. This occurs due to the utilization of the 

depthwise separable convolution approach, which enables 

the independent processing of each input channel before 

carrying out advanced spatial transformations through 

pointwise convolution. As such, this technique is an 

efficient and effective approach to strengthen convolutional 

neural networks in learning important features from images, 

while reducing the overall complexity and computational 

requirements of the model [44]. 

G. Convolutional Block Attention Module 

CBAM (Convolutional Block Attention Module) is an 

attention module used in Convolutional Neural Networks 

(CNNs) to improve performance in computer vision tasks. It 

is designed to assisting CNN networks to focus on the most 

relevant features for decision-making by dynamically 

assigning attention weights to different parts of the input 

image [45]. CBAM consists of two main components: a 

spatial attention module and a channel attention module. 

The spatial attention module allows the network to focus on 

important areas in the image, while the channel attention 

module helps in adjusting the weights of each feature 

channel to improve the overall feature representation [46]. 

By using CBAM, CNN networks can learn to allocate 

resources more efficiently and strengthen the features that 

are most relevant for object recognition or image 

classification tasks [47]. 

H. Combination of ResNet50 with Depthwise Separable 

CBAM 

CBAM is a powerful approach in improving the 

performance of convolutional neural networks (CNNs) for 

computer vision tasks such as image classification. 

ResNet50 is a deep CNN architecture, which is well known 

for its ability to address deep training problems with the 

introduction of shortcut connections or skip connections. 

Depthwise Separable Convolution reduces the number of 

parameters and improves computational efficiency by 

separating the convolution process into two stages: spatial 

convolution and channel convolution. Meanwhile, CBAM 

provides an attention module that helps CNN networks 

focus on the features that are most relevant in decision 

making, by paying attention to both the spatial and channel 

of the features. The combination of these three components 

allows the network to learn better feature-representations, 

improve classification accuracy, and reduce model 

complexity, making it suitable for a variety of computer 

vision applications, including pest classification in oil palm 

crops. 

III. RESULTS AND DISCUSSION 

A. Oil Palm Pest Samples 

The sample data of pests on oil palm plants in this study 

includes five main pest species, namely Metisa plana, 

Setora nitens, Parasa lepida, Pteromas pendula, and 

Setothosea asigna. This dataset contains a variety of images 

that reflect various situations and conditions in the field. 

 

 
(a) 

 
(b) 

 
(c) 
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(e) 

Fig. 2. Oil Palm Pest (a) Setora nitens (b) Parasa lepida (c) Setothosea 
asigna (d) Metisa plana (e) Pteromas pendula. 
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B. Training and Evaluation ResNet50 

As part of the analysis of the use of ResNet50 models for 

oil palm plant pest categorization, the Training ResNet50 

(Figure 3) offers a graphic representation of the model's 

development throughout training. By displaying the 

variations in accuracy and loss values over iterations, it 

provides information on the learning dynamics of the model. 

The model's classification results for each class are shown 

graphically in the Confusion Matrix ResNet50 (Figure 4). 

Furthermore, Table I shows the classification report of 

ResNet50, which including critical performance measures 

for assessing the efficacy of the model, such as F1-Score, 

recall, and precision, broken down for each class. From 

Figure 4, it can be seen that the model has high performance 

in most cases. For example, the Metisa plana class shows 

140 True Positives, which means that the model accurately 

identified Metisa plana 140 times. 

 

 

 
Fig. 3.  Training ResNet50 

 

 
 

Fig. 4. Confusion Matrix ResNet50 
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However, there were some errors, such as 3 cases where 

the model classified Metisa plana as Parasa lepida, 1 as 

Pteromas pendula, and 6 as Setothosea asigna. The Setora 

nitens class also showed excellent results with 146 True 

Positives and only 4 misclassifications. Parasa lepida had 

147 True Positives, with 3 misclassifications. Pteromas 

pendula had 144 True Positives, but 6 misclassifications. 

Setothosea asigna also had good results with 143 True 

Positives and only 7 misclassifications. However, there were 

3 errors where the model classified Setothosea asigna as 

Parasa lepida 3 as Pteromas pendula and 2 as Metisa plana. 

