
 

 

Abstract— This study performs an assessment of the use of 

Mixed Reality (MR) technology in the cognitive field. 

Previously, most of the studies commonly used desktop-based 

for cognitive testing. However, this approach is limited to 

screen projection in two dimensions and requires adequate 

physical space and a table for performing testing. This incurs 

the concern of the immersive during the test. The study found 

that MR, as an immersive tool, could address those concerns. 

Thus, the experiment in this paper performs the comparison 

between desktop-based and MR-based environments. This 

study aims to propose a testing framework that can provide 

analytical analysis based on the EEG data to demonstrate 

participant engagement, concentration, and immersion level in 

different environments. Fifteen students participated in the 

study, with their EEG data collected during tests in Mixed 

Reality Visual Colour (MRVC) and Desktop Visual Colour 

(DVC). Subsequently, the collected EEG data was analyzed 

using the Cognitive Signal Domain (CSD) method. Analysis of 

collected data revealed that participants in the MRVC showed 

higher levels of engagement, concentration, and immersion. 

This study implies that MR-based testing can be an effective 

method for eliciting cognitive responses in participants. 

 
Index Terms— Cognitive Test, Desktop-based, 

Electroencephalogram, Mixed Reality-based 

 

I. INTRODUCTION 

OGNITIVE is a process that impacts various aspects 

of life, from school to work. This process encompasses 

problem-solving, memory retention, critical thinking, and 

judgment [1]. Historically, numerous research studies have 

employed desktop-based cognitive tasks to assess human 

cognitive capabilities. For instance, Tamura et al. [2] 

developed a modified trail-making task using a personal 

computer and touch panel to evaluate the cognitive mental 

state for detecting mild cognitive impairment in the elderly. 

Hendrawan et al. [3] similarly designed a desktop-based test 
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to assess students' working memory. In addition, Yazdani et 

al. [4] created a desktop-based Selective Visual Attention 

Test (SeVAT) to evaluate the selective attention of first-

grade school children. 

While desktop-based cognitive tasks have been widely 

employed, this approach reveals two significant research 

gaps. Firstly, the cognitive test was presented on the screen, 

which exhibits a two-dimensional (2D) representations to 

the user. This will result in a lack of immersive visual 

engagement for participants. Furthermore, interaction 

though the mouse or keyboard was presented with limited 

engagement, which may lead to reduce motivation and 

potentially affect their performance. Secondly, to have an 

optimal test visualization, there is a need to have a well 

physical space to set up the desktop. Those setups will result 

in cumbersome in data collection because there is a need to 

be careful consideration on the space allocation and the 

equipment arrangement. Thirdly, the setup which needs to 

be fixed on specific location will limit the participant’s 

mobility, reducing the flexibility to conduct the test in 

diverse setting and accommodating individual with mobility 

challenges. 

In order to address these gaps, the study investigates the 

potential of Mixed Reality (MR) technology to create more 

immersive and interactive cognitive tasks. MR is an 

emerging holographic technology that merges virtual and 

real environments to create a novel immersive environment 

where users can interact with virtual objects in the real 

world. The application of MR was applicable for a wide 

range of fields [5]. For instance, Yusoff et al. [6] conducted 

assessment of user perception and acceptance of MR in 

education, finding that students having a strong interest and 

willingness to use MR. This results in having potential to 

enhance academic performance.  Weng et al. [7] discussed 

the integration of MR in education, demonstrating its value 

as a learning supplement that can improve students' learning 

outcomes.  Flavián et al. [8] highlighted the impact of MR 

on the customer experience in marketing, illustrating the 

way MR technology can provide customers with highly 

immersive experiences. 

In this paper, Mixed Reality (MR) technology will be 

applied to develop cognitive testing frameworks specifically 

designed to measure cognitive functions related to visual 

attention. We introduce the Mixed Reality Visual Colour 

(MRVC) test as a novel MR-based cognitive assessment. 

