
 

  

Abstract—As society advances, machine learning holds 

increasing significance. Optimization, a crucial aspect in 

machine learning, has garnered considerable research 

attention. Addressing optimization challenges has become 

pivotal as models grow in complexity alongside the exponential 

rise in data volume. In the existing algorithms like stochastic 

gradient descent (SGD), a common practice is to reduce step 

sizes or manually adjust step sizes which is inappropriate and 

time-consuming. In order to address this issue, researchers have 

put significant efforts, such as adopting the Barzilai-Borwein 

(BB) method. However, the BB method has its drawbacks, with 

the denominator potentially approaching zero or even 

becoming negative. In order to address this problem, this study 

uses the Positive Defined Stabilized Barzilai-Borwein (PDSBB) 

method and combined SGD algorithm with the method to 

create new algorithms, namely SGD-PDSBB. Following that, 

the algorithm's convergence is analyzed. Subsequently, its 

effectiveness is confirmed through numerical experiments, 

where is compared to the original SGD algorithm, as well as 

SGD-BB, in terms of step size, sub-optimality, and classification 

accuracy. The numerical experiments indicate that the new 

algorithm exhibits numerical performance similar to SGD or 

SGD-BB on some datasets, and on some other datasets, the new 

algorithms even perform better. 

 
Index Terms—stochastic gradient descent, machine learning, 

adaptive step size, Positive Defined Stabilized Barzilai-Borwein 

method 

 

I. INTRODUCTION 

ACHINE learning, as an application of artificial 

intelligence (AI), equips systems with the capability to 

access data and leverage it to perform cognitive functions. 

This is achieved through learning from past experiences, 

enabling machines to continually improve and effectively 

address complex problems. The applications of machine 

learning mainly include Data Analysis and Mining, Pattern 

Recognition, Application in Bioinformatics, Machine Brain 

with Human Wisdom and Specific applications like Virtual 
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assistant, Navigation Assistant and Filter spam and Malware. 

Optimization is a fundamental aspect of machine learning. 

The first step in machine learning methods involves 

establishing a model and formulating a reasonable objective 

function. Once the objective function is determined, suitable 

numerical or analytical optimization methods are typically 

employed to solve the optimization problem.  

In recent years, first-order stochastic optimization 

problems have attracted significant interest due to their 

advantages, such as high speed and low computational 

complexity. The primary motivation of this paper stems from 

the field of machine learning, with a specific emphasis on 

first-order stochastic optimization problems and their 

application in the context of step size. 

Stochastic gradient descent (SGD), introduced by Robbins 

and Monro [1], finds extensive applications in the training of 

deep learning models [2], large-scale natural language 

processing [3], and matrix factorization [4]. Recently, many 

researchers have been exploring issues related to the 

selection of step sizes in existing algorithms, yielding several 

promising outcomes. Reference [5] integrated the 

Barzilai-Borwein (BB), proposed by Barzilai and Borwein 

[6], into the Mini-Batch Semi-Stochastic Gradient Descent 

(mS2GD) method [7], resulting in a new mini-batch method, 

mS2GD-BB. Reference [8] utilized the BB method to 

automatically calculate the step sizes for SGD and its variant, 

Stochastic Variance Reduced Gradient (SVRG), resulting in 

the creation of two algorithms: SGD- BB and SVRG-BB. 

Reference [9] introduced a variation of the adaptive step size 

strategy, known as the Stabilized Barzilai-Borwein (SBB) 

step size. This variation involves adding a positive term to the 

original BB step size's absolute denominator, aiming to 

address the instability issue of the BB step size. Meanwhile, 

the stabilized BB method was introduced in [10], which 

defined a boundary for the distance between each pair of 

successive iterations. This boundary enables a reduction in 

the number of BB iterations. A new variant of the BB method, 

Positive Defined Stabilized Barzilai-Borwein (PDSBB), was 

proposed to be incorporated into SVRG, resulting in the 

creation of a new algorithm, named SVRG-PDSBB [11].  

( ) ( )
1

1
min

d

n

i
w R

i

F w f w
n

=

=                                 (1) 

In equation (1), w  denotes the model parameter, n  

represents the sample size , and ( )if w  is a sequence of loss 

functions that assess the cost of the current parameter w . In 

this case, each : d
if R R→  signifies the cost function 

corresponding to the i th− sample data. 

Usually, ( )if w depends on training data ( ),i ia b  (supervised 

learning). In machine learning, to avoid overfitting, a 
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regularization term is usually added to objective function (1).  

