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Semi-Supervised Skin Lesion Segmentation Based
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Abstract—In recent years, deep learning has significantly ad-
vanced skin lesion segmentation. However, annotating medical
image data is specialized and costly, while obtaining unlabeled
medical data is easier. To address this challenge, we propose
a semi-supervised learning strategy to improve segmentation
accuracy by combining a small amount of annotated data with
a larger volume of unlabeled data. OQur approach employs
a teacher-student model framework. In this framework, the
teacher model generates pseudo-labels for the unlabeled data,
and the student model is trained using both these pseudo-labels
and the limited true labels. To improve the student model’s
learning capacity, we introduce auxiliary segmentation heads
that provide joint guidance during training. We use the cross-
entropy (CE) loss function to quantify the discrepancies between
the segmentation outputs of the main head and auxiliary heads.
Since pseudo-labels generated by the teacher model may contain
noise, we developed a mechanism to identify and exclude
uncertain regions in each unlabeled image. This reduces pseudo-
label noise and mitigates its negative impact on the student
model. Our method demonstrates significant improvements in
skin lesion segmentation on the publicly available ISIC2018
dataset, achieving Dice coefficients of 87.84% and 88.73% with
only 5% and 10% of the total annotated data, respectively,
outperforming existing methods.

Index Terms—Medical Image Segmentation, Semi-Supervised
Learning, Mean Teacher, Uncertainty Map.

I. INTRODUCTION

KIN diseases including basal cell carcinoma (BCC),

melanoma, squamous cell carcinoma (SCC), and ep-
ithelial carcinoma, are highly prevalent worldwide. Among
them, melanoma accounts for 75% of type of skin cancer
[1]. Early symptoms of melanoma often appear as a small
mole or spot, with changes like darkening or enlargement.
Melanoma can be effectively treated in its early stages with
minor surgical procedures [2]. Therefore, early detection is
crucial. Diagnosing melanoma with high accuracy typically
requires experienced physicians due to its complex presenta-
tion [3]. Recent advancements in artificial intelligence have
significantly improved dermatological imaging, aiding physi-
cians in diagnosis. This integration has enhanced diagnostic
efficiency and reduced misdiagnosis rates.

Deep learning has revolutionized medical image seg-
mentation, achieving remarkable success. In recent years,
numerous methods based on deep learning have been pro-
posed, leading to significant advancements in skin disease
segmentation [4], [5], [6], [7]. Most existing methods utilize
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Fig. 1.
artifacts and bubbles present in the images, which can complicate the
segmentation process. The second row depicts cases where the annotations
do not align with the actual boundaries of the lesions, adding to the difficulty
in model training. Finally, the third row presents the correct annotations.

Challenges in Melanoma Segmentation. The first row highlights

deep learning, with deep convolutional neural networks being
the most prominent for skin cancer image segmentation.
These methods primarily rely on fully supervised approaches,
which perform best with sufficient annotated data [8]. How-
ever, generating reliable annotations in the medical field
is highly time-consuming and labor-intensive. As a result,
researchers have adopted alternative approaches for medical
image segmentation, including weakly supervised [9], [10],
[11], unsupervised [12], [13], [14], and semi-supervised
learning [15], [16], [17].

Although deep learning methods have shown promise in
skin disease image segmentation, challenges persist, partic-
ularly in melanoma segmentation owing to its complexity.
Variability in lesion size, location, shape, and color, along
with artifacts such as hair and blood vessels, often hinders
accurate segmentation. Furthermore, as shown in Figure
1, discrepancies between true boundaries and annotations
complicate model training. This issue is especially evident
when labeled data is limited, as the model’s generalization
ability may be inadequate. Thus, the effective utilization
of unlabeled data, reduction of pseudo-label noise, and
improvement of segmentation performance remain critical
challenges.