Additionally, to compare with different environmental 

contexts, the Desktop-based Visual Colour (DVC) test was 

designed. After that, an Electroencephalogram (EEG) 

headset was adopted to record brain signals. The use of non-
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invasive electrophysiological monitoring method can 

provide us a much deeper insight into participants' cognitive 

state through the brain activity [9]. The EEG data can be 

categorized into five frequency sub-bands: alpha (8-12 Hz), 

beta (13-30 Hz), gamma (31-50 Hz), theta (4-7 Hz), and 

delta (0.5-3 Hz). These EEG data will be analyzed using the 

Cognitive Signal Domain (CSD) method, which includes 

power spectrum analysis, Event-Related Spectral 

Perturbation (ERSP), Engagement Index (EI), and 

Concentration Index (CI) values. The result obtained from 

CSD method will provide a comprehensive evaluation that 

allows us to assess the participants' levels of engagement, 

concentration, and immersion during cognitive tasks. 

The objectives of this study can be summarized as 

following: 

1. To design cognitive testing framework in both desktop-

based and MR-based environments for assessing 

participants' cognitive function. 

2. To conduct a comparative analysis of the EEG data 

collected from DVC and MRVC tests using the 

Cognitive Signal Domain (CSD) method. 

The following sections of this paper are divided into 

Materials and Methods, Desktop-Based and Mixed Reality-

Based Cognitive Tests, Electroencephalogram Signal 

Processing, Results and Discussions, and Conclusion. 

 

II. MATERIAL AND METHODS 

A. Mixed Reality Headsets 

In this research, we utilized the Microsoft HoloLens 2, a 

wearable mixed reality (MR) headset developed by 

Microsoft [10]. It is a pair of MR smart glasses that provides 

an immersive MR experience by seamlessly merging the 

real and virtual worlds. It enables physical and virtual 

objects to coexist and interact in real time. This standalone 

headset projects virtual objects onto a near-eye screen, 

creating holographic displays within the real world. 

Equipped with built-in sensors. The device tracks the user's 

movements in physical space, adjusting the virtual object's 

location accordingly [11].  

 
 

Fig.1: Reality-virtuality continuum (redrawing based on [12]) 

 

For clarity, MR encompasses specific elements of both 

augmented reality (AR) and virtual reality (VR) [12], [13]. 

AR involves overlaying digital objects onto the real world 

[14], while VR generates an entirely digital virtual 

environment with the controller to interact with digital 

objects [15]. According to the reality-virtuality continuum as 

shown in Figure 1, it is a scale that spans from the real-world 

environment to the virtual environment [12]. The zone 

between complete reality and complete virtuality is defined 

as MR. The key distinction among AR, VR, and MR lies in 

user interaction. AR permits users to view digital elements in 

the real-world environment without direct interaction. 

Conversely, VR immerses users in a fully virtual 

environment, requiring isolation from the physical world and 

obstruction-free spaces to prevent unforeseen incidents while 

wearing a VR headset. It interacts with the virtual object 

through the usage of a controller. 

It is worth noting that AR and VR have found applications 

in various fields, such as cognitive training and educational 

learning [16], [17], [18]. However, the utilization of MR in 

these contexts is still in its early stages, and its full potential 

is yet to be explored. MR, as an intermediate technology, 

blends the capabilities of AR and VR, enabling users to 

interact with digital elements within their real-world 

surroundings. This fusion of realistic renderings and 

interactions creates an MR experience that closely resembles 

real-life scenarios [19], [20]. 

 

B. Emotiv Insight Headsets 

The Emotiv Insight is a consumer-grade EEG headset that 

can be used in research application and personal use. There 

are several reasons Emotiv Insight was chosen over other 

consumer-based EEG headsets. First, it is cost-effectiveness. 

Although other EEG headsets with more channels provide 

extensive data acquisition capabilities, Emotiv Insight's 5-

channel configuration provides a good balance between 

functionality and affordability. Second, it meets specific 

requirements of our research. The 5-channel setup matches 

our study's objectives by covering the frontal (AF3, AF4), 

parietal (Pz), and temporal (T7, T8) regions associated with 

attention-related cognitive functions. Third, it is user-

friendly, with a straightforward electrode setup and the 

calibration process only takes about 2 minutes [21]. 

 

C. Participants 

Fifteen healthy students, including of 10 males and 5 

females, aged between 21 and 26 years, voluntarily 

participated in this experiment. Participation was limited to 

individuals with normal or corrected-to-normal vision. Those 

with specific eye conditions, such as color blindness, low 

vision, cataracts, or any other conditions that might affect 

visual perception, were not eligible to participate. Each 

participant provided informed consent taking part in the tasks. 