II. GAP ANALYSIS  

The SGD method offers significant theoretical and 

empirical advantages in machine learning [12]-[13], 

compressed sensing [14], wireless sensor networks [15], 

matrix factorization [4], [16], and large-scale natural 

language processing [3]. The SGD algorithm features 

frequent updating of the model for each training, which leads 

to faster learning, and compromises between fast 

computation per iteration and slow convergence.  

Reference [8] stated that it is inappropriate and 

time-consuming to choose a constant or decreasing step size 

manually. Therefore, the BB method is utilized to calculate 

the step size for both SGD and SVRG. This method does not 

require any parameters and it dynamically computes the step 

size. However, this method cannot avoid situations where the 

denominator might be close to zero. Adding a positive term to 

the absolute value of the denominator of the original BB step 

size is a variant of the adaptive step size strategy proposed in 

[9] to overcome instability issue associated with the BB step 

size. This method does not need singular value 

decomposition since it drops convexity, making use of 

stochastic variance reduced gradient. However, this method 

does not provide an appropriate value or rule of the 

parameter. 

There are also many algorithms that improve the BB step 

size. Reference [17] merged the online step size (OSS) into 

the mini-batch nonconvex stochastic variance reduced 

gradient (MSVRG) approach, resulting in a newly devised 

method known as MSVRG-OSS. It was shown that 

MSVRG-OSS possesses a linear convergence rate. Applying 

the OSS step size to MSVRG algorithm, when the sample 

size is relatively small, the numerical performance is 

sensitive to the choice of the initial step size and mini-batch 

size. However, with a larger sample size, it inevitably 

increases the computational workload and reduces the 

convergence speed. Reference [18] has introduced a variant 

of the Barzilai-Borwein (BB) method, known as the Random 

Barzilai-Borwein (RBB) method, to determine the step size 

for mini-batch nonconvex stochastic variance reduced 

gradient (SARAH) in the mini-batch setting. It has been 

demonstrated that the newly developed MB-SARAH-RBB 

converges linearly in expectation for strongly convex 

objective functions. Table I summarizes the characteristics of 

each algorithm. 

Meanwhile, the Stabilized Barzilai-Borwein (SBB) was 

also introduced in [10]. The SBB method achieves global 

convergence without the need for any line search, which has 

inspired the current study to modify the SBB method by 

introducing a dynamic adaptive step size. This aims to 

stimulate the development of more efficient algorithms. 

Adaptive step size methods, such as ADAptive Moment 

estimation (ADAM) [19] and AdaGrad [20], are commonly 

used to handle noisy gradients in optimization by 

dynamically adjusting the step size. 

III. BARZILAI-BORWEIN (BB) METHOD AND POSITIVE 

DEFINED STABILIZED BARZILAI -BORWEIN (PDSBB) 

METHOD 

The BB method, inspired by Newton’s method, is a 

gradient technique with modified step sizes and is often 

paired with a non-monotone line search. As described in [6], 

it employs a two-point step size for the steepest descent 

method by approximating the secant equation. Nowadays, the 

BB gradient method is recognized as an effective method for 

addressing large-scale unconstrained problems with modest 

accuracy and can be readily adapted for various constrained 

optimization problems. 

Suppose model (2) is an unconstrained optimization 

problem needs to be addressed, 

( )min f w                                             (2) 

where ( )f w is differentiable. The iterative equation for the 

quasi-Newton method applied to optimization problem (2) is 

as follows:   

( )1
1t t t tw w B f w−

+ = −                             (3) 

where tB  is an approximation of the Hessian matrix of f  at 

tw . 

The Hessian matrix ( 0t  ) is approximated by using 

1
t

t

B I


=  , and it is substituted into the secant equation 

t t tB s y= ,where ( ) ( )1t t ty f w f w −=  −  , 1t t ts w w −= − , 

1.t   By solving the residual of the secant equation, that is, 

2
1

t
t t

min y
s

 
− 

 
                            (4) 

The BB step size can be determined by 

( )21 /BB T
t t t ts s y =                        (5) 

The second form of BB step size, 

( ) 22 /BB T
t t t ts y y =                        (6) 

is obtained by solving 
2

t t tmin s y−                            (7) 

Generally speaking, Equation (5) often performs 

numerically better than Equation (6) in practice. Therefore, in 

this study, Equation (5) serves as the main starting point, and 

the variant step size is based on Equation (5). 