In this paper, we focus on semi-supervised learning for
medical image segmentation, aiming to enable the model
to learn effectively from a small set of annotated data and
a large amount of unlabeled data. Semi-supervised learn-
ing in medical image segmentation is a fundamental yet
challenging problem with critical implications for real-world
clinical applications. Recently, significant progress has been
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made in semi-supervised medical image segmentation, with
many methods incorporating unlabeled data into the training
process through unsupervised loss functions. Among them,
the Mean Teacher model [18] has achieved notable success
by enforcing consistency between the predictions of a student
model and a teacher model using perturbed inputs. Building
on this idea, researchers have proposed other semi-supervised
learning algorithms based on consistency learning [19], [20].
Nevertheless, these consistency-based methods may not fully
exploit the information available from unlabeled images,
limiting their performance.

To address this, we propose UAMT (Uncertainty-guided
Auxiliary Mean Teacher), an end-to-end semi-supervised
segmentation framework that extends the Mean Teacher
model.

In summary, our work achieves the following:

o Innovative Framework Design: We introduce UAMT,
a semi-supervised segmentation model that builds on
the Mean Teacher approach by adding a dual-headed
student network. This design provides more robust
guidance during training, enhancing the model’s seg-
mentation capabilities.

o Effective Use of Uncertainty Maps: By incorporating
uncertainty maps, we identify and exclude unreliable
regions in the unlabeled data, reducing noise in pseudo-
labels. This allows the model to focus on more reliable
areas, particularly edge information, which is crucial for
accurate medical image segmentation.

o Enhanced Consistency Learning: We improve the learn-
ing process by applying a cross-entropy loss to quantify
and minimize inconsistency between the two segmen-
tation heads, ensuring better utilization of both labeled
and pseudo-labeled data.

« Finally, our method is extensively validated on the pub-
licly available ISIC2018 dataset, where it significantly
outperforms other state-of-the-art semi-supervised seg-
mentation methods, demonstrating its ability to effec-
tively leverage unlabeled data.

II. RELATED WORK
A. Medical Image Segmentation

Medical image segmentation plays a crucial role in identi-
fying distinct tissues or organs within images, facilitating
both diagnosis and research. Initially, segmentation tech-
niques were primarily based on traditional methods. These
algorithms can be broadly categorized into two main ap-
proaches: threshold-based segmentation and edge detection-
based segmentation.

The threshold-based segmentation algorithm [23], [24]
is a relatively straightforward method that operates by se-
lecting one or more thresholds to classify pixels in an
image into different regions based on brightness or other
features. However, its effectiveness may decrease in complex
images characterized by significant noise or variability in
illumination.

On the other hand, edge detection-based segmentation [25]
focuses on identifying regions within the image where there
are substantial changes in the intensity of the pixels. By
detecting these intensity variations, the algorithm delineates
edges, thus enabling the segmentation of the image into

distinct areas. Although this method is well-suited for images
with pronounced edges and high contrast, its performance
can be compromised in the presence of blurred edges or
considerable noise interference.

With the advent of technological advancements, deep
learning-based image segmentation methods have emerged
as the predominant focus in medical image segmentation
research. These approaches leverage the capabilities of neural
networks to learn complex patterns and features from data,
significantly improving segmentation accuracy and robust-
ness compared to traditional techniques.

In 2015, Ronneberger et al. introduced a distinctive U-
shaped architecture known as U-Net [26], which revolu-
tionized medical image segmentation. This model marked a
significant advancement in the performance of deep learning-
based segmentation techniques. The U-Net architecture ef-
fectively combines the strengths of convolutional neural
networks (CNNs) and fully convolutional networks (FCNs).
A key feature of U-Net is its designed skip connections,
which facilitate the integration of low-level and high-level
features extracted during the learning process, leading to
substantial improvements in segmentation accuracy. Follow-
ing the success of U-Net, numerous extensions and variants
have been proposed to further improve segmentation perfor-
mance. Among these, Attention U-Net [27], MultiResUNet
[28], UNet++ [29], and TransUNet [31]—which incorporates
Transformer [30] architecture—have introduced significant
innovations.

