
 

  

ABSTRACT—A sliding mode control method based on 

adaptive neural networks is proposed to address the 

high-precision control problem of nonlinear systems with input 

saturation and external disturbances, while considering the 

uncertainty caused by inaccurate modeling. The error model 

component caused by input saturation and model uncertainties 

is derived, and a neural network controller is designed to 

approximate this error model, A differential evolution 

algorithm is employed to optimize the parameters of the neural 

network approximator. A sliding mode controller is designed to 

achieve uncertain compensation for the approximation error of 

the neural network and external disturbances. A Lyapunov 

function is constructed to prove the uniformly ultimately 

boundedness of the system's closed-loop signals. Comparative 

experiments validate the superiority of the proposed algorithm. 

 
INDEX TERMS—Nonlinear systems, Input saturation, 

Differential evolution algorithm, Adaptive neural network， 

Sliding mode control 

 

I. INTRODUCTION 

N many practical nonlinear systems, issues such as input 

saturation, parameter uncertainties, and external 

disturbances are prevalent, significantly impacting system 

performance and posing challenges to system control [1]-[4]. 

Recently, efforts have been made to mitigate the impacts of 

these nonlinear factors on the control system. Numerous 

scholars have conducted research and achieved some 

progress [5]-[9]. Regarding the aforementioned issues,  [10] 

proposed a novel approach to address input saturation and 

parameter uncertainty in a class of robotic systems. To 

address the effects of input saturation, an auxiliary dynamic 

system was introduced, while uncertainties in the system 

were approximated using radial basis function neural 
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networks. The proposed method designed adaptive laws for 

neural networks based on specific time constants and 

constructed an adaptive tracking controller using 

non-singular terminal sliding mode surfaces. Finally, 

numerical simulations validated the proposed control scheme, 

demonstrating its advantages in terms of rapid convergence 

and mitigation of input saturation. A neural network-based 

variable structure control method was proposed, utilizing 

neural networks to approximate model uncertainties and 

employing variable structure controllers to eliminate 

approximation errors. This method achieved good control 

results when applied to robot systems [11]-[12]. [13] 

examined the challenge of attitude tracking for a quadrotor 

aircraft under external disturbances and input saturation 

constraints. A novel adaptive terminal sliding mode control 

strategy was introduced to ensure swift convergence of all 

state variables with guaranteed performance. Adaptive laws 

were used to estimate the unknown upper limit of external 

disturbances. Furthermore, an auxiliary system was devised 

to tackle input saturation challenges encountered in 

real-world systems. [14] a design approach was proposed for 

a fuzzy non-singular terminal sliding mode controller tailored 

to handle a specific category of second-order nonlinear 

systems subjected to input saturation. This controller 

integrated a saturated non-singular terminal sliding mode 

(NTSM) controller with a fuzzy logic controller (FLC). The 

saturated non-singular terminal sliding mode controller was 

tasked with ensuring that the system's states efficiently 

reached the sliding surface and converged to the origin within 

a finite timeframe. Additionally, a fuzzy controller with two 

fuzzy input variables and one fuzzy output variable was 

developed. This fuzzy controller dynamically adjusted the 

control gains to automatically minimize those of the 

non-singular terminal sliding mode controller, thereby 

reducing redundancy and enhancing effectiveness. [15] 

proposed an adaptive integral-type terminal sliding mode 

tracking control method based on disturbance rejection to 

address uncertain nonlinear systems affected by input 

saturation and external disturbances. This method combined 

the robustness and non-overshooting dynamic characteristics 

of adaptive integral-type sliding mode control with the 

estimation properties of nonlinear extended state observers, 

resulting in excellent robustness. [16] presented a flexible 

performance-based control (FPC) scheme to address the 

issues of asymmetric input saturation constraints and external 

disturbances in nonlinear systems. This scheme included 

auxiliary systems and disturbance observers (DOB). The 

concept of modified performance functions (MPFs) was 
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introduced in the paper. Modified performance functions, 