Throughout the signal acquisition process, they wore an EEG 

device. Later, the EEG datasets collected from all participants 

were used for analysis. During the experiment, participants 

performed the same task in two distinct environments: a 

desktop-based environment and an MR environment. 

Participants were informed of their right to discontinue their 

participation at any point if they felt unwell. 

 

III. DESKTOP-BASED AND MIXED REALITY-BASED 

COGNITIVE TESTS 

The study primarily focused on designing a visual color 

search test in both desktop-based and MR-based 

environments. Visual search is a perceptual task that 
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Fig.2. The flow diagram of proposed cognitive testing frameworks 

 

involves actively scanning the visual environment to locate 

specific information [22], [23]. It has previously been 

utilised in platforms such as PsyToolkit, [24], and CogniFit 

[25], [26] for studying cognitive functions. Figure 2 

provides a block diagram illustrating the process of the 

Visual Colour test in both desktop-based and MR-based 

environments, utilizing EEG for analysis. A comparative 

analysis of EEG signals between these two environments 

will be conducted using the CSD method to determine 

which environments provide greater participant 

engagement, concentration, and immersion levels during the 

tasks.  

The visual color test consists of two components, which 

are an attention task and a distraction task. Both tasks will 

need the participants to locate a target stimulus. In the 

attention task, participants tasked to identify a specific color 

target stimulus among a group of stimuli, with all uniformly 

white. The distraction task also requires participants to 

identify the color target stimulus. But this task having a 

group of stimuli with variety colors that are either slightly 

similar or different from the target stimulus. Both tasks are 

presented randomly during the test and are performed 

without any induce any audio distractions. 

The reason having both tasks performed in a single test 

was to measure participant concentration, immersion, and 

engagement, making it possible to have a comparison on 

their performance across different environments. A sample 

display of the Desktop Visual Colour (DVC) and Mixed 

Reality Visual Colour (MRVC) tests is provided in Figure 3, 

with a dotted line indicating that both tasks are presented 

randomly within a single test. 

Figure 4 displays the flowchart used for both the Desktop 

Visual Colour (DVC) test and the Mixed Reality Visual 

Colour (MRVC) test. This flowchart served as a guide for 

designing a logic flow graph for the virtual elements of the 

visual color test within the Unreal Editor. The total task 

duration is set at 70 seconds, consisting of 70 trials, each 

lasting 1 second. This time limit was determined based on a 

prior experiment conducted in CogniFit [26]. However, the 

initial and final 5 seconds (equivalent to 5 trials) of EEG 

recording are excluded from analysis due to concerns about 

potential poor EEG signal quality at the beginning and end 

of the recording. Consequently, only 60 seconds of recorded 

EEG signals will be subjected to analyse. 

 

  

 
(a) 

 

 
(b) 

Fig.3. Sample Display of (a) Desktop-Based Visual Colour (DVC) Test and (b) MR-Based Visual Colour (MRVC) Test 
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Fig.4. Flow chart of Visual Colour Test for Desktop-based Environment and Mixed Reality (MR)-Based Environment 

 

IV. ELECTROENCEPHALOGRAM SIGNAL 

PROCESSING 

A. Environmental Noise Filtering 

When recording brainwaves with the Emotiv Insight 

headset, the Electroencephalogram (EEG) signal is often 

contaminated by environmental noise that is generated in the 

environment with electrical wiring, either 50 Hz or 60 Hz. To 

filter out the noise, the headset has built-in filters, namely a 

digital dual notch filter and a 5th-order Sinc filter. The digital 

dual Notch filter is used to attenuate raw EEG signals in the 

stopband frequency range and pass the signals below and 

above the stopband. This filter is particularly effective at 

eliminating electrical line noise present in the signals. 

Equation 1 shows the formulation of the Notch filter. 

 

 

(1) 

 

where  is the signals frequency content,  is the stopband 

center frequency, and r is the notch bandwidth, ranging from 

0 to 1. The Sinc filter is a low-pass filter that cuts off the high 

frequencies, without affecting lower frequencies. Equation 2 

shows the formulation of the Sinc filter, S(n) 

 

, (2) 

 

where  is the cutoff frequency and  is the frequency content 

of the signals.  

