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    Abstract—Cybersecurity experts continue to struggle with 

correctly identifying and classifying harmful malware. This 

research offers a great deal of promise to advance malware 

detection and preventative cyber security measures, thereby 

significantly advancing the entire endeavour to safeguard 

digital systems and networks against evolving threats. After 

extensive testing and evaluation of a sizable malware dataset, 

ResNetMalClassifier exhibits outstanding accuracy, resilience 

and efficiency in its classification abilities. Astonishingly, using 

deep convolutional neural networks (CNNs), the classifier 

achieves a 91% accuracy without ResNet50 and a 95% accura- 

cy with it, outperforming models like Xception 83%, Inception- 

ResNetV2 89%, DenseNet 93%, CNN 91%, VGG16 91% and 

EfficientNet 91%. 

 

Index Terms—Classification, Cybersecurity, Deep Learning, 

Malware Detection, Multi-class, Neural Networks, ResNet50. 

 

I. INTRODUCTION 

n the rapidly evolving landscape of cybersecurity, the acc- 

urate identifying and classifying malware strains is crucial 

to maintaining the security and reliability of digital systems. 

The ResNetMalClassifier, a novel approach based on the 

ResNet50 architecture, leverages the inherent strengths of 

deep convolutional neural networks (CNNs) to improve 

multi-class malware classification efficiency and accuracy. 

The performance of the classifier has been rigorously 

evaluated and benchmarked against several established 

CNN architectures, including Xception, InceptionResNetV2, 

DenseNet, VGG16, and EfficientNet. 

      This research offers a comprehensive analysis of the 

classifier's design, its training process and the granular 

components that support its outstanding performance. The 

focus is on accurately classifying various malware families, 

calculating model-specific accuracies, and thoroughly 

analyzing experimental results, with particular emphasis on 

the factors driving the superior performance of ResNet50. 

 

II. RELATED WORK 

    Malware classification plays a pivotal role in cyberscurit- 

y, gaining significant attention due to the increasing comple- 

xity of malware. Various machine learning methods have 

been used to tackle this problem. Conventional approaches 

like Random forests with support vector machines (SVMs)  

are frequently utilized for feature creation and classification. 

However, as malware evolves, more sophisticated 

approaches are necessary.  

    In recent years, transfer learning and pre-trained models  
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have advanced malware classification. Architectures for 

deep learning specifically CNNs (convolutional neural 

networks) have shown significant potential. ResNet50, 

known for its capability to recognize images [1], is among 

the architectures applied to this field. Similar architectures 

such as VGG16 [2], Xception [3], InceptionResNetV2 [4], 

DenseNet [5], and EfficientNet [6] have demonstrated their 

image categorization capabilities. The effectiveness of 

CNNs in various image classification tasks has paved the 

way for their adoption in malware analysis, achieving 

competitive results across datasets. For instance, a CNN-

based malware detection system demonstrated an accuracy 

of 84% [7]-[9], Liu et al. (2021) applied Xception and 

VGG16, achieving accuracy rates of 83% and 89%, 

respectively [10]. Further advancements include research 

into DenseNet models, which achieved 93% accuracy in 

2020, and the application of InceptionResNetV2, which 

reached 89% accuracy in 2019. As malware classification 

techniques evolve, researchers continue to explore novel 

methods to enhance accuracy and resilience.[11],[12]. 

Tanaka (2023) introduced a hybrid model combining CNNs 

and Graph Convolutional Networks (GCNs), achieving 92% 

accuracy [13], Kim and Park (2023) implemented a self-

attention mechanism within CNN architecture, reaching a 

90% accuracy rate [14]. 

    The change from conventional machine learning models 

to deep learning and hybrid architectures emphasizes the 

need for ongoing innovation to stay up-to-date with the 

changing malware classification field. 

 

III. PROPOSED METHODOLOGY 

    The present work describes and evaluates the ResNet50- 

MalClassifier, a unique technique to multiclass malware 

classification that use deep CNNs. The primary goal is to 

address the difficulty of effectively identifying and 

categorizing harmful software (malware) by benchmarking 

the ResNet50 architecture against other existing models. 