A new dynamic adaptive step size, named Positive Defined 

Stabilized Barzilai-Borwein (PDSBB) [11], has been 

developed based on modifications to the BB method to 

automatically calculate step sizes. The aim of the PDSBB is 

to address the issue that arises when the denominator of the 

BB step size approaches zero. The detailed description is as 

follows:  

TABLE I 
GAP ANALYSIS ON THE VARIANTS OF BB STEP SIZE  

Algorithm Author  
Step 

Size 

 

Denominator 

Approaching 

Zero 

Sensitivity 

to Initial 

Step Size 

Sample Size 

Requirement 

MSVRG-OSS 
Yang 
et al. 

OSS No Yes 
Relatively 

high 

mS2GD-RBB 
 Yang 

et al. 
RBB Yes No Minimal 

SVRG-SBB 
Ma et 

al. 
SBB No No Minimal 

MB-SARAH-RBB 
Yang 

et al. 
RBB Yes No Minimal 
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The first step is to calculate 

2

t
t T

t t

s

s y
 = , where 

( ) ( )1t t ty f w f w −=  −  and 1,t t ts w w −= −  1t  .  

Secondly, if the denominator is close to 0, compare T
t ts y  

to the given positive parameter ,  if T
t ts y  , and set 

1

0

1
 

t

t i

i
t

 
−

=

=  .  

In summary, that is, 

2

1

0

,

1
  ,

t T
t tT

t t
t

t
T

i t t

i

s
s y

s y

s y
t





 

−

=


 


= 







                         (8) 

IV. STOCHASTIC GRADIENT DESCENT WITH POSITIVE 

DEFINED STABILIZED BARZILAI-BORWEIN (SGD-PDSBB) 

METHOD 

The proposed PDSBB method was first integrated with 

SGD. Since SGD does not compute the full gradient 

( )F w , the PDSBB method has not been applied directly to 

SGD. In SGD, when uniform sampling is adopted, the 

stochastic gradient ( )
ti tf w  is an unbiased estimation for 

( )tF w . For further references on the importance of 

sampling and sampling procedures, the studies done by [21] 

and [22] can be referred to. Note that these studies did not 

utilize uniform sampling. Therefore, when computing the 

PDSBB step size using Equation (8), the estimation of 

( ) ( )
1 1t ti t i tf w f w

+ + −   was done using the expression 

( ) ( )1t tF w F w+ −  . However, due to the variance in 

stochastic gradient estimates, this method does not perform 

well. The study conducted in [23] introduced several 

variations for estimating a BB step size using stochastic 

gradients. However, these methods lack of theoretical 

justification, and numerical results have indicated that they 

are inferior to existing approaches such as averaged SGD 

[24]. The pseudo-code for the new SGD-PDSBB algorithm is 

described in Table II. 

A few remarks about SGD-PDSBB are noted below: 

1) The average of the stochastic gradients within one epoch 

for SGD-PDSBB is used as an estimation of the full 

gradient. 

2) Every m  iterations of SGD are referred to as an epoch. 

3) The step size generated by 

( ) ( )
2

1 1 12
/

T

k k k k k kw w w w g g− − −− − − may be close to 

zero or even negative. So, the following restriction is set. 

( ) ( )
2

1 1 12

1
/

T

k k k k k k kw w w w g g
m

 − − −= − − −  

the positive parameter  should not be too small. If the 

denominator of k  is smaller than  , choose 

1

0

1
k

k i

i
k

 
−

=

=   

to ensure that the step size remains within a reasonable range. 

4) To make sure the average of stochastic gradients kg  

close to ( )kF w , use  

( ) ( )1 11
tk i k kg f w g + +=  + −                 (9) 

to update 1kg +  recursively, starting from 1kg + = 0, where 

( )0,1   is a weighting parameter. 

SGD-PDSBB requires the average of stochastic gradients 

from two epochs to compute the PDSBB step size. 

Consequently, the step sizes for the first two epochs, 0  and 

1   , need to be determined. Numerical experiments indicate 

that the performance of SGD-PDSBB is not significantly 

affected by the selection of these initial step sizes.  

A.  Convergence Analysis for SGD-PDSBB Algorithm   

In the SGD-PDSBB algorithm, two important assumptions 

are made:  

Assumption 1: Equation (10) holds for any  ,tw  the 

objective function ( )F w  is  − strongly convex, which 

means, 

( ) ( ) ( ) ( )
2

2
, .