 

B. Cognitive Signal Domain (CSD) on EEG Analysis 

The Cognitive Signal Domain (CSD) method was 

introduced to perform analytic calculation of the EEG data 

collected from both environments for comparative analysis. 

The CSD method analyzes EEG data based on the parameters 

includes power spectrum, Event-Related Spectral Perturbation 

(ERSP), Engagement Index (EI), and Concentration Index 

(CI) values. These parameters provided the evaluation metric 

to calculate participants' levels of engagement, concentration, 

and immersion within their respective environments 

 

 

The power spectrum was applied to calculate the 

distribution of signal power across different frequencies. It 

represents the coefficients of each frequency band, measured 

through the Fast Fourier Transform (FFT), in the form of a 

power value plot. In this study, our objective is to analyze 

participants' states of engagement, concentration, and 

immersion. Consequently, we focus solely on the theta (4-7 

Hz), alpha (8-12 Hz), and beta (13-30 Hz) frequency bands. 

The FFT transforms the time-domain function into a 

frequency-domain representation, as depicted in Equation 3. 

 

 

(3) 

where  is the time-domain signal,  is the frequency to 

analyze, and  is the frequency domain Fourier 

transform. An example of an EEG signal decomposed into a 

Fast Fourier Transform (FFT) is shown in Figure 5. 

 

Fig.5. Visualization of electroencephalogram (EEG) signals in the time-

domain decomposed into FFT in the frequency domain. 

Later, the Fourier transform is inserted into the power 

spectrum formulation as shown in Equation 4 to calculate the 

harmonic power in the signals. 

 

(4) 

where  is the power spectrum of frequency bands,  

is the Fourier transform, and T is the arbitrary period. Using 

the computed power spectrum, a 2-dimensional 
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topographical interpolation plot is constructed by defining 

grid points based on the 10/20 system as shown in Figure 6. 

 

Fig.6. Grid point on the 2-dimensional head plot 

 

The colour intensity is used to indicate the strength of the 

power spectrum in the DVC and MRVC. The colour radius in 

the topographic is computed using Equation 5. 

 

(5) 

where  is the size of the radius for maximum intensity,  

is the maximum radius size of each grid,  is the 

power spectral density maximum value for channels, and  

is the channel labels where . Later, colour 

interpolation is used between the intersection grids to 

smooth the topographic map [27], [28]. 

Next, to detect the event-related changes in the power 

spectrum, a time-frequency technique named Event-Related 

Spectral Perturbation (ERSP) was used. It measures changes 

in EEG frequency spectrum amplitude as a function of time 

relative to the trials. Figure 7 provides a visualisation of 

ERSP, where the circle with a blue arrow (inside a red 

rectangular prism) represents the decomposition of the time-

frequency points for each trial. These points were averaged 

across the trials and converted into an event-related spectrum 

using Equation 6. 

 

 

Fig.7. Event-Related Spectral Perturbation (ERPS) technique 

, (6) 

where   is a complex number in vector with  as 

frequency and  as time,  as the trial number, and  is the 

length of a vector. The value of ERSP will be scaled to 

decibels (dB) to have an easier visualization of frequencies 

with different amplitudes. 

Afterward, to calculate the sense of engagement and 

concentration, the power spectra of theta, alpha, and beta 

bands were averaged and applied to the Engagement Index 

(EI) and Concentration Index (CI) using Equation 8 and 

Equation 10.  

 

 

(7) 

 

(8) 

 

(9) 

 

(10) 

where , , and  is the alpha, beta, and 

theta for each channel, ABR is the alpha-to-beta ratio, and 

TBR is the theta-to-beta ratio. Previous studies have shown 

that a lower ABR indicates higher engagement in cognitive 

processes during decision-making, and a lower TBR reflects 

stronger concentration ability [29]. 