Attention U-Net enhances the original U-Net by intro-
ducing an attention mechanism that reweights the output
features of the encoder before concatenating them with
the corresponding features in the decoder. This mechanism
allows the model to focus on more relevant features, im-
proving segmentation performance. MultiResUNet addresses
the limitations of simple skip connections in U-Net, which
directly fuse low-level features from the encoder with high-
level features from the decoder. The authors argue that this
direct fusion can create a semantic gap, potentially impairing
the prediction process. To mitigate this gap, MultiResUNet
introduces residual connections and additional convolutional
layers within the skip connections, thereby enhancing model
performance. UNet++ further refines segmentation capabil-
ities by incorporating dense convolutional blocks, allowing
for a more diverse fusion of image features from different
depths. Additionally, TransUNet integrates a hybrid encoder
that combines CNNs with Transformer architecture, resulting
in a novel design that leverages the advantages of both
structures to improve segmentation outcomes.

B. Semi-supervised Medical Image Segmentation

Despite the success of U-Net and its various extensions,
all of these models rely on fully supervised learning, which
requires large quantities of pixel-level annotated data. In
medical imaging, such annotations must be provided by
experts, leading to considerable time and resource costs. To
address these limitations, semi-supervised learning methods
have gained increasing attention, offering the potential to im-
prove segmentation performance by utilizing a large amount
of unlabeled data alongside a smaller, labeled dataset.

Several existing semi-supervised medical image segmen-
tation methods have explored the generation of pseudo-
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labels for unlabeled data to enhance the learning process.
One of the earliest contributions was made by Lee et al.
in 2013 [32], who introduced a semi-supervised approach
based on deep learning that created pseudo-labels by using
the predictions of fully supervised models. However, this
strategy often resulted in noisy labels, which could degrade
model performance.

In 2017, Tarvainen et al. [18] proposed the Mean Teacher
model to mitigate this issue. They identified that relying
heavily on the teacher model’s predictions could introduce
errors and negatively impact the student model’s learning.
To address this, the teacher model was updated by apply-
ing the exponential moving average of the student model’s
weights, leading to a more stable and improved learning
process. Yu et al. [19] further extended this concept by
introducing an uncertainty-aware mechanism, allowing the
student model to gradually focus on more reliable pseudo-
labels. This strategy enhanced the robustness of the learning
process. More recently, in 2023, Zhang et al. [33] incor-
porated uncertainty quantification into the semi-supervised
learning process, guiding model consistency learning. By
leveraging Monte Carlo Dropout, they were able to estimate
uncertainty in segmentation outputs, which improved the
quality of pseudo-labels. Shen et al. [34] also advanced the
field in the same year by proposing the UCMT (Uncertainty-
guided Collaborative Mean Teacher) model. This approach
introduced the Collaborative Mean Teacher (CMT) frame-
work, which encouraged model diversity by training multiple
sub-networks collaboratively. Additionally, the Uncertainty-
guided Region Mixture (UMIX) technique was employed to
adjust input images based on the CMT’s uncertainty map,
aiming to refine the generation of pseudo-labels.

III. METHOD
A. Overall Architecture

As illustrated in Figure 2, we propose a two-stage end-
to-end semi-supervised segmentation model that integrates
both teacher and student models. In the first stage, the
student model is trained on labeled data through supervised
learning, while the teacher model generates pseudo-labels
from the unlabeled data to guide the student model’s learn-
ing process. To improve the segmentation performance of
the student model, we incorporate additional segmentation
heads, forming a dual-headed structure where both heads
collaborate by sharing complementary information. In the
second stage, we address the challenge of high-uncertainty
regions within the pseudo-labels generated for the unlabeled
data. These uncertain regions are identified and refined using
a patching strategy to create new training samples. These
refined samples are then fed back into both the teacher and
student models for further training. Importantly, the teacher
and student models share parameters across both stages,
with the teacher model’s parameters being updated using the
exponential moving average (EMA) of the student model’s
parameters [18]. The entire training process is outlined in
Algorithm 1 using pseudocode.