Overall, the ResNet50 model performed well in classifying 

oil palm pests, but it is worth noting some 

misclassifications, especially between Metisa plana and 

Pteromas pendula. Further analysis may be needed to 

understand the factors causing these errors and improve the 

model's performance in certain cases. 

In the ResNet50 scenario of classifying oil palm pests, the 

model showed excellent results with an average accuracy of 

96.00%. For each class, precision was high, reaching above 

93.63%, demonstrating the model's ability to correctly 

identify positive instances. Recall, or sensitivity, was also 

high for each class, above 95.33%, indicating that the model 

could find most of the positive instances. The high F1-

Score, above 94.59%, indicates a good balance between 

precision and recall. Overall, the ResNet50 model showed 

excellent ability in classifying oil palm pests, with consistent 

performance across classes. 

 
TABLE I 

CLASSIFICATION REPORT RESNET50  

Class Precision Recall F1-Score Support 

Setora nitens 0.9589 0.9933 0.9459 150 

Parasa lepida 0.9865 0.9733 0.9799 150 
Sethosea Asigna 0.9363 0.9800 0.9577 150 

Metisa plana 0.9600 0.9600 0.9600 150 

Pteromas pendula 0.9597 0.9533 0.9565 150 
 

Accuracy 

 

0.9600 

Average 0.9603 0.9600 0.9600 750 

C. Training and Evaluation ResNet50 with Depthwise 

Separable Convolution 

In the examination of the application of ResNet50 with 

Depthwise Separable Convolution models for the 

classification of pests on oil palm plants, the Training 

ResNet50 with Depthwise Separable Convolution (Figure 5) 

provides a visual depiction of the model's progression 

during the training process. It illustrates the fluctuations in 

loss and accuracy values across iterations, offering insights 

into the model's learning dynamics.  

The Confusion Matrix ResNet50 with Depthwise 

Separable Convolution (Figure 6) serves as a graphical 

representation of the model's classification outcomes for 

each class. Additionally, Table II, Classification Report 

ResNet50, encompasses crucial metrics for model 

performance evaluation, including precision, recall, and F1-

Score, delineated for each individual class.  

From Figure 6, it can be seen that the model managed to 

improve performance in most classes. For example, the 

Metisa plana class shows 143 True Positives, indicating that 

the model accurately identified Metisa plana 143 times. 

Although there were some errors, such as 3 cases where the 

model classified Metisa plana as Parasa lepida and 1 as 

Pteromas pendula, the increase in the number of True 

Positives illustrates that the addition of Depthwise Separable 

Convolution has helped in improving the classification of 

Metisa plana. The Setora nitens class also showed good 

results with 146 True Positives and only 4 

misclassifications, illustrating the improved model 

performance for this class. Setothosea asigna had 147 True 

Positives with 3 misclassifications, showing that the model 

can identify Setothosea asigna with a high degree of 

accuracy. Parasa lepida showed significant improvement 

with 145 True Positives and only 5 misclassifications, 

compared to the ResNet50 model without Depthwise 

Separable Convolution which had 144 True Positives and 6 

misclassifications. This shows that the addition of this 

technique helped improve the model's ability to better 

classify Parasa lepida. Pteromas pendula also showed good 

results with 144 True Positives and 6 misclassifications. 

There were some errors, such as 2 cases where the model 

classified Pteromas pendula as Setothosea asigna 3 as 

Parasa lepida and 1 as Metisa plana, however, the increase 

in the number of True Positives indicates an improvement in 

classification. 

Overall, the ResNet50 model with Depthwise Separable 

Convolution showed significant improvement in classifying 

oil palm pests, especially for the Pteromas pendula class. 

Further analysis of specific classification errors may provide 

further insights for future improvements to this model. 

In palm oil pest classification, the standard ResNet50 

model showed high performance with an average accuracy 

of 96.00%, precision above 93.63%, recall above 95.33%, 

and F1-Score above 94.59%, indicating the model's ability 

to identify and classify pests with consistent accuracy. 