The goal is to demonstrate that ResNet50 is effective, 

reliable, and efficient in this domain. The proposed 

technique starts with collecting malware samples, which are 

then pre-processed into visual representations. These visual 

representations are created by converting the malware 

sample’s byte frequencies into grayscale pixel values. To 

address vanishing gradient concerns, a modified ResNet50 

architecture is used, which includes multiple convolutional 

layers and residual connections as shown in Figure 1. 

 

A. Model Evaluation 

       In malware image class, the code calculates the class 

distribution of the dataset. Suppose C classes, where C is the 

number of malware types. Equation (1) represents the class 

distribution as a mathematical function: 

 

ClassDistribution(C)= {(c1, n1), (c2, n2)., (cC, nC)}        (1) 

Where: 

• ci indicates the name of the ith malware class. 

I 
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• ni represents the count of images in the ith class. 

 

The split_dataset function splits the dataset according to 

predetermined ratios into training and testing subsets. 

Equation (2) represents this operation as a function: 

SplitDataset(traindatadir
, destpath, trainratio, testratio) = 

{
Training Data     if U(0,1) ≤ train_ratio

Testing Data if train_ratio < 𝑈(0,1) ≤ Train_ration
                                                         +test_ratio

} (2) 

Where U (0,1) A random number between 0 and 1 is shown.  

The Image processor class preprocesses images using data 

generators. Equation (3) represents this as a transformation 

function: 

Preprocess(I)=I′                                                                  (3)      

Where: 

 

• I represent the input image. 

• I′ represent the preprocessed image. 

 

In the Fine-Tuning class, the code fine-tunes a pre-trained 

model by marking layers as trainable or not and adding final 

layers. Equation (4) represents this as a transformation 

function: 

FineTune(M)=M′                                                               (4) 

 

Where: 

 

• M represents an already-trained model. 

• M' represents for the refined model. 

 

The suggested ResNet50MalClassifier model approach 

was assessed using standard assessment measures. Due to 

the fact that the tested datasets were balanced, these 

measurements were F1-score, recall, accuracy, and 

precision, the calculation of these metrics is demonstrated 

by equations (5) to (8). Accuracy is the percentage of 

correctly identified malwares in the model to all inputs, 

whereas F1-score primarily takes into account both 

Precision and Recall values. 

 

Precision(𝐶𝑖) =
True Positives (𝐶𝑖)

True Positives (𝐶𝑖)+False Positives (𝐶𝑖)
         (5) 

 

Recall(𝐶𝑖) =  
True Positives (𝐶𝑖)

True Positives (𝐶𝑖)+False Negatives (𝐶𝑖)
            (6)   

 

F1 − score(𝐶𝑖) = 2 ×
Precision(𝐶𝑖)×Recall(𝐶𝑖)

Precision(𝐶𝑖)+Recall(𝐶𝑖)
                   (7) 

Accuracy(𝐶𝑖) =
TP(𝐶𝑖)×TN(𝐶𝑖)

TP(𝐶𝑖)+FP(𝐶𝑖)+FN(𝐶𝑖)+TN(𝐶𝑖)
                    (8) 

Ci indicates the ith class. The model's predictions and 

ground truth are used to determine the percentage of false 

positives, false negatives, and true positives. 

IV. EXPERIMENTAL RESULTS 

A. Dataset Exploration 

    The collection contains 10678 malware images, which are 

divided into 36 separate malware families and are displayed 

in Figures 2 respectively. The dataset's greatest sample 

count for malware is 2,359, while the lowest sample count 

for the class is 80. A malware picture dataset that has been 

pre-processed with 10678 samples from 36 different 

malware families was utilised to evaluate the proposed 

architecture, ResNetMalClassifier. Each malware family has 

over 90 training samples and over 12 validation samples are 

used for each class. After the data was pre-processed by the 

models, it was divided into 8,537 training samples, 3965 

validation samples, and 2141 testing samples. Table I has a 

detailed data set. 