B. Design of the Dual-Headed Segmentation Network

In a segmentation network, the primary purpose of a
segmentation head is to generate the final segmentation

Algorithm 1 : Pseudocode of UAMT
Input:

Labeled Data and Unlabeled Data, D; =
Dy = {{Xj }JM:1}

Parameter:

fo.(x) = student model with parameters 6
fo,(x) = teacher model with parameters 6;
Output:

1: for T in [1, numepochs] do

2 for each minibatch B do

3 Step 1: Uncertainty Estimation

4 %1,}22%]055(%1'),}?0(—]0&(.%1')

5: YLYP  fo.(2),Y) < fo(a;)
6: Liota < Lsup(Y;;l7 )/;2) + ALy (Y;O Y
7
8
9

{(X3, Y)Y

1=1>

y g 7}?]2)
Update fy_(z), fp, (x) using optimizer
it U(fo, (1))

Step 2: Train with Uncertain Regions

10: Y 4 Upin (2
11: Y« Umix(m}‘)
12: end for

13: end for

14: return fy_ ()

output. It does this by transforming the shared feature maps
into pixel-wise or region-wise classifications (for example,
classifying each pixel in a medical image as a specific
tissue type or lesion). Each segmentation head is respon-
sible for converting the extracted feature maps into concrete
segmentation predictions. By employing different network
architectures or strategies, multiple segmentation heads can
interpret the same feature maps in diverse ways, enhancing
the model’s performance and robustness.

To improve the segmentation capability of the student
model, we introduce an auxiliary segmentation head, forming
a dual-headed network structure. This design enables the
model to produce two complementary segmentation outputs
from the same input image. Specifically, one segmentation
head is based on the Fully Convolutional Network (FCN)
architecture, while the other leverages the Deeplabv3 de-
sign. By integrating these two architectures, the dual-headed
network can harness their strengths, generating diverse yet
complementary segmentation results that improve overall
accuracy and robustness.

To ensure consistency between the outputs of the two
segmentation heads, we utilize a cross-entropy (CE) loss
function that measures the difference between their segmen-
tation predictions, as shown in Equation (1):

Lo E(Yneadt s Ynead2) (D

Where Yneaq1 and yneaqz represent the outputs from the
FCN and Deeplabv3 heads, respectively. By minimizing this
loss, we encourage alignment between the two segmentation
results, which enhances the stability, robustness, and overall
effectiveness of the segmentation model.

C. Uncertainty Map

To tackle the unreliability of predictions in medical
imaging caused by factors like blurriness, noise, and low
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Fig. 2.

The pipeline of our UMAT framework for semi-supervised segmentation. UMAT consists of two stages. In the first stage, an uncertainty map

is generated based on the input data. In the second stage, this uncertainty map is used to create a new input, which is then fed into the second stage for

further processing. Both stages share parameters.

Uncertainty Map

New Image

Fig. 3. Visualization of Uncertainty Map. In the left image, green areas
represent regions with high confidence, while red areas indicate regions with
low confidence.

contrast, we leverage a teacher-student model framework
incorporating unlabeled data. Initially, the teacher model
generates pseudo-labels by making predictions on unlabeled
data. However, due to data quality challenges, these pseudo-
labels may not always be reliable.

To enhance reliability, we introduce an uncertainty map
that quantifies the model’s confidence in its predictions by
integrating outputs from both the teacher and student models.
Specifically, we define the uncertainty map X* as a mixture
probability distribution given by:

qu = Umix(f@(xi)a f01 (xz)) = ch IOg(pc) (2)

Pe = %(softmax(fg(xi)) + softmax( fy, (x;))) 3)

where fp(z;) and fy1(z;) are the outputs of the teacher
and student models, respectively, and p. represents the aver-
aged softmax probabilities of both model outputs.