However, with the addition of Depthwise Separable 

Convolution (DSC), the model performance improved 

significantly.The ResNet50 model with DSC achieved an 

average accuracy of 96.67%, precision above 95.39%, recall 

above 96.67%, and F1-Score above 95.97%. The DSC 

technique helps the model to be more efficient by reducing 

computational complexity and overfitting, as well as 

allowing better focus on relevant features in the image, 

which contributes to the improved ability in detecting and 

classifying pests. Overall, the ResNet50 model with 

Depthwise Separable Convolution showed significant 

performance improvement, indicating that the addition of 

Depthwise Separable Convolution positively contributed to 

the model's ability to classify oil palm pests. 

 
TABLE II 

 
CLASSIFICATION REPORT RESNET50 WITH DEPTHWISE SEPARABLE 

CONVOLUTION 

Class Precision Recall F1-Score Support 

Setora nitens 0.9662 0.9933 0.9597 150 
Parasa lepida 0.9865 0.9733 0.9799 150 

Sethosea Asigna 0.9608 0.9800 0.9703 150 

Metisa plana 0.9539 0.9667 0.9603 150 
Pteromas pendula 0.9664 0.9600 0.9632 150 

 

Accuracy 

 
0.9667 

Average 0.9668 0.9667 0.9667 750 

IAENG International Journal of Computer Science

Volume 52, Issue 1, January 2025, Pages 244-257

 
______________________________________________________________________________________ 



 

 

 
Fig. 5. Training ResNet50 with Depthwise Separable Convolution 
 

 
 

Fig. 6.  Confusion Matrix ResNet50 with Depthwise Separable Convolution 

 

 

D. Training and Evaluation ResNet50 with Convolutional 

Block Attention Module 

In the exploration of the application of ResNet50 models 

with Convolutional Block Attention Module for classifying 

pests on oil palm plants, the Training ResNet50 with 

Convolutional Block Attention Module (Figure 7) visually 

portrays the model's journey throughout the training process. 

This depiction illustrates the fluctuations in loss and 

accuracy values across iterations, providing valuable 

insights into the learning dynamics of the model. The 

Confusion Matrix ResNet50 with Convolutional Block 

Attention Module (Figure 8) acts as a graphical 

representation of the model's classification outcomes for 

each class. Furthermore, Table 3, Classification Report 

ResNet50 with Convolutional Block Attention Module, 

comprehensively presents key metrics for evaluating model 

performance, including precision, recall, and F1-Score, 

individually detailed for each class.  

From Figure 8, it can be seen that the ResNet50 model 

with CBAM has achieved excellent results in classifying all 

classes. For example, the Metisa plana class shows 145 True 

Positives, which indicates that the model can identify Metisa 

plana with high accuracy. With only a few errors, such as 3 

cases where the model classified Metisa plana as Setothosea 

asigna 1 as Parasa lepida and 1 as Pteromas pendula, the 

CBAM attention module made a positive contribution in 

improving classification accuracy. In summary, while minor 

errors in classification remain, the CBAM module’s 

inclusion contributed significantly to the model’s capacity to 

correctly classify the majority of samples, showcasing its 

value in handling complex and closely related categories in 

insect species identification. 
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Fig. 7. Training ResNet50 with Convolutional Block Attention Module 

 

 
 

        Fig. 8. Confusion Matrix ResNet50 with Convolutional Block Attention Module 

 

The Setora nitens class showed excellent results with 

148 True Positives and only 2 misclassifications. This 

reflects the model's ability to identify Setora nitens with a 

high degree of accuracy. Setothosea asigna had 147 True 

Positives with only 3 misclassifications, showing that the 

model with CBAM can classify Setothosea asigna very 

well. This class showed high accuracy and few errors. 

Parasa lepida also showed excellent results with 145 True 

Positives and only 5 misclassifications. The model with 

CBAM provided an improvement in classifying Pendula 

Pteromas compared to the ResNet50 model without this 

attention module. Pendula Pteromas showed excellent 

results with 147 True Positives and only 3 

misclassifications.  

This class reflects the model's ability to identify Pendula 

Pteromas with a high degree of accuracy. Overall, the 

ResNet50 model with CBAM showed significant 

improvement in classifying oil palm pests, with excellent 

performance for each class. 