 

B. CNN without ResNet50MalClassifire  

  Advanced Convolutional Neural Networks (CNNs) can 

be adapted for malware picture categorization using the 

fine-tuning class. The model has to be fine-tuned, modified, 

and trained for consistency. The class accepts several inputs, 

such as a pre-trained CNN model, training and validation 

data generators, class count, regularisation flag, and patience 

for early stopping. Up to a predetermined point, the fine-

tuning process involves systematically freezing earlier 

layers while allowing later layers to be trainable. The 

'add_final_layer' method adds a final layer, maybe with 

regularization. Using the 'compile_model' method, the 

model is configured with key components, including 

metrics, an optimizer, and a loss function. Early stopping is 

integrated into the model using the 'train_model' function.  

Following preparation and dataset separation, CNNs were 

successfully modified for malware classification [15]. 

 
TABLE II 

MODEL SEQUENTIALS OF CNN 

Layer (type) Output shape Param 

 Conv2d 10, (Conv2D) (None, 75, 75, 32) 896        

 Batch normalization 10 

(Batch Normalization) 

(None, 75, 75, 32) 128        

 Conv2d 11, (Conv2D) (None, 75, 75, 32) 9248       

 batch_normalization_11 

(Batch Normalization) 

(None, 75, 75, 32) 128        

 Max pooling 2d 4 

(MaxPooling 2D) 

(None, 37, 37, 32) 0          

 Dropout 5 (Dropout) (None, 37, 37, 32) 0          

 Conv2d 12 (Conv2D) (None, 37, 37, 32) 9248       

 Batch normalization 12 

(Batch Normalization) 

(None, 37, 37, 32) 128        

 Conv2d_13 (Conv2D) (None, 37, 37, 32) 9248       

Total params: 24,978,928 

Trainable params: 24,978,608 

Non-trainable params: 320 

 

Table II shows the details of the layers below: 

 

1). Conv2D Layer (conv2d_10), with 32 filters/kernels. This   

layer handles input data of size 75x75 pixels with 32 feature 

maps, as indicated by the output shape of (None, 75, 75, 32). 

the weights and biases that govern the convolution process 

make up its 896 parameters.  

 

2). Batch Normalization Layer (batch_normalization_10): 

The activations from the previous convolutional layer are 

normalized in this layer, accelerating and stabilizing the 

training process. The output shape remains (None, 75, 75, 

32), with 128 parameters.  

IAENG International Journal of Computer Science

Volume 52, Issue 2, February 2025, Pages 287-297

 
______________________________________________________________________________________ 



3). Conv2D Layer (conv2d_11): The batch-normalization 

layer is followed by a convolutional layer with 32 filters. 

Similar to the preceding layer, it also processes the data, but 

with 9,248 additional parameters. 

 

4). Batch Normalization Layer (batch_normalization_11): 

Following the second convolutional layer comes a second 

batch normalization layer. 

 

5). MaxPooling2D Layer (max_pooling2d_4): This layer 

reduces the spatial dimensions of the data using max-

pooling, and the output shape is reduced to (None, 37, 37, 

32).  

 

6). Dropout Layer (dropout_5): A regularization technique 

called dropout helps Randomly adjusting certain parts of the 

input units to 0 while training will help avoid overfitting. It 

is applied without the shape being diminished. 

 

7). Conv2D Layers (conv2D_12 and conv2D_13): After the 

MaxPooling2D layer, these additional convolutional layers 

each contain 9,248 parameters.  

    The model's total number of parameters is 24,978,928 

according to the Total params section. Parameters that 

remain constant throughout training are known as non-

trainable parameters (typically as a result of batch 

normalization or other fixed layers). The factors that vary 

throughout training are known as trainable parameters. It 

appears that this architecture is a component of a bigger 

CNN for image classification or similar tasks [16], [17]. 