With the uncertainty map established, we utilize the con-
fidence information to integrate new data. We categorize the
top K regions with high confidence as “trusted” regions and
the top K regions with low confidence as uncertain” regions.
A patching approach is then employed, replacing data from
uncertain regions with information from trusted regions to
create new image data, as illustrated in Figure 3.

This process ultimately yields new image data, which
is then input into the model for further training, thereby
enhancing the overall two-stage model’s robustness.

D. Loss Function

The loss function for our method is composed of a
supervised loss Lg and an unsupervised loss L,,, defined as
follows:

Loss = ALgs + (1 — M) L, 4

In this equation, A\ is a regularization parameter that
balances the contributions of the supervised and unsupervised
losses. To adapt to different training stages, we gradually
increase A using a Gaussian ramp function. This approach
smoothens the transition in the weighting of losses, mit-
igating training instability caused by abrupt changes, as
described by:

>2

Here, \,, represents the maximum value of the scaling fac-
tor, ¢ denotes the current training iteration, and m indicates
the maximum number of iterations.

t
1—- =
m

A= Apn X exp —5( o)

The supervised loss function is defined as follows:

L =Lpice(S1head_preds ¥)
+ Lcg(SThead_preds ¥)
+ Lpice (S2head_pred: ¥)
+ Lce(S2head_pred; Y)

(6)

In this formulation, y represents the ground truth labels,
Slhead_pred corresponds to the segmentation results produced
by the student model’s FCN head, and S2peaq pred coOITE-
sponds to the results generated by the Deeplab head.

The semi-supervised loss function is articulated as follows:
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Fig. 4. ISIC2018 dataset, each entry comprises a pair of images. The left
image represents the original dermoscopic image of the skin lesion under
examination, while the right image provides the ground truth segmentation
annotation.

Ly, =Lce(SThead_pred; Tpscudo)
+ Lpice (SThead_preds Tpseudo)
+ Lcg(S2head_preds Tpseudo)
+ Lbice (S2head_pred, Tpseudo)
+ Lcg(SThead_preds S2head_pred)
+ Lpice (SThead_preds S 2head_pred)

In this case, Tpseudo T€presents the pseudo-labels generated
by the teacher model.

Both the supervised and unsupervised loss functions incor-
porate the Dice loss and cross-entropy (CE) loss. The Dice
loss evaluates the overlap between the model’s segmentation
results and the ground truth labels, while the CE loss assesses
the disparity between the predicted class probabilities for
each pixel and the actual class labels.

(7

IV. RESULTS AND DISCUSSION
A. Dataset and Evaluation Metric

In this study, we focus on skin lesion segmentation using
the publicly available ISIC2018 dataset [22]. All experiments
were conducted on this dataset, which consists of a total of
2,594 images. For our analysis, we randomly divided the
dataset into training and testing subsets, with the training set
containing 1,815 images and the testing set comprising 779
images, each associated with its corresponding ground truth
label.

The segmentation task involves two label classes: the le-
sion region and the non-lesion region, as illustrated in Figure
4. To train the semi-supervised segmentation algorithm, we
selected 5% and 10% of the training images as labeled data,
while the remaining images served as the unlabeled dataset.

For evaluation, we utilize the Dice similarity coefficient
(Dice) metric to quantitatively assess the segmentation per-
formance of our model. The Dice coefficient measures the
overlap between the predicted regions and the ground truth
annotations, with higher values indicating improved model
performance. This metric is crucial for understanding how
effectively our segmentation approach delineates the lesion
regions from the non-lesion regions in the images.