2
,

T dF v F w F w v w w v w v R


 +  − + −   

Assumption 2: The gradient of ( )if w  is L − Lipschitz 

continuous, that is, 

( ) ( )
22

 , , .d
i if w f v L w v w v R −   −    

It follows that ( )F w  is also L-Lipschitz continuous: 

TABLE II 

THE PSEUDO-CODE FOR THE SGD-PDSBB ALGORITHM 

Algorithm: SGD with PDSBB step size (SGD-PDSBB) 

Parameters: update frequency m , step size 0   and 1 , initial point 

0w , weighting parameter ( )0,1  , a small positive ε  

For 0,1,k = do 

      if 0,k   then 

( ) ( )
2

1 1 12

1
/

T
k k k k k k kw w w w g g

m
 − − −= − − −  

          if ( ) ( )1 1
T

k k k kw w g g − −− −   

k k =  

else 

1

0

1
k

k i

i
k

 

−

=

=   

end if 

      end if 

      0 kw w=  

      1 0kg + =  

      for 0,1, , 1t m= −  do 

             Randomly pick  1, ,ti n  

        ( )1 tt t k i tw w f w+ = −   

       ( ) ( )1 11
tk i t kg f w g + +=  + −  

      end for 

      1k mw w+ =  

end for 
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( ) ( ) 2 2
   F w F v L w v −   − ,   , dw v R  . 

In this study, 
ti

f  is often assumed to be an unbiased 

estimate of F , that is; 

( ) ( )     ti t t tE f w w F w  = 
 

                        (10) 

There are several important parameters of the algorithm, 

namely epoch 𝑘, initial step size 0  , positive parameter 𝜀, and 

regularization parameter   . The convergence performance 

was measured based on step size, sub-optimality, and 

accuracy. 

Following a similar approach to [8], the convergence of the 

proposed SGD-PDSBB algorithm is subsequently analyzed. 

The distance between 1kw +  to *w  is bounded.  

2
*

1
2

tE w w+ − ( )
2

*

2tt k i tE w f w w= −  −  

( ) ( )

( )

2
* *

2

2
2

2

2
t

t

T

t k t i t

k i t

E w w E w w f w

E f w





 
= − − −   

+ 

            

( ) ( ) ( )
2 2

* * 2

22
2

t

T

t k t t k i tE w w w w F w E f w = − − −  +   

( ( )
ti tE f w 

 
= ( )tF w ) 

( ) ( )
2 2

* 2

22
1 2

tk t k i tE w w E f w   − − +   

(Strong convexity of ( )F x ) 

( )

( ) ( ) ( )

2
*

2

2
2

2

1 2

t

k t

k i t t t

E w w

E f w F w F w

 



= − −

+  −  + 

( ) ( ) ( )
2 2

2 2 * 2

22
1 2

tk k t k i t tL E w w E f w F w    − + − +  − 

That is, 

( )

( ) ( )

2 2
* 2 2 *

1
2 2

22

2

1 2

t

t k k t

k i t t

A

B

E w w L E w w

E f w F w

  



+ −  − + −

+  − 

    (11) 

In Inequality     (11), part A represents the expected 

multiple of the distance from tw  to 
*w . Meanwhile, part B 

stands for a multiple of the variance in the gradient 

estimation. The next step demonstrates how part B affects the 

convergence rate. Reducing part B is a common method to 

accelerate convergence. 

By choosing 
2

1
 k

k T
k k

s

m s y
 =  or 

1

0

,
1 1

k

k i

i
m k

 
−

=

=   and 

using the strong convexity of ( )F w , the derivation of the 

upper bound for the PDSBB step size in SGD-PDSBB 

method is given by,   

( ) ( )

2

1

1 1

1 k k
k T

k k k k

w w

m w w g g


−

− −

−
= 

− −
 

2

1

2

1

1 k k

k k

w w

m w w

−

−

−
 

−

1

m
=  

or 
1

0

1 1 1 1 1
k

k i

i

k
m k m k m

 
 

−

=

=     = . 