 

 
Fig 3. Loss of Validation and Training 

 

 
Fig 4. Accuracy of Training and Validation 

 

Loss of Validation and Training often decrease during the 

initial training process as the model becomes more adept at 

identifying patterns in the data. To illustrate this, Figure 3 

demonstrates that if the model trains for an excessively long 

time, Loss of validation may start to increase while the loss 

of training is decreasing. This indicates overfitting, when the 

model loses its capacities to generalize to newly collected 

datasets when it becomes too focused on the training set. 

The CNN ResNet50MalClassifier in Figure 4, uses this 

method for diagnosing model performance. A comparison of 

training and validation accuracy is essential. Overfitting is 

evident if training accuracy is significantly higher than 

validation accuracy. Based on the training set of data, the 

model might have picked up noise or particular details that 

aren't generalizable. If the model is underfitting to 

adequately represent the complexity of the data [18]. 

 

In Figure 5, out of the 36 malware families, the confusion 

matrix illustrates the performance across different malware 

families, showing high accuracy in 13 families lower 

accuracy in 23 families were classified less accurately. 

Overall, the malware classification without the ResNet50M- 

alClassifier model had a loss of 70.33% and a classification 

accuracy of 91.33%.  

 

C. Exploration of CNN with the ResNet50MalClassifier 

model 

 There is hardly any change in weight during backpropag- 

ation because the gradient's value drops drastically which is 

the problem of the disappearing gradient. ResNet50 uses 

skip connections, which bypass training for the first few 

layers before connecting to the output. The network skips 

certain convolutional layers that may degrade performance. 

The gradient vanishing problem is avoided as the network 

penetrates deeper. Two forms of skip connections are 

depicted in methodology Figure 1. A convolutional block 

and an identity block. The identity block directly adds 

residuals to the output, while the convolutional block 

modifies residuals before applying batch normalization to it 

before including it in the output. 36 malware families were 

tested to determine the accuracy of the malware classificati- 

on in the suggested method. Each layer of this approach has 

its own malware families to classify, improving categorizati- 

on for each family. ResNet50 makes use of the skip 

connection to improve performance. [19]-[21]. In Figure 6, 

14 malware families were classified accurately and 22 

families were classified less accurately. 

      Table III and Figure 7 displays performance metrics for 

the categorization task for different malware families. The 

"Support" column displays a number of instances for every 

class. All classes' metrics are summarized in the Macro 

average and Weighted avg rows. with a weighted average 

accuracy of 0.95 for the proposed approach and a macro F1-

Score of 0.96.[25].  

      Important information about the effectiveness of 

machine learning models can be found in Figures 8 to 13 

shown below. Figure 8, illustrates the value of monitoring 

training loss as well as validation loss to identify overfitting 

or model convergence. The relationship between training 

and validation accuracy is highlighted in Figures 9 and 10, 

which also measure model generalization and potential 

overfitting. In order to evaluate a model, Figure 11, focuses 

on false positives, and Figure 12, emphasises precision, 

which is essential for classification tasks. The capabilities of  

the model to accurately detect positive elements during vali- 
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dation is finally examined in Figure 13, which examines 

the link between recall and validation recall. Collectively, 

 

 
  Fig 8. Loss v/s Val_loss 

 

 
 Fig 9. Accuracy v/s Val_accuracy 

 
 

 Fig 10. Accuracy v/s AUC   

 

  Figure 14-19 collectively assesses and compares the 

performance of six machine learning models (DensNet.[26], 

EfficientNet [27], InceptionResNet [28], ResNet50MalClas- 

sifier [29], VGG16 [30], XceptionNet [31]) using various 

metrics. Figure 14, examines validation loss to gauge model  

generalization. Figure 15 evaluates the performance of mod- 

these visualizations support the evaluation and improvement 

of model. 

 

 
   Fig 11. Precision v/s Val_precision 

 

 
  Fig 12. False_positive v/s Val_false_positive 

 

 
 Fig 13. Recall v/s Val_recall 

 

els on unknown data by concentrating on validation 

accuracy. Figure 16, measures the Area Under the ROC cur- 

ve to evaluate class separation. Figure 17, analyzes false 

positives to assess error rates. Figure 18, evaluates precision, 

and Figure 19, assesses recall, both crucial for classification 

tasks. These visualizations provide insights into the model’s 
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relative strengths and weaknesses. Performance measures  

 

consist of F1-score, recall, accuracy, and precision among 

others. 
 