generated by the auxiliary system, were utilized to reduce the 

user-specified tracking performance requirements when 

input saturation occurred, and to restore the user-specified 

performance requirements when saturation was absent. The 

performance-based control scheme ensured that the system 

output always adhered to the constraints of the MPFs, 

ultimately ensuring that it converged within the 

user-specified range. [17] presented a backstepping control 

method employing a multivariate Taylor network (MTN) to 

manage a category of stochastic nonlinear systems under 

input saturation constraints. This method transformed 

non-smooth nonlinear input functions into smooth 

continuous functions, followed by the application of the 

multivariate Taylor network to address the system's unknown 

nonlinearities, yielding an adaptive backstepping-based 

multivariate Taylor network control scheme. The stability of 

the system was then verified to validate the proposed 

approach. [18] presented a control methodology aimed at 

nonlinear systems facing challenges like external 

disturbances and input saturation. This approach integrated a 

super-twisting extended state observer (STESO) and a sliding 

mode controller utilizing backstepping techniques. The 

strategy involved the design of two steady-state systems 

within the nonlinear framework to estimate disturbances in 

both matched and unmatched channels. Following this, a 

multi-sliding mode controller, based on backstepping 

principles, was developed specifically for the unmatched 

nonlinear system. Additionally, a first-order auxiliary system 

was introduced to counteract the effects of input saturation. 

Other authors had also proposed various control strategies for 

such issues [19]-[23].  

A neural network sliding mode control method based on 

differential evolution is proposed to address the control 

problem of complex nonlinear systems under conditions of 

input saturation, model uncertainty, and external 

disturbances, with the effectiveness of the proposed 

algorithm validated through comparative experiments. The 

main contributions of this study include: 

1.The control problem of nonlinear systems under 

complex conditions has been addressed. Unlike traditional 

control methods, a differential evolution-based neural 

network control approach is proposed to specifically tackle 

nonlinear control issues involving input saturation, model 

inaccuracies, and external disturbances. This method 

enhances the applicability of the approach to various 

scenarios and demonstrates significant innovation. 

2.The real-time adaptability and approximation accuracy 

of neural network learning have been improved. A 

differential evolution algorithm is employed to optimize the 

network parameters of the neural network, enabling real-time 

adjustment of these parameters and achieving adaptive 

optimal approximation. 

3.The approximation error of the neural network controller 

and the impact of external disturbances have been mitigated. 

A robust sliding mode controller is designed to compensate 

for the approximation error of the neural network and to 

eliminate external disturbances, thereby enhancing 

robustness and improving control accuracy. 

The organization structure of this paper is as follows. 

Section 2 presents the problem statement, section 3 describes 

input saturation and its characteristics, section 4 introduces a 

novel adaptive neural network sliding mode control 

controller, including the utilization of the differential 

evolution algorithm for optimizing neural network 

approximation of unknown functions, adaptive laws of 

adaptive neural network sliding mode control algorithm, and 

stability analysis. To validate the effectiveness of the 

propositions, numerical examples and simulation results are 

provided in section 5. Finally, conclusions are drawn in 

section 6. 

II. PROBLEM STATEMENT 

The general expression for a nonlinear SISO system of 

order n is as follows: 
( ) ( , ) ( , ) ( )nx f x t g x t u t

y x

 = +


=
       (1) 

Where, ( , )g x t , ( , )f x t represents an unknown nonlinear 

function that is bounded; ( , )g x t  is nonzero nonlinear 

function; y  is the output of investigated system , ( )u t  is the 

control input; ( 1)[ , , ... ]n Tx x x x x −=  is the state vector of the 

system. 

As shown in Fig. 1, u is the output signal of the input 

saturation function, v R , represents the system control 

input, with the input saturation expression as follows: 

max max

max

max max

,

( ) ,

,

u v u

u sat v u v u

u v u




= = 
−  −

  (2) 

Where,
maxu  represents the maximum input value, 

max 0u  . 

 
Fig. 1.  Input saturation 

 

The design objectives are as follows: For such nonlinear 

systems with input saturation (2), an adaptive neural network 

sliding mode controller is designed, which enables the system 

to track the desired trajectory with high precision. 