 

Fig.8. Overall flow of the Cognitive Signal Domain (CSD) method 

Figure 8 shows the block diagram of the CSD method used 

to analyze participants' engagement, concentration, and 

immersion in both environments. The process was initially 

decomposing the EEG data into Fast Fourier Transform (FFT) 

to calculate the average power spectrum of the signal across 

five electrodes (AF3, AF4, Pz, T7, and T8). Following that, 

topographical maps of these electrodes were generated to 

identify which brain lobes having increased or decreased 

brain activity during cognitive tasks. Subsequently, the β 

power values collected from the test were calculated using 

three evaluation metrics. First is evaluating concentration 

through activity power spectrum. Second is evaluating 
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immersion through Event-Related Spectral Perturbation 

(ERPS). Third is evaluating engagement and concentration 

through the Engagement Index (EI) and Concentration Index 

(CI). 

V. RESULTS AND DISCUSSIONS 

A. Participant Feedback on Desktop-Based and Mixed 

Reality-Based Environments 

After participant completed the Visual Colour test in both 

Desktop-based and MR-based environments, their feedback 

was collected. This feedback provides valuable insight into 

the comparative effectiveness of both environments for 

cognitive testing. Table 1 summaries their feedback on each 

environment. To keep participants’ confidentiality, all 

feedback is anonymized, and any identifiable information 

that has been excluded from this section. 

 
TABLE  1.  

Presentation of Participants' Feedback 

Desktop-Based Environment 

Positive 

Experiences

: 

Participant: “The Desktop-based task offers a 

familiar setting and it was relatively easy to 

operate. Maybe because of the common use of 

the computer.” 

Challenges 

Faced: 

Participant: “While the DVC task was 

manageable, it was monotonous which 

affected our motivation to perform at our 

best.” 

Mixed Reality-Based Environment 

Positive 

Experiences

: 

Participant: “The MR-based environment 

made the tasks feel more engaging and 

immersing. The interactive nature of MRVC 

tasks enhanced my focus on it. It was 

fascinating to see the virtual objects 

integrated into the real environment.” 

Challenges 

Faced: 

Participant: “While MRVC was immersive, it 

put some weight on our head. After prolonged 

usage, maybe for a few hours, it began to 

become warm and our forehead and back of 

head tend to sweat.” 

 

To have a comparative analysis of participants' cognitive 

states during the DVC and MRVC tests, the CSD method 

was applied and the result was presented in the following 

section with the discussion of the finding. 

 

B. Application and Trial Sequences of Visual Colour Tests 

In this study, to gather EEG data from participants in 

various environments, we designed the application and trial 

sequences for both the Desktop-based Visual Colour (DVC) 

test and the MR-based Visual Colour (MRVC) test, as 

illustrated in. Figure 9.  

In the desktop-based environment, the test was displayed 

on a 2D screen placed on a table, and participants were 

required to sit at a distance from the screen for viewing. In 

contrast, in the MR-based environment, participants simply 

wore the HoloLens 2 headset to see the test seamlessly 

integrated into the real environment. 

Both the DVC and MRVC tests encompassed two 

distinct target-searching conditions. The first task involved 

participants searching for a specific color target stimulus 

within a group of stimuli, all uniformly white. The second 

task required them to identify the same color target stimulus, 

but this time among stimuli with various colors. These tasks 

were integrated into a single test and presented randomly, 

allowing us to measure participant engagement, 

concentration, and immersion across different environments. 

Regarding participant mobility during the experiment, 

using the HoloLens 2 headset offered greater flexibility 

compared to a desktop screen. In the desktop computer 

setup (as shown in Figure 9a), a suitable and stable viewing 

location is needed to be provided. However, this constraint 

was alleviated in the MR-based environment, where 

participants could wear the headset to visualize the test 

projected seamlessly into the real environment (as shown in 

Figure 9c) 

 

C. Average Power Spectrum 

 The activity power spectrum technique involves the 

calculation of power values within the β frequency range 

(13 Hz-30 Hz) in both the frontal lobe (AF3 and AF4) and 

the parietal lobe (Pz). The β activity was selected because it 

serves as an indicator of the participant's arousal during the 

execution of visual cognitive tasks. Higher β activity is 

associated with increased engagement, concentration, and 

immersion. To determine which environments elicited 

higher β activity, we computed, averaged, and visualized the 

power values of 15 participants while they performed the 

DVC and MRVC tests. These visualizations were generated 

using EEGLAB [30]. 