 
Fig 14. Val_Loss Comparison  

 

 

Fig 15. Val_accuracy Comparison 
 

 
Fig 16. Val_Auc Comparison 

 
Fig 17. Val_false_positives Comparison 

 

 

 
Fig 18. Val_precision Comparison 

 

 
Fig 19. Val_recall Comparison 
 

    The performance characteristics of various machine 

learning models (DenseNet, EfficientNet, InceptionResNet, 

ResNet50MalClassifier, VGG16, XceptionNet) in identifyi- 

ng various malware families shown in Table IV. The 

support column lists the number of instances for each 

malware family, representing the data distribution. All 

models attain perfect precision (100%), indicating accurate 

predictions. Figure 20, also shows the overall accuracy for 

each model and comparison of datasets with different CNN 

models tested accuracy. When compared to other models, 

models like DensNet and ResNet50MalClassifier are more 

accurate overall (0.93 and 0.95, respectively) [32] [33] [34] 

[35] [36]. Among the models, ResNet50MalClassifier and 

DenseNet were the most accurate, with overall accuracies of 

95% and 93%, respectively, while XceptionNet lagged 

behind with 83%.  

V. RESULTS 

    CNN+ResNet50MalClassifier achieved the greatest 

accuracy score of 95%.  The F1-Score balances precision 

(The percent of actual positives between expected positives) 
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and recall (the percent of actual positives within real 

positives). CNN+ResNet50MalClassifier once again perfor- 

ms admirably with 95%. The model’s capacity to identify 

genuine positives and reduce false positives that is 

highlighted, separately, by recall and precision. The highest 

recall (95%) and precision (96%) were achieved by 

CNN+ResNet50MalClassifier. A model's selection is 

determined by certain trade-offs, with CNN+ResNet50Mal- 

Classifier providing overall good performance shown in the 

Table V [37] [38][39][40]. 

 
TABLE V 

CLASSIFICATION OF METRICS ACROSS DIFFERENT MODELS 

Machine Learning models  Accuracy  F1-

Score 

Recall Precis

ion 

CNN without 

ResNet50MalClassifier 

91.33% 91% 91% 92% 

CNN+DensNet169 93% 92% 93% 93% 

CNN+EfficientNetB0 91% 91% 91% 92% 

CNN+InceptionResNetV2 89% 89% 89% 90% 
CNN+ResNet50MalClassifier 95% 95% 95% 96% 

CNN+VGG16 91% 91% 91% 92% 

CNN+XceptionNet 83% 83% 83% 86% 
 

VI. CONCLUSION 

   Malware identification and categorization are crucial areas 

in the cybersecurity field, and this research has demonstrate- 

d considerable gains. The ResNetMalClassifier, which 

makes use of the ResNet50 architecture, has demonstrated 

exceptional performance, surpassing several well-known 

models, including Xception, InceptionResNetV2, DenseNet, 

CNN, VGG16, and EfficientNet, with a remarkable 

accuracy rate of 95%. This unique method shows significant  

promise for boosting preventative cybersecurity measures 

and malware detection effectiveness. 
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Fig 1. Proposed ResNet50MalClassifier Architecture 
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Fig 2. Sample for Malware Types 

 

Fig 5. Confusion Matrix for CNN without ResNet50MalClassifier. 
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                                                                                                Predictable class labels 

 

 Fig 6. Confusion Matrix for CNN with ResNet50MalClassifier  

  
 

 
Fig 7. Evaluation report of CNN with ResNet50MalClassifier 
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Fig 20. Comparison of datasets with different CNN models tested accuracy 

 

TABLE I 
DETAILS OF PRE-PROCESSED DATASET. 