III.  ERROR DESIGN AND PRELIMINARY SYSTEM DESIGN 

The tracking error: 
( 1)[ , ,... ]n

de x x e e e R−= − =     (3) 

The control goal is to design a stable control law so that 
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state x  can stably track the reference signal 
dx . 

The schematic diagram of the system is shown in Fig. 2. 

Where u v = − , in practical application, if the actuator 

amplitude is unknown, the   is unknown. By designing a 

neural network system to approximate the  , a sliding mode 

control method under control input constraints can be 

realized. 

 
Fig. 2.  Closed-loop control under input saturation and control constraints 

 

The system state equation can be rewritten as: 
( ) ( , ) ( , )[ ( ) ]nx f x t g x t v t

y x

 = + +


=
  (4) 

Assuming the functions ( , )f x t , ( , )g x t and are known, a 

sliding mode controller is derived as follows. The sliding 

surface is defined by: 
2 1

1 2 1... n n

ns c e c e c e e− −

−= + + +  (5) 

Where, 
1 2 3 1[ , , ... ]T

nc c c c c −= indicates the Routh-Hurwitz 

stability condition coefficient. 

Take the derivative of equation (5): 
1

( ) ( )
n

i n

i

i

s c e e
−

= +   

1
( ) ( ) ( )

n
i n n

i d

i

c e x x
−

= + −              (6) 

To satisfy the Lyapunov stability theory, the definition is 

as follows： 

( )s Ksign s= −                            (7) 

The control law: 
1

( )

( )

1
( ) ( ) ( , )

( , )

( , )
d

n
i

i

i

n

u t c e Ksign s f x t
g x t

x g x t

−
= − − −



+ − 


  (8) 

The approach described above is typical for conventional 

sliding mode control. However, in practical applications, 

functions such as ( , )f x t , ( , )g x t and  are often unknown. 

To address this issue, fuzzy models or neural network 

systems are typically used to approximate unknown functions. 

In this case, a neural network system is employed for 

implementation. The state equation of the system is described 

as follows: 
( )

*
ˆ ˆˆ ˆ( , ) ( , )[ ( ) ]

ˆ ˆ

n

x f x t g x t v t

y x

 = + +


=

  (9) 

The control law: 



1
( ) ( )1 ˆ( , )

ˆ( , )

ˆ ˆ( ) ( , )

d

n
i n

NNSMC i

i

v c e f x t x
g x t

Kerf s g x t

−
= − − +



− −


  (10) 

Where, ˆ ( , )f x t , ˆ( , )g x t , ̂ are estimated by neural network, 

0 K . 

As a strategy to mitigate the occurrence of chattering 

phenomena, to replace the ( )sign function in the control law 

with the saturation function ( )erf  is employed. 

2

0

2
( )

s

erf s e d 


−=                (11) 

The hyperbolic tangent function has the property 

that (s) 1erf  , ensuring boundedness of control inputs when 

using this function. 

In practical applications, uncertainties arising from 

external disturbances and other factors can lead to errors in 

approximating unknown functions using neural networks. 

The error is defined as follows: 
* ( ) ( )

*
ˆn n

me x x= −                            (12) 

According to equation (12), the control law is rewritten as: 
1

( ) ( )

*

1
( , )

( , )

( ) ( , )

d

n
i n

NNFSMC i

i

m

v c e f x t x
g x t

Kerf s g x t e

−
= − − +



− − − 


  (13) 

In equation (13), the stability of the system depends on 

maintaining the error term *

me at a sufficiently low level. 

However, even with a minimal error term, there is no 

assurance that the tracking error will asymptotically converge 

to zero. To achieve asymptotic stability, it is necessary to 

eliminate *

me from the equation. 

IV. PROPOSED ADAPTIVE NEURAL NETWORK SLIDING 

MODE CONTROL 

For input-saturated nonlinear systems, this section 

proposes an adaptive neural network sliding mode control 

method. This approach utilizes the differential evolution 

algorithm to optimize the model parameters of the neural 

network, thereby approximating the unknown functions 

( , )f x t , ( , )g x t and  . Additionally, the incorporation of 

fuzzy logic has led to the design of an adaptive law aimed at 

minimizing the impact of the error term *

me and achieving 

asymptotic stability in the system. 