Thus, it can be concluded that the upper bound of PDSBB 

step size is 
1

m
. Similarly, using the L − Lipschitz 

continuity of ( )F x , it is known that 
1

k
mL

  , then, 

Inequality     (11) can be presented as the following: 

( ) ( )

22 2
* *

1 2 22 2

2

2 2 2

2
1

1
t

t t

A

i t t

B

L
E w w w w

mL m

E f w F w
m







+

 
−  − + −  

 

+  − 

          (12) 

Note that item B in Inequality (12) is some kind of 

variance in gradient estimation, which can lead to a relatively 

slow convergence rate. However, in many machine learning 

applications, the actual convergence speed of the 

SGD-PDSBB algorithm may be somewhat faster. This is 

primarily because many applications do not require 

extremely high accuracy, and at the beginning, the variance is 

small, that is,    B A . As a result, an approximate Q-linear 

convergence rate can be observed. As the number of iteration 

steps increases, the variance gradually rises. Therefore, to 

obtain a relatively fast asymptotic convergence rate, many 

studies focus on reducing the variance term B  to accelerate 

convergence. In practice, using a BB-type step size often 

decreases the number of iterations required. In the next 

section, the performance of the newly introduced 

SGD-PDSBB algorithm is presented and discussed. 

B. Numerical Experiments for SGD-PDSBB Algorithm 

 The SGD-PDSBB is applied to address two standard 

testing problems, referred to as Support Vector Machine 

(SVM) and Logistic Regression (LR) in the context of 

machine learning. Subsequently, the new algorithm is 

evaluated using several standard real-world datasets, 

including real-sim, a9a, w8a, ijcnn1, and covtype.binary, all 

of which are obtained from the LIBSVM website. 

 MATLAB software was utilized to normalize the data, 

aiming to enhance the model's performance and stability. 

Data normalization involves proportionally scaling data to fit 

a specific range, typically  0,1  or  1,1− . This approach 

ensures that data from diverse features share similar scales, 

preventing certain features from exerting an excessively large 

influence on the model.   

To evaluate the performance of the SGD-PDSBB 

algorithm on specific problems, a series of numerical 

experiments were conducted. These experiments are aimed to 

verify the effectiveness of the SGD-PDSBB algorithm across 

different datasets and initial step sizes. This section validates 

the proposed PDSBB method and compares it to the 

deterministic SGD algorithm and the stochastic optimization 

algorithm SGD-BB through numerical experiments. 

Specifically, the following Support Vector Machine (SVM) 

with 2l -norm regularization model equation (13) was 
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utilized in the experiments.  

( ) ( )
2

2

2
1

1
 min 1

2d

n
T

i i
w R

i

P w b a w w
n



+
=

 = − +
           (13) 

The Logistic Regression model with 2l -norm 

regularization model, as follows: 

( ) ( ) 2

2
1

1
min log 1

2

n
T

i i
w

i

F w exp b a w w
n



=

 = + − +
      (14) 

are chosen. The ( )  , 1, 1 , 1, ,d
i ia b R i n  + − =  represents 

the feature vectors and corresponding feature labels. The 

symbol 0   is the regularization parameter. Meanwhile, 

each if  is convex and differentiable, and the function F , 

which is strongly convex, is assumed.  

Table III provides the datasets details of the computational 

experiments related to the models presented in Equation (13) 

and Equation (14). For the numerical experiments of this part, 

m n= , 0.8 = , 
510 −= , and 0 1 = , have been 

pre-specified. 

In the following subsections, the results of the algorithm in 

solving the SVM with 2l -norm regularization model, 

presented in Equation (13), and the Logistic Regression 

model with 2l -norm regularization model, presented in 

Equation (14), on various datasets with different initial step 

sizes are primarily presented. The performance of the 

SGD-PDSBB algorithm was evaluated based on three 

measures: step size, sub-optimality, and classification 

accuracy. 

C. Performance of SGD-PDSBB in solving model (13) 

i) Step Size  

The initial step size setting varies slightly across different 

datasets. For the real-sim, covtype.binary, and ijcnn1 datasets, 

three different initial step sizes, 0 1 0.1 = = , 1, and 10, 

were selected as shown in Figure 1 (a)-(d). Meanwhile, for 

the a9a dataset, the selected initial step sizes were 

0 1 0.01 = = , 0.1, and 1. In Figure 1 (a) and Figure 1 (c) , 

the solid lines represent 0 1 0.1 = = , the dashed lines 

represent 0 1 1 = = , and the dotted lines represent 

0 1 10 = = . Aside from this, in the second sub-figures, the 

solid line represents 0 1 0.1 = = , the dashed line represents 

0 1 1 = = , and the dotted line represents 0 1 0.01 = = . 

Figure 1 (a)-(d) illustrates the performance of the step size 

for SGD-PDSBB with different initial step sizes on the four 

selected datasets. In all four sub-figures, the x -axis 

corresponds to the number of epochs, representing the 

number of outer loops as stayed in Table II, and the y -axis 

stands for the step size.  