 Before Pre-processing  After Pre-processing  

Sl. No Class Training  Testing  Training  Testing  

1.  Adialer.C 97 12 77 20 

2.  Adposhel 350 144 280 70 

3.  Agent 350 120 280 70 

4.  Allaple  350 128 280 70 
5.  Alueron.gen! J 173 25 138 35 

6.  Amonetize 350 147 280 70 
7.  Androm 350 150 280 70 

8.  Autorun 350 146 280 70 

9.  BrowseFox 350 143 280 70 
10.  C2LOP gen! g 175 25 140 35 

11.  C2LOP P 116 14 92 24 

12.  Dialplatform B 152 25 121 31 
13.  Dinwod 350 149 280 70 

14.  Elex 350 150 280 70 

15.  Expiro 350 151 280 70 
16.  Fakerean 306 69 244 62 

17.  Fasong 350 150 280 70 

18.  HackKMS 350 149 280 70 
19.  Hlux 350 150 280 70 

20.  Injector 350 145 280 70 

21.  InstallCore 350 150 280 70 

22.  Instantaccess 344 43 275 69 

23.  Lolyda.AA1 153 54 122 31 

24.  Lolyda.AA2 159 24 127 32 
25.  Lolyda.AT 127 15 101 26 

26.  MultiPlug 350 149 280 70 

27.  Neoreklami 350 150 280 70 
28.  Neshta 350 147 280 70 

29.  Rbot!gen 126 15 100 26 

30.  Regrun 350 135 280 70 
31.  Sality 350 149 280 70 

32.  Snarasite 350 150 280 70 

33.  Stantinko 350 150 280 70 
34.  VBA 350 150 280 70 

35.  VBKrypt 350 146 280 70 

36.  Vilsel 350 146 280 70 

 
TABLE III 

EVALUATION REPORT FOR CNN WITH RESNET50MALCLASSIFIRE

Sl. No Malware Families  Precision Recall F1-Score Correct 

Classified  

Miss 

Classified  

Accuracy  Support 

0.  Adialer.C 1.00 1.00 1.00 20        0 1.00   20 
1.  Adposhel 1.00 1.00 1.00 2 68      0.02 70 

2.  Agent 0.75 0.87 0.81 56 14      0.80 70 
 

DensNet 

Efficient 

Net Inception  

ResNet ResNet50 
MalClassifier 

VGG16 
Xception 

Net 

Supports 
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3.  Allaple 0.96 0.94 0.95 68 02 0.97             70  

4.  Alueron.gen!  1.00 1.00 1.00 35 00 1.00             35  

5.  Amonetize 0.99 0.96 0.97 67 03 0.95 70  

6.  Androm 0.98 0.80 0.88 63 07 0.90 70  

7.  C2LOP.gen! g 0.97 0.94 0.99 35 00 1.00 35 

8.  Dialplatform.B 1.00 1.00 1.00 31 00 1.00 31 
9.  Dinwod 0.99 0.96 0.99 70 00 1.00 70 

10.  Elex 0.96 0.80 0.97 68 02 0.97 70 

11.  Expiro 0.90 0.94 0.88 53 17 0.75 70 
12.  Fakerean 1.00 1.00 1.00 62             00 1.00                            62 