A. Optimization of Neural Network Approximation of 

Unknown Functions Using Differential Evolution Algorithm 

To execute the proposed algorithm, it's essential to 

pre-determine the functions ˆ ( , )f x t , ˆ( , )g x t and ̂ . In this 

investigation, a neural network optimized via the differential 

evolution algorithm is employed to model  

ˆ ( , )f x t , ˆ( , )g x t and ̂ . 
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The neural network utilized for approximating the 

functions ˆ ( , )f x t , ˆ( , )g x t and ̂ are concurrently trained. The 

aim is to determine the function ( )

*
ˆ nx  that most accurately 

corresponds to ( )nx . 

The objective function as: 

1

1
( )

N

m

n

J e
N =

=                            (14) 

Where, ( ) ( )

*
ˆn n

me x x= − . 

In this research, the differential evolution algorithm is 

employed to accurately determine the parameters of the 

neural network. The flowchart illustrating the differential 

evolution algorithm can be found in Fig. 3. 

 
Fig. 3.  Flowchart of differential evolution algorithm 

 

The fundamental principle of this algorithm involves 

continually generating new intermediate individuals through 

mutation and crossover operations after initializing the 

population, followed by updating the main population 

through competitive selection. The fundamental steps of the 

differential evolution method are delineated as follows. 

 

Initialization  

 In the parameter space, randomly generate a set of 

solutions for initialization. 

1, 1, ,[ , ... ]
i

G G G G

i i D iX x x x=                  (15) 

Where, 1,2,...,i NP=  representing NP individuals. 

G is the number of generations,
max0,1...,G G= .  

 
Mutation   

Differential evolution generates a new intermediate 

mutation individual by adding the weighted difference 

between two initialized population vectors to a third vector, 

as expressed below: 

1

1 2 3( )G G G G

i z z zv x F x x+ = + −              (16) 

Where, 
1 2 3, ,G G G

z z zx x x  represents three randomly selected 

distinct individuals from the population; F  denotes the 

scaling factor,  0,2F  . 1G

iv +  must comply with boundary 

constraints and should not exceed the solution space range. 

 

Crossover    

To enhance the diversity of the population pool, a new 

individual is formed using the target individual and the 

individual generated through mutation. This study employs 

binomial crossover for this purpose, expressed as follows: 

,

,

,

,( [0,1] )
j i

j i

j i

G

j iG

G

v if rand C
u

v otherwise

 
= 



  (17) 

Where, C denotes the crossover probability factor. 

Augmenting C facilitates the probability of population 

individual updates, while diminishing C contributes to the 

stability of the algorithm's search process. 

 

Selection  

The selection process involves choosing individuals 

between the target individuals and those formed through 

crossover to achieve superior fitness values. Its expression is 

as follows: 

1 ( ) ( )G G G

G i i i

i G

i

U if f U f X
X

X otherwise

+
 

= 


  (18) 

 

Termination   

The algorithm halts when it encounters any of these 

conditions: Reaching the maximum generation threshold, 

achieving a fitness level below the predetermined threshold, 

or sustaining no improvement in the best fitness over an 

extended period.  

B. Proposed Adaptive Neural Network Sliding Mode 

Control 

The control rate designed for the stability of the above 

systems, in practical applications, may be affected by 

disturbances such as system perturbations, which affect the 

accuracy of the identification and thus the stability of the 

system. To solve these problems, The adaptive fuzzy law 

(
FAv )is introduced, and its state space model is described as 

follows: 

( ) ˆ ˆˆ ˆ( , ) ( , )[ ( ) ]

ˆ ˆ

n

FAx f x t g x t v t v

y x

 = + + +


=
  (19) 

Where, ˆ ( , )f x t , ˆ( , )g x t and ̂ are neural network 

estimation functions; 
FAv represents the fuzzy adaptive rate.  