 

 

 
Fig.10. Desktop-Based Visual Colour (DVC) Test: Scalp Maps and 

Activity Power Spectrum from 13 Hz –30 Hz 
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Fig. 11. MR-Based Visual Colour (MRVC) Test: Scalp Maps and Activity 

Power Spectrum from 13 Hz –30 Hz 

Scalp maps as shown in Figure 10 and Figure 11 indicate 

that both environments exhibit high EEG variation in AF3, 

AF4, and Pz locations. The activity power spectrum line 

graph for each location shows significant distinct patterns for 

DVC and MRVC tests. During the DVC test, an exponential 

decrease in β power values was found at AF3 (from -4 

dB/Hz to -7.5 dB/Hz), AF4 (from -3.5 dB/Hz to -6.5 dB/Hz), 

and Pz (from 6 dB/Hz to 1 dB/Hz). For MRVC test, the β 

power values remained within the range at AF3 from 1.75 

dB/Hz to 4 dB/Hz, AF4 ranged -1.2 dB/Hz to 1.2 dB/Hz, and 

Pz from 8 dB/Hz to 10.1 dB/Hz. It shows that the average β 

power values remained relatively constant across the 

frequency range. This indicates that participants maintained 

their concentration levels throughout the MRVC test. As the 

average β power values of the DVC test having 

exponentially decrease, this suggests that there is a sign of 

decline of concentration levels. Additionally, there is a 

noticeable higher value of overall β power for the MRVC 

test as compared to DVC test. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.9. Desktop-Based Visual Colour (DVC) Test and MR-Based Visual Colour (MRVC) Test: (a) & (c) Application and (b) & (d) Trial Sequences 
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D. Event Related Spectral Perturbation (ERSP) 

The Event-Related Spectral Perturbation (ERSP) method 

was employed to identify mean event-related changes in the 

β power spectrum across a period of time ranging from 0 to 

60 seconds. The EEGLab was applied to perform the 

calculation. The results were then presented in the form of 

time-frequency images and curves, as shown in Figure 12 

and Figure 13.  

 

 

 
(a) AF3 

 

 
(b) AF4 

 

 

(c) Pz 
Fig.12. Time-Frequency Images and Curves of Desktop-Based Test at 

AF3, AF4, and Pz Channels 

 

 

 
(a) AF3 

 

 

 
(b) AF4 

 

 

 
(c) Pz 

Fig.13. Time-Frequency Images and Curves of Mixed Reality (MR) Test at 

AF3, AF4, And Pz Channels 

These figures show a variation of ERSP values over time 

within the 13 Hz to 30 Hz frequency range. The red color is 

corresponding to the highest activity and the blue color 

corresponding to lowest activity presented. If the ERSP 

values remain relatively stable within this specific frequency 

band, it suggests that the ongoing test has a minimal impact 

on participants' cognitive processes. Conversely, any 

observed variation in ERSP values indicates a significant 

influence of the test on participants' cognitive processes. 

According to the time-frequency images, distinct 

variations in ERSP values between 20 Hz to 25 Hz were 

observed at the AF3 location during both the DVC and 
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MRVC tests. In the DVC test, ERSP values ranged from 5 

dB to 20 dB, while the MRVC test exhibited a wider range, 

varying between -10 dB to 20 dB. Notably, the time-

frequency image revealed a significant observation: the 

MRVC test displayed a more prominent red region 

compared to the DVC test. This suggests that participants 

were more focused on the task in the MR-based 

environment. However, for the remaining frequencies 

analysed in both tests, the ERSP values consistently fell 

within the range of 18 dB to 20 dB. 

There was less variation in ERSP values at the AF4 

location across 13 Hz to 30 Hz frequency range for both 

tests, indicating that similar cognitive processes were 

conducted. Still, the MRVC test having wider range 

compared to DVC test. At the Pz location, the ERSP values 

of the DVC test remained relatively stable from 13 Hz to 30 

Hz, hovering around 15 dB. In contrast, the MRVC test 

showed changes in ERSP values at 25 Hz, ranging between 

10 dB and 20 dB. This may indicate that participant’s brain 

activities were engaged differently on both tests.  