In comparing the performance of the standard ResNet50 

model and ResNet50 enriched with Convolutional Block 

Attention Module (CBAM) in palm oil pest classification, 

there is a significant difference in the results achieved. The 

standard ResNet50 model showed excellent results with an 

average accuracy of 96.00%. Precision for each class 

reached over 93.63%, demonstrating the model's ability to 

correctly identify positive instances. Recall, or sensitivity, 

was also high for each class, exceeding 95.33%, indicating 

that the model could find most of the positive instances. The 

high F1-Score, above 94.59%, indicates a good balance 

between precision and recall. This confirms that the standard 

ResNet50 has an excellent ability to classify oil palm pests 

with high consistency across classes. 

However, with the implementation of the Convolutional 

Block Attention Module (CBAM), the performance of the 

model improved substantially. ResNet50 with CBAM 

achieved an average accuracy of 97.60%, showing a 
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significant improvement compared to the standard model. 

Precision for each class increased to over 96.73%, indicating 

a better ability to correctly identify positive instances. Recall 

also improved, reaching over 96.67% for each class, 

indicating a higher ability of the model to detect most 

positive instances. The high F1-Score, above 97.64%, 

reflects a better balance between precision and recall. This 

improvement indicates that the use of CBAM effectively 

helps the model to focus on more relevant features in the 

image, reduce noise, and improve the model's ability to 

classify oil palm pests. Overall, the addition of CBAM 

provides significant gains, making the model more accurate 

and efficient, outperforming the performance of standard 

ResNet50. 
 

TABLE III 

CLASSIFICATION REPORT RESNET50 WITH CONVOLUTIONAL BLOCK 

ATTENTION MODULE  

Class Precision Recall F1-Score Support 

Setora nitens 0.9864 0.9667 0.9764 150 

Parasa lepida 0.9673 0.9867 0.9769 150 
Sethosea Asigna 0.9735 0.9800 0.9767 150 

Metisa plana 0.9732 0.9667 0.9699 150 

Pteromas pendula 0.9800 0.9800 0.9800 150 
 

Accuracy 

 

0.9760 

Average 0.9761 0.9760 0.9760 750 

 

E. Training and Evaluation ResNet50 with Depthwise 

Separable Convolution and Convolutional Block Attention 

Module 

In the exploration of the application of ResNet50 models 

with Depthwise Separable Convolution and Convolutional 

Block Attention Module for classifying pests on oil palm 

plants, the Training ResNet50 with Depthwise Separable 

Convolution and Convolutional Block Attention Module 

(Figure 9) vividly depicts the model's progression 

throughout the training process. This visualization captures 

the fluctuations in loss and accuracy values across iterations, 

offering valuable insights into the dynamic learning patterns 

of the model. The Confusion Matrix ResNet50 with 

Depthwise Separable Convolution and Convolutional Block 

Attention Module (Figure 10) serves as a graphical 

representation of the model's classification outcomes for 

each class. Moreover, Table IV, Classification Report 

ResNet50 with Depthwise Separable Convolution and 

Convolutional Block Attention Module, provides a 

comprehensive overview of key metrics for evaluating 

model performance, including precision, recall, and F1-

Score, meticulously detailed for each class.  

The Metisa plana and Setothosea asigna classes showed 

excellent results with 150 True Positives, indicating that the 

model can identify with perfect accuracy. No 

misclassification was detected for these classes, indicating 

the superiority of the model in classifying. Setora nitens also 

showed excellent results with 149 True Positives and only 1 

misclassification. Although there was one case where the 

model classified Setora nitens as Setothosea asigna, this 

error remained low and reflects the high accuracy in 

identifying Setora nitens. Parasa lepida showed excellent 

results with 148 True Positives and only 2 

misclassifications. These two errors indicate that the model 

had some difficulty in classifying Pteromas pendula, but 

still achieved high accuracy. Pteromas pendula also 

achieved excellent results with 146 True Positives and only 

4 misclassifications.  