13.  Fasong 1.00 0.96 1.00 70 00 1.00 70 

14.  Hack KMS 1.00 0.80 1.00 70 00 1.00 70 
15.  Hlux 1.00 0.94 1.00 70 00 1.00 70 

16.  Injector 0.93 1.00 0.92 61 09 0.87 70 
17.  Install Core 1.00 0.96 0.99 66 04 0.94 70 

18.  Instant access 1.00 0.80 1.00 69 00 1.00 69 

19.  Lolyda, A1 1.00 0.94 0.98 31 00 1.00 31 
20.  Lolyda, A2 1.00 1.00 1.00 30 00 0.93 32 

21.  LolydaAT 1.00 0.96 1.00 26 00 1.00 26 

22.  Multi Plug 0.91 0.80 0.95 66 04 0.94 70 
23.  Neoreklami 1.00 0.94 1.00 60 10 0.85 70 

24.  Neshta 0.73 1.00 0.75 45 25 0.64 70 

25.  Rbot! gen 1.00 0.96 1.00 26 00 1.00 26 
26.  Regrun 1.00 0.80 0.99 70 00 1.00 70 

27.  Sality 0.71 0.94 0.72 53 17 0.75 70 

28.  Snarasite 1.00 1.00 1.00 70 00 1.00 70 
29.  Stantinko 1.00 0.96 0.99 68 00 0.97 70 

30.  VBA 1.00 0.80 1.00 00 70 0.00 70 

31.  VB Krypt 1.00 0.94 0.97 67 00 0.95 70 
32.  Vilsel 1.00 1.00 1.00 70 00 1.00 70 

Overall Accuracy of the proposed method 0.95 2141 

Macro average  0.96 0.80 0.96 - 2141 
Weighted average  0.96 0.94 0.95 - 2141 

TABLE IV 
COMPARISON OF DATASETS WITH DIFFERENT CNN MODELS TESTED ACCURACY 

Sl. No Malware 
Families 

DensNet 
(%) 

EfficientNet 
(%) 

Inception ResNet 
(%) 

ResNet50MalClassifier  
(%) 

VGG16 
(%) 

XceptionNet 
(%) 

Support 
(%) 

0.  Adialer.C 1.00 1.00 1.00 1.00 1.00 1.00 20 

1.  Adposhel 1.00 1.00 0.97 0.02 1.00 1.00 70 
2.  Agent 0.74 0.8 0.67 0.8 0.77 0.7 70 

3.  Allaple 0.92 0.97 0.87 0.97 0.95 0.95 70 

4.  Alueron_gen! J 1.00 1.00 1.00 1.00 1.00 1.00 35 
5.  Amonetize 0.95 0.95 0.92 0.95 0.95 0.9 70 

6.  Androm 0.81 0.82 0.84 0.9 0.82 0.9 70 

7.  Auto-run 0.91 0.75 0.78 0.94 0.78 0.84 70 
8.  BrowseFox 0.98 0.92 0.97 1.00 0.97 0.24 70 

9.  C2LOP.P 0.95 0.95 0.70 0.95 0.87 0.24 24 

10.  C2LOP_gen! g 1.00 0.97 0.91 1.00 0.88 1.00 35 
11.  Dialplatform.B 0.96 0.96 0.96 1.00 0.96 1.00 31 

12.  Dinwod 1.00 1.00 0.98 1.00 1.00 1.00 70 

13.  Elex 0.98 1.00 0.97 0.97 0.97 0.37 70 
14.  Expiro 0.92 0.98 0.78 0.75 0.57 0.97 70 

15.  Fakerean 1.00 1.00 1.00 1.00 1.00 0.83 62 

16.  Fasong 1.00 1.00 0.98 1.00 1.00 0.88 70 
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20.  Install Core 0.98 0.95 0.71 0.94 0.97 0.72 70 
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24.  Lolyda.AT 1.00 1.00 1.00 1.00 1.00 1.00 26 

25.  Multi Plug 0.91 0.95 0.9 0.94 0.91 0.97 70 
26.  Neoreklami 0.98 0.95 0.95 0.85 1.00 0.91 70 

27.  Neshta 0.68 0.54 0.48 0.64 0.51 1.00 70 

28.  Rbot! gen 1.00 1.00 0.96 1.00 0.84 1.00 26 
29.  Regrun 0.98 1.00 1.00 1.00 0.98 0.98 70 

30.  Sality 0.62 0.67 0.57 0.75 0.71 0.61 70 

31.  Snarasite 1.00 1.00 1.00 1.00 1.00 1.00 70 
32.  Stantinko 0.98 0.97 0.94 0.97 0.95 0.95 70 

33.  VBA 1.00 1.00 1.00 0.00 1.00 1.00 70 

34.  VB Krypt 0.98 0.95 0.94 0.95 0.91 0.94 70 

35.  Vilsel 1.00 1.00 1.00 1.00 1.00 1.00 70 

Total Testing Samples       2141 

Models Overall Accuracy  0.93 0.91 0.89 0.95 0.91 0.83 -- 
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