B. Experimental Setup

Our proposed method was implemented using Python 3.8
and PyTorch 1.11.0 [35], running on a machine equipped

with an NVIDIA GeForce GTX V100-32GB GPU and four
Intel Xeon Processor CPUs operating at 2593.904 MHz. For
the training process, we resized the input images to 256
x 256 pixels before feeding them into our semi-supervised
segmentation model. The segmentation model utilized is
DeepLabv3 [36], with ResNet50 serving as the backbone
network [37]. We employed the AdamW optimizer to train
the network, using a batch size of 16. The training was
conducted over a total of 25 epochs to ensure adequate
learning and convergence of the model.

C. Comparison Experiments with Other Semi-Supervised
Segmentation Methods

We evaluated the performance of our proposed semi-
supervised method on the ISIC2018 dataset, comparing it
with several relevant semi-supervised segmentation methods,
including Mean Teacher [18], Cross-consistency Training
[38], Cross Pseudo Supervision [39], and Uncertainty-guided
methods [40].

The ISIC2018 dataset was divided into labeled subsets of
5% and 10%, with the results presented in Table I and Table
II, respectively. Table I displays the experimental results
using a 5% label proportion, while Table II showcases the
outcomes with a 10% label proportion.

From Table I, it is evident that our method achieves a
Dice coefficient of 87.84%. This represents improvements
of 1.17% over Mean Teacher, 3.87% over Cross-consistency
Training, 1.03% over Cross Pseudo Supervision, and 15.17%
over Uncertainty-guided methods. Similarly, Table II indi-
cates that our method enhances the Dice metric by 1.49%,
2.3%, 1.03%, and 9.25% when compared to the same four
semi-supervised methods using a 10% label proportion.

By synthesizing the experimental results from both tables,
we observe that our proposed method demonstrates greater
overlap and similarity between the segmentation outcomes
and the ground truth annotations. It excels in the Dice evalu-
ation metric, outperforming other semi-supervised methods.
This strong performance underscores the effectiveness of our
approach, reinforcing its superiority in skin lesion segmen-
tation tasks.

TABLE I
A COMPARISON EXPERIMENT WAS CONDUCTED UNDER THE TRAINING
OF 5% LABELED DATA WITH OTHER SEMI-SUPERVISED METHODS.

Methods Labeled Unlabeled Dice(%)
images images

Mean Teacher 91(5%) 1724 86.67

Cross-consistency training 91(5%) 1724 83.97

Cross pseudo supervision 91(5%) 1724 86.81

Uncertainty-guided 91(5%) 1724 72.67

UAMT (Ours) 91(5%) 1724 87.84
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Fig. 5. Comparison of Segmentation Performance in Supervised and Semi-Supervised Settings.

TABLE II
A COMPARISON EXPERIMENT WAS CONDUCTED UNDER THE TRAINING
OF 10% LABELED DATA WITH OTHER SEMI-SUPERVISED METHODS.

Methods Labeled Unlabeled Dice(%)
images images

Mean Teacher 181(10%) 1634 87.42

Cross-consistency training 181(10%) 1634 86.43

Cross pseudo supervision 181(10%) 1634 87.70

Uncertainty-guided 181(10%) 1634 79.48

UAMT (Ours) 181(10%) 1634 88.73

D. Comparison of Supervised and Semi-Supervised Learning
Performance

It is well-known that if we do not leverage additional
unlabeled images, semi-supervised methods essentially op-
erate as supervised methods. For example, in a supervised
setting, we might train using only a small portion of the
labeled data (such as 5%). In contrast, in the semi-supervised
setting, we still use the same 5% of labeled data, but we
also incorporate the remaining 95% of unlabeled data into
the training process. This approach enables the model to
benefit from both labeled and unlabeled data, allowing for
better generalization. To evaluate the effectiveness of our
proposed method, we compared its performance under both
supervised and semi-supervised settings against a baseline
method (Mean Teacher) and also assessed the performance of
the baseline in both supervised and semi-supervised settings.