Overall, the ResNet50 model with Depthwise Separable 

Convolution and CBAM showed excellent performance in 

classifying oil palm pests, with high accuracy and minimal 

misclassification. The combination of Depthwise Separable 

Convolution and CBAM provides a significant improvement 

in the accuracy of this model, and the results are very 

promising for application to similar classification tasks in 

the future. 

 

 

 
Fig. 9. Training ResNet50 with Depthwise Separable Convolution and Convolutional Block Attention Module 
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Fig. 10.  Confusion Matrix ResNet50 with Depthwise Separable Convolution and Convolutional Block Attention Module 

 

In contrast, when Depthwise Separable Convolution and 

Convolutional Block Attention Module are applied to the 

ResNet50 model, there is a substantial performance 

improvement. The modified model achieved a very high 

average accuracy of 99.07%, showing a significant jump in 

classification capability. Precision and recall for each class 

reached very high levels of over 97.33% each, reflecting the 

model's superior ability to accurately identify positive 

instances and detect most positive instances. The high F1-

Score, exceeding 98.07%, indicates that the model 

successfully achieved an optimal balance between precision 

and recall. 

These results show that the combination of Depthwise 

Separable Convolution and CBAM significantly improves 

ResNet50's ability to classify oil palm pests. Depthwise 

Separable Convolution allows the model to focus more on 

important features while reducing computational 

complexity, while CBAM gives the model the ability to 

effectively highlight important features in the image, 

reducing irrelevant noise. The combination of these 

techniques not only improves the accuracy and sensitivity of 

the model but also optimizes the balance between the two, 

resulting in outstanding performance in this complex 

classification task. 
 

TABLE IV 

CLASSIFICATION REPORT RESNET50 WITH DEPTHWISE SEPARABLE 

CONVOLUTION AND CONVOLUTIONAL BLOCK ATTENTION MODULE  

Class Precision Recall F1-Score Support 

Setora nitens 1.0000 1.0000 1.0000 150 
Parasa lepida 0.9803 0.9933 0.9868 150 

Sethosea Asigna 0.9868 1.0000 0.9934 150 
Metisa plana 1.0000 0.9867 0.9933 150 

Pteromas pendula 0.9907 0.9733 0.9799 150 

 
Accuracy 

 
0.9907 

Average 0.9907 0.9907 0.9907 750 

 

F. Discussion 

The research findings based on Table V comparison of 

research results show the improvement of ResNet50 model 

performance with the addition of Depthwise Separable 

Convolution and Convolutional Block Attention Module 

techniques: 
TABLE V 

COMPARISON CLASSIFICATION REPORT RESNET50 WITH THE ADD 

DEPTHWISE SEPARABLE CONVOLUTION AND CONVOLUTIONAL BLOCK 

ATTENTION MODULE  

Scenario Precision Recall F1-Score Accuracy 

ResNet50 0.9603 0.9600 0.9600 0.9600 

ResNet50 with 
Depthwise 

Separable 
Convolution 

0.9668 0.9667 0.9667 0.9667 

ResNet50 with 

Convolutional 

Block Attention 

Module 

0.9761 0.9760 0.9760 0.9760 

ResNet50 with 

Depthwise 

Separable 
Convolution and 

Convolutional 
Block Attention 

Module 

0.9907 0.9907 0.9907 0.9907 

 

The ResNet50 base model has good performance with 

accuracy, precision, recall, and F1-Score around 96%. 

However, there is potential to improve the performance of 

the model. The addition of Depthwise Separable 

Convolution improved the model performance, especially in 

terms of accuracy, precision, recall, and F1-Score which 

reached around 96.67%. This shows that the Depthwise 

Separable Convolution technique makes a positive 

contribution to the performance of the ResNet50 model. The 

use of the Convolutional Block Attention Module provided 

further improvements in model performance, with accuracy, 

precision, recall, and F1-Score reaching approximately 

97.61%. These results show that the Attention Module 

technique makes a positive contribution in improving the 

model's ability to classify oil palm pests. The combination 

of Depthwise Separable Convolution and Convolutional 

Block Attention Module provides a significant performance 

improvement, with accuracy, precision, recall, and F1-Score 

around 99.07%. These results indicate that combining the 

two techniques provides a strong synergy in improving the 

model's capabilities. 
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Fig. 11.  ROC Curve of all Scenarios 