As for the time-frequency curves at AF3, AF4, and Pz 

locations, it was observed that there have significant 

differences in ERSP values between both tests. For instance, 

the mean baseline ERSP values of the MRVC test were 

found to be 5.49 dB, 2.75 dB, and 0.99 dB higher than those 

of the DVC test at AF3, AF4, and Pz locations, respectively. 

This suggest that the participants more engaged during the 

MRVC test. 

Based on the above findings, it suggested that the MRVC 

test significantly influenced participants' cognitive 

processes, as evidenced by the substantial changes in ERSP 

values compared to the DVC test. This also implies a higher 

level of immersion in the MR-based environment. 
 

E. Engagement Index (EI) and Concentration Index (CI) 

The power ration technique was applied to assess the 

engagement and concentration levels in both test by 

calculating the ratio of power within the alpha-to-beta and 

theta-to-beta frequency bands. In the experiment, each of 

the participant’s EEG power values were aggregated, and 

the average power ratios were calculated, as shown in the 

bar chart in Figure 14 and Figure 15. 

 

Fig.14. Alpha-to-Beta Ratio (ABR) 

 

Fig.15. Theta-to-Beta Ratio (TBR) 

The chart shows that the overall ABR values in MRVC 

test were 0.06 and 0.26 lower than those in the DVC test. 

This suggests a higher percentage of beta activity and a 

lower percentage of alpha activity in the MRVC test. 

Similarly, the overall TBR values in the MRVC test were 

0.03, 1.88, and 1.97 lower than those in the DVC test, 

indicating a higher percentage of beta activity and a lower 

percentage of theta activity in the MRVC test. 

Later, these ratio values will be used as the inputs to 

calculate the Engagement Index (EI) and Concentration 

Index (CI), as presented in Table 2. The results revealed that 

the EI in the MRVC test were higher than DVC test, with 

difference value from 0.36 to 1.32. Similarly, the CI in the 

MRVC test were higher than that DVC test, with difference 

from 0.03 to 0.67. These findings suggest that participants 

exhibited higher levels of engagement and concentration in 

the MRVC test compared to the DVC test. 

 
TABLE  2. 

Engagement and Concentration Indexes for Visual Colour Test 

  
Engagement 

Index (EI) 
  

Concentration 
Index (CI) 

  

Electrode 
Channels 

DVC MRVC Differences DVC MRVC Differences 

AF4 1.62 2.77 1.15   0.34 0.92 0.58 

AF3 1.66 2.98 1.32  0.34 1.01 0.67 

Pz 2.26 2.62 0.36 0.94 0.97 0.03 

 

Based on the overall result, it suggests that MRVC test 

can provide participants with a significantly higher level of 

engagement, concentration, and immersion as compared to 

the DVC test. This was proved with the experimental result 

from activity power spectrum, ERSP values, and the EI and 

CI values. This outcome presents that MR-based 

environment can enhance the participant’s cognitive test 

experience. 

 

 

VI. CONCLUSION 

This study performs an analytical comparison of desktop-

based and MR-based cognitive testing. The analysis was 

done by utilizing the consumer-based EEG device to record 

participant’s brain activities while performing the DVC and 

MRVC tests. The recorded EEG data from each test were 

analyzed using the CSD method and three parts of the result 

were obtained. Firstly is the activity power spectrum. The 

participants showed higher engagement during the MRVC 

test than during the DVC test. The increased engagement is 

because of a high beta activity power spectrum were 

observed. Secondly is the ERSP value. It seems that highest 

values were obtained in the MRVC, indicating a greater 

sense of immersion. Thirdly, there are the EI and CI scores. 

It seems highest scores were recorded during MRVC test, 

indicating that participants were more engaged and 

concentrated in the MR environment. 

Overall, participants can demonstrate a stronger sense of 

engagement, concentration, and immersion in MR 

environment as compared to desktop-based environment. 

This highlights the potential of MR as an immersive 

technology for measuring cognitive function in various 

domains. Further work could be conducted by collecting 
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diverse sample size to validate the observed differences in 

engagement, concentration, and immersion between 

desktop-based and MR environments. Additionally, a 

variety of cognitive tests can be designed for both 

environments to further explore and gain deeper insight into 

how it can affect the cognitive state. 
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