The adaptive neural network sliding mode control law is 

defined as follows: 



1
( ) ( )1 ˆ( , )

ˆ( , )

ˆ ˆ( ) ( , )

d

n
i n

AFSMC i

i

FA

v c e f x t x
g x t

Ksign s g x t v

−
= − − +



− − −


  (20) 

The error of model: 
( ) ( )ˆn n

me x x= −   

( ) ˆ ˆˆ( , ) ( , )[ ( ) ]n

FAx f x t g x t v t v= − − + −   

( )( ) *

*
ˆ

n

m

n

FA FAx x v e v= − − = −   (21) 

The derivative of equation (21) can be taken as follows: 
*

mm FAe e v= −                                                                      (22) 
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Fig. 4.  Scheme of the proposed adaptive neural network control adaptive neural network sliding mode control system 

 

To satisfy Lyapunov's stability, take the derivative of 

me as： 

( )m A me sign e= −                      (23) 

Where, 0A  . 

By substituting equation (22) in equation (23): 
* ( )m FA A me v sign e− = −              (24) 

Assumption: Assuming both *

FA mv e and 

( ) ( )FA msign v sign e=  hold true. 

Theorem: In addressing the control problem posed by 

nonlinear system (1), ( , )f x t , ( , )g x t and propose a control 

law
AFSMCv . This approach involves the estimation process 

facilitated by neural network modeling and optimization 

employing evolutionary algorithms, operating under the 

assumption of *

FA mv e  and ( ) ( )FA msign v sign e= .   

Consequently, it is anticipated that the signals of the 

closed-loop system will remain bounded, with the tracking 

error asymptotically converging to zero. 
Table I 

ADAPTIVE FUZZY RULES 

 
me   

N   ZO   P   

FAv  N   ZO   P   

 

The proposed adaptive function 
FAv  should be satisfy 

Lyapunov stability. As shown in Table 1, the design utilizes 

me  and 
FAv  as inputs and outputs of the fuzzy rule base, 

where PO and NE (NE=negative, ZE=zero, and PO=positive) 

are selected to satisfy 
*

FA mv e . 

Proof: Assume that the
FAv  is chosen as 

*

FA mv e  and 

( ) ( )FA msign v sign e= .From (24), the following results are 

obtained: 
*( ) ( )
mFA FA A msign v e v sign e− − = −   (25) 

*

m FA Ae v − =                                    (26) 

Therefore, with the assumptions in *

FA mv e  and 

( ) ( )FA msign v sign e= , ( )m A me sign e= − satisfies the 

condition. 
me has different sign with 

me  . 

Based on the designed 
AFSMCv , to demonstrate the stability 

of the control system, take the derivative of the sliding mode 

surface: 
1

( ) ( ) ( )
n

i n n

i d

i

s c e x x
−

= + −   

1
( ) ( )( , )[ ( ) ] ,

n
i n

i d

i

c e g x t v t f x t x
−

= + + + − （ ）   

1 1
( ) ( ) ˆ( , )[ ( ) ] , ( , )

ˆˆ ˆ( ) ( , ) ( ) ( , )

n n
i i

i i

i i

FA

c e g x t v t f x t c e f x t

Ksign s g x t v t v g x t





− −

= + + + − −

− − − −

 （ ）
  



ˆˆ( ( , ) ( , )) ( ) ( , ) ( , )) ( ( , )

ˆ ˆ( , ) ( ) FA

g x t g x t v t f x t f x t g x t

g x t Ksign s v





= + − + − +


− − −
  

* ( )m FAe Ksign s v= − −   

( )me Ksign s= −                            (27) 

Take the Lyapunov function as: 

2 21 1

2 2
mV s e= +                          (28) 

m mV ss e e= +   

( ( ) ) ( )m m A ms Ksign s e e sign e= − + −   

A m me K s se= − − +               (29) 

Since ( )m A me K sign e= − , it follows that  0me → when 

t →  . Then, 0V  when t →  . The closed-loop system 

signals will be bounded and the tracking error will converge 

to zero asymptotically. 

V. SIMULATION AND DISCUSSION 

After completing the research and stability analysis of the 

neural network sliding mode control algorithm, in order to 

further demonstrate the effectiveness and feasibility of the 
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control algorithm, Matlab/Simulink simulation experiments 

will be conducted for validation. A single-joint robotic arm 

control system will be constructed using Matlab, and the 

algorithm will be validated through simulation in Simulink. 