 

 

Furthermore, the study also utilizes the ROC curve to 

illustrates the performance comparison of four scenarios of 

ResNet50 as depicted in Figure 11. The standard ResNet50 

model, represented by the orange line, achieves an AUC of 

0.9792, indicating strong discriminative ability between 

positive and negative classes. A similar performance is 

observed with the ResNet50 model enhanced with 

Depthwise Separable Convolution (DSC), shown by the 

blue line, also attaining an AUC of 0.9792. This suggests 

that while DSC may improve computational efficiency, it 

does not significantly alter the model's overall performance. 

In contrast, the ResNet50 model integrated with the 

Convolutional Block Attention Module, depicted by the 

green line, shows a slight improvement with an AUC of 

0.9850, highlighting the benefits of enhanced feature focus 

through attention mechanisms. The most significant 

improvement is seen in the ResNet50 model that combines 

both DSC and CBAM, represented by the red line, which 

achieves the highest AUC of 0.9942. To sum up, the result 

of ROC curve pointed out that the combination of 

Depthwise Separable Convolution and Convolutional Block 

Attention Module significantly boosts the ResNet50 model's 

ability to distinguish between classes and delivers the best 

performance. Figure 12 presents a detailed and zoomed-in 

view of the Receiver Operating Characteristic (ROC) Curve 

for all scenarios analyzed in the study. This enhanced 

visualization allows a closer examine the performance of 

each model. 

 

 

 
Fig. 12.  Zoomed in ROC Curve of all Scenarios   
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The study also employs ANOVA to statistically evaluate 

whether there are significant differences in performance 

metrics—namely Precision, Recall, F1-Score, and 

Accuracy—across the proposed models. By analyzing the 

variability in these metrics, ANOVA helps determine if the 

observed differences in the confusion matrix results of the 

four models are statistically significant. Table VI shows the 

ANOVA test result. 

 
TABLE VI 

ANOVA RESULT 

Class (average ± 

standard 

deviation) 

Precision Recall F1-Score Accuracy 

ResNet50 96.03±0.02   96.04±0.03 96.02±0.02 96.10±0.05 

ResNet50 with 

Depthwise Separable 

Convolution 

97.60±0.03   97.60±0.03 97.60±0.02 97.61±0.04 

ResNet50 with 

Convolutional Block 

Attention Module 

96.67±0.02   96.66±0.02 96.68±0.02 96.68±0.03 

ResNet50 with 

Depthwise Separable 

Convolution and 

Convolutional Block 

Attention Module 

99.06±0.02   99.06±0.03 99.06±0.03 99.06±0.04 

F-Value 15672.190 11727.753 16454.101 6007.326 

P-Value 0.000** 0.000** 0.000** 0.000** 

 

Table VI shows the low of standard deviation scores (in 

the range of ±0.02 to ±0.05), which it indicates that the 

model is consistent in performance across all metrics. Then, 

the table also presents the extremely high F-values (ranging 

from 6007.326 to 16454.101). Hence, there is a large 

difference between the means of the performance metrics 

for the different classes or models. Moreover, the p-values 

are all reported as 0.000 (with a significance level typically 

denoted by **), meaning the p-values are less than 0.001. 

Therefore, the observed differences in accuracy, recall, 

precision, and F1 scores between the models are not due to 

random chance, but are indeed significant. 

Improved performance is often accompanied by increased 

model complexity. Complex models can require more 

computational resources, and this can be a constraint in 

resource-constrained environments. The more complex the 

model, the more difficult it is to interpret the resulting 

decisions. In the context of oil palm pest classification, 

understanding what factors influence model decisions may 

be more difficult. Improving model performance often 

depends on the quality and representativeness of the training 

data. A model that is highly optimized for a particular 

training data may not be as good when faced with different 

data. 