For this comparison, we conducted experiments with
varying amounts of labeled data, focusing on the perfor-
mance of our UAMT method, its fully supervised variant,
as well as the baseline method (Mean Teacher) in both

supervised and semi-supervised settings. The results, shown
in Figure 5, clearly demonstrate that our semi-supervised
UAMT approach outperforms both the supervised version of
our method and the semi-supervised baseline (MT). These
findings indicate that our method leverages the available un-
labeled data more effectively, resulting in enhanced segmen-
tation performance, even when the labeled data constitutes
only a small fraction of the overall dataset. This under-
scores the potential of semi-supervised learning techniques
in improving medical image segmentation, especially when
labeled data is scarce.

TABLE III
ABLATION STUDIES ON DESIGNED MODULES.

Aux-head ~ UMCETRING- 5o eq 10% labeled
map
86.67% 87.42%
v 87.66%(+0.99%)  88.33%(+0.91%)
v 87.66%(+0.65%)  88.35%(+0.93%)
v v 87.84%(+1.17%)  88.73%(+1.31%)

E. Ablation Experiments

To evaluate the contribution of each module in our
proposed semi-supervised method, we conducted a series
of ablation experiments. These experiments incrementally
added different components to the baseline method, allowing
us to assess their individual and combined impacts on
model performance. We designed four experimental setups
to validate the effectiveness of each module. Starting with
the baseline method, we progressively introduced auxiliary
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Fig. 6.
modules proposed in this paper.

segmentation heads, incorporated the uncertainty map, and
finally combined both the uncertainty map and auxiliary
segmentation heads.

The ablation experiments were carried out on the ISIC2018
dataset with label proportions of 5% and 10%. In Table III,
we established Mean Teacher (MT) as the baseline method
(Experiment 1). We then conducted subsequent experiments
based on this baseline: Experiment 2 introduced auxiliary
segmentation heads (AMT), Experiment 3 implemented the
Uncertainty-map (UMT) training approach, and Experiment
4 represents our complete proposed method, integrating all
modules into the baseline.

The results from Experiments 2 and 3 show that the inclu-
sion of either the auxiliary segmentation head or the utiliza-
tion of the Uncertainty-map method, when applied individu-
ally, enhances model performance for dataset segmentation.
Notably, Experiment 4, which combines both modules, yields
a significant performance increase on the ISIC2018 dataset.
By integrating all methods into the baseline approach, our
proposed method demonstrates improvements of 1.17% and
1.31% in the Dice evaluation metric for labeled proportions
of 5% and 10%, respectively, compared to the baseline.

To further illustrate the efficacy of our approach, we
randomly selected segmentation results of skin lesions from
two patients for visual analysis. Figure 6 provides a 2D
visual comparison of segmentation results obtained using the
different modules proposed in this paper against the baseline
method and the corresponding ground truth annotations. The
figure clearly demonstrates that our method significantly en-
hances segmentation performance, particularly in boundary
regions, when compared to the baseline method.

V. CONCLUSIONS

In this paper, we present a pseudo-label-based semi-
supervised method for skin lesion segmentation using the
ISIC2018 dataset. By integrating both labeled and unlabeled
data, we establish a robust semi-supervised learning frame-
work. To enhance the model’s segmentation performance,
we introduce auxiliary segmentation heads within the stu-
dent model and apply the cross-entropy (CE) loss function
between these heads. Additionally, we leverage uncertainty

UAMT (ours)

UAMT(ours)

The 2D visualization comparison between the baseline results, ground truth annotations, and the segmentation results obtained using different

maps to refine the quality of pseudo-labels for unlabeled
data. Through comprehensive comparative experiments and
ablation studies, we validate the contributions of each module
to segmentation performance. The experimental results indi-
cate that our proposed semi-supervised model outperforms
existing semi-supervised methods on the ISIC2018 dataset.
In future work, we plan to extend this approach to other
medical image segmentation tasks, further refine the model
architecture, and explore additional strategies for leveraging
unlabeled data to further improve model performance.
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