The mathematical state-space equations of the single-joint 

robotic arm system are formulated as follows: 

1 2

2 2 1 1 2

1 1
cos (1 )

x x

x dx mgl x x x
I I

y x



=



= − + + + +


=

（ ）   (30) 

1x =  , 2x =  , 2m =  , 4d =  , 0.4l = , the initial state of 

the system is 0
20

 
 
 

， , the initial value of   is taken as 

0,
1 1k =  ,

2 8k =  , 24

3
I ml= . 

A. Neural Network Sliding Mode Control System Simulation 

Analysis Based on Differential Evolution Algorithm 

Experimental simulation was conducted based on the 

described algorithm, and the results are illustrated in Fig. 5 to 

8. The position trajectory tracking curve is depicted in Fig. 5, 

the control input signal in Fig. 6, the saturated control input 

signal in Fig. 7, and the tracking error curve in Fig. 8. From 

Fig. 5, it is evident that the designed control algorithm 

ensures accurate tracking of the joint actual trajectory to the 

desired trajectory within 0.3s, even with non-zero initial 

values. Fig. 6 shows periodic fluctuations in joint torque, 

peaking approximately every 3s. However, the overall output 

curve remains relatively stable. Fig. 7 demonstrates a 

periodic amplitude in the overall torque output. Due to input 

saturation constraints, there is a maximum output for 

approximately 0.5s at each peak amplitude, maintaining 

overall torque output stability. Fig. 8 indicates that despite 

uncertainties, input saturation, and nonlinearities such as 

friction, the neural network optimized through the 

differential evolution algorithm adequately approximates 

modeling errors. This enables substantial compensation for 

unmodeled nonlinear functions, with the joint gradually 

approaching zero within approximately 0.7s. Moreover, the 

latter half of the waveform exhibits smaller fluctuations, 

indicative of higher control precision. 

 
Fig. 5.  Position trajectory tracking curve 

 

 
Fig. 6.  Controller output curve 

 

 
Fig. 7.  Output curve with input saturation  

 

The effectiveness of the control performance was analyzed 

solely using the neural network sliding mode controller, with 

both the differential evolution algorithm and adaptive fuzzy 

compensation deactivated. The simulation results are 

depicted in Fig. 9 to Fig. 12. 

 
Fig. 8.  Tracking error curve 

 

After deactivating the differential evolution algorithm, the 

actual trajectory of the system is able to accurately track the 

desired target approximately at 2.2s (Fig. 9), indicating a 

degradation in control effectiveness. The tracking position 

error exhibits pronounced fluctuations, with significant 
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oscillations occurring approximately every 6s before 

stabilizing again (Fig. 12). In the absence of the differential 

evolution algorithm, the joint torque output displays periodic 

fluctuations, with a peak torque output occurring 

approximately every 4s, and a longer duration for the 

maximum peak output, averaging around 1s (Fig. 10). Under 

input saturation constraints, the overall torque output exhibits 

periodic amplitude variations, with a maximum output 

occurring for approximately 1.2s at each peak amplitude (Fig. 

11). 

 
Fig. 9.  Position trajectory tracking curve 

 

 
Fig. 10.  Controller output curve 

 

 
Fig. 11.  Output curve with input saturation 

 

 
Fig. 12.  Tracking error curve 

 

VI. CONCLUSIONS 

A novel neural network control method based on 

differential evolution algorithms is proposed in this study, 

aimed at addressing the control challenges of nonlinear 

systems affected by uncertainties such as input saturation, 

model uncertainty, and external disturbances. A neural 

network-based controller is designed to effectively 

compensate for system errors caused by input saturation and 

model uncertainties. A differential evolution algorithm is 

developed to address the real-time performance of the neural 

network while simultaneously improving the accuracy of 

adaptive approximation. A sliding mode controller is 

designed to enhance the robustness of the system. The 

effectiveness of the proposed control algorithm is validated 

through comparative experiments.  
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