In an effort to improve the ability to classify oil palm 

pests, it is necessary to explore and test innovative model 

architectures. One promising approach is to combine Vision 

Transformer with other deep learning architectures, such as 

EfficientNet, DenseNet, or recent models. Engaging these 

models can provide additional insights into the performance 

and reliability of the models in handling the visual 

complexity of oil palm pest images. In addition, evaluating 

the effect of combining the Depthwise Separable and 

Convolutional Block Attention Module with other layers or 

modules, such as Squeeze-and-Excitation, is key in 

optimizing model features. Combining these techniques has 

the potential to produce a more robust model, with enhanced 

capabilities in recognizing and classifying different types of 

oil palm pests. 

The study conducted by Liu et al. [48] achieved an 

accuracy of approximately 95.1% in identifying troublesome 

insects in rice fields, outperforming related research. This 

significantly supports both higher agricultural yields and 

crop protection initiatives. Similarly, Wang et al.'s research 

effectively classified crop pests with an accuracy of around 

91%, which can assist farmers in increasing agricultural 

productivity. 

Despite the need for further accuracy improvements, 

Barbedo and Castro's [49] study demonstrated a 70% 

accuracy rate in identifying psyllids, suggesting the potential 

application of convolutional neural network techniques for 

pest identification. Meanwhile, Alves et al.'s [50] research 

classified cotton pests in the field with an accuracy of 

approximately 97.8%, providing robust support for pest 

monitoring and management in cotton farming. 

Furthermore, Johari et al. [36] reported a high accuracy in 

the classification of bagworm infestations in oil palm 

plantations through various vegetation indices and machine 

learning techniques. The study achieved the highest 

performance in classification with more than 98% of the F1-

score from all models proposed. Moreover, Johari et al. [37] 

also investigate the similar object, but with different 

method. Through the utilization of five different deep CNN 

architectures, the models come out the highest classification 

accuracy of 96.18%. 

This research introduces a new and unprecedented 

approach to oil palm pest classification, making a very 

significant contribution to the field of agricultural pest 

classification. By using the ResNet50 model which has been 

refined through the application of the Depthwise Separable 

Convolution and Convolutional Block Attention Module 

techniques, this research opens up new avenues in efforts to 

accurately categorize oil palm pests. The model proposed in 

this study is the first to be applied specifically for oil palm 

pest classification, an innovation that not only shows 

effectiveness in identifying pests, but also provides a much-

needed practical solution for farmers and researchers in the 

field of agriculture. The results of this research offer 

valuable insights and have great potential for more efficient 

pest control and conservation of oil palm crops. Although 

this research brings new breakthroughs, there are several 

limitations that need to be considered. One of the main 

limitations is the size of the dataset used. Using larger and 

more diverse datasets can improve model performance and 

generalization. Additionally, there is potential to further 

optimize the model to achieve higher levels of precision and 

provide more robust solutions for oil palm pest classification 

in the future. Overall, this research introduces a new 

approach to classifying oil palm pests that has not 

previously existed. These findings not only fill a gap in the 

literature but also provide a strong basis for further 

development in the field of agricultural pest classification. 

IV. CONCLUSION 

The ResNet50 model showed high performance in 

classifying oil palm pests, with impressive results especially 

after the addition of Depthwise Separable Convolution and 

Convolutional Block Attention Module (CBAM) 
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techniques. Although there were some misclassifications, 

especially between Metisa plana and Pteromas pendula, the 

model overall provided consistent and impressive results. 

The complexity of the model needs further consideration, 

given the potential increase in computational resource 

requirements and the complexity of interpreting model 

decisions. Factors causing misclassification, especially 

between the Metisa plana and Pteromas pendula classes, 

need to be further analyzed to improve model performance. 

The improved model has great potential to be applied in 

automated monitoring of oil palm pests, contributing to 

efficiency and accuracy in the identification of pest 

problems. Despite the high performance of the model, it is 

important to remember that these results depend on the 

quality and representativeness of the training data. Special 

attention should be paid to the characteristics of the dataset. 

Recommendations for future research include exploring 

additional model architectures, such as Vision Transformer, 

and testing the combination of Depthwise Separable and 

CBAM techniques with other modules such as Squeeze-and-

Excitation for further optimization. Further evaluation on 

the factors causing misclassification may provide additional 

insights for further improvements.  
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