In Figure 1 (a)-(d), there is little variation in the results 

across different initial step sizes. This suggests that the new 

SGD-PDSBB algorithm is insensitive to the initial step size. 

The step size exhibits noticeably different behavior in the 

third sub-figure with the covtype.binary dataset compared to 

the other three datasets shown in Figure 1 (a)-(d). On the 

covtype.binary dataset, regardless of the initial step size, the 

step size converges to around 1.8 after several epochs. 

However, on the other three datasets, the step size appears 

more erratic, and demonstrated in subsequent comparison 

experiments with other algorithms, namely SGD and 

SGD-BB. 

ii) Sub-optimality 

Figure 2 (a)-(d) displays the sub-optimality of the 

SGD-PDSBB algorithm with different initial step sizes on 

four datasets: real-sim, a9a, covtype.binary, and ijcnn1. The 

x -axis represents the epoch, and the y -axis represents the 

sub-optimality *( ) ( )kF w F w− . The solid line represents the 

sub-optimality performance when 0 1 0.1 = =  is used. The 

dashed line indicates the sub-optimality when 0 1 1 = =  is 

used, and the dotted line denotes the sub-optimality when 

0 1 10 = =  is used. 

In Figure 2 (a)-(d), it can be observed that the 

sub-optimality performance varies across different datasets. 

For the ijcnn1  dataset, the sub-optimality reaches 810− , for 

the covtype.binary dataset, it reaches 
1010−

, while for the a9a 

dataset, it only reaches 
210−

. This suggests that the 

algorithm's performance is dataset dependent. However, it 

can be observed that the algorithm's sub-optimality 

performance on the same dataset does not differ significantly 

regardless of the initial step size chosen. This further 

indicates that the algorithm is insensitive to the choice of the 

initial step size. 

D. Performance of SGD-PDSBB in solving model (14)  

i) Step Size  

Similar to the experiment on model (13), the performance 

of the algorithm is also evaluated from the aspects of step size 

and suboptimality. The step size results of SGD-PDSBB in 

solving model (14) in four datasets with different initial step 

sizes are shown in Figure 3 (a)-(d). In this analysis, the initial 

step sizes were consistently set to 0 1 0.1,1, = =  and 10 on 

all four datasets.  

Figure 3 (a)-(d) shows that the step size does not converge 

to a fixed step size. However, it always increases to a positive 

value when the step size is close to zero. This suggests that 

the algorithm introduced in this paper effectively prevents the 

step size from approaching zero by controlling the 

denominator of the step size. On these four datasets, the 

performance of the step size is almost the same and shows 

some oscillations. For the ijcnn1 dataset, the performance is 

relatively stable when both 0   and 1  are set to 1. This 

TABLE III 
DATA AND MODEL INFORMATION OF THE EXPERIMENTS ON SGD-PDSBB  

Datasets n  d  λ  Solving Model 

real-sim 72,309 20958 410−  (13) and (14) 

a9a 32,561 123 410−  (13) and (14) 

covtype.binary 581,012 54 410−  (13) 

w8a 49,749 300 510−  (14) 

ijcnn1 49,990 22 410−  (13) and (14) 

Note: n  represents number of samples and d  represents data dimension 
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indicates that the algorithm performs slightly differently on 

different datasets. 

ii) Sub-optimality 

Figure 4 (a)-(d) shows the four-optimality results of the 

SGD-PDSBB algorithm in solving model (14) across four 

datasets with different initial step sizes. In Figure 4 (a)-(d), 

the initial step sizes are consistently set to 0 1 0.1 = = , 1 

and 10 for all four datasets.  

From the four sub-figures in this analysis, it can be 

observed that the SGD-PDSBB algorithm exhibits slightly 

varying degrees of sub-optimality across different datasets. 

For example, for the ijcnn1 dataset, the sub-optimality can 

reach 810−  after 30 epochs. In contrast, on other datasets, the 

sub-optimality only reaches 310− . Thus, the performance 

does not always achieve satisfactory precision. 

The effectiveness of the SGD-PDSBB algorithm depends 

on the particular model and datasets being used. In general, 

the SGD-PDSBB algorithm has been demonstrated to 

perform effectively for tasks where extremely high precision 

is not a critical requirement. Consequently, its stability and 

convergence behavior are typically considered satisfactory 

and acceptable. 

E. Comparison between SGD-PDSBB and both SGD and 

SGD-BB in solving model (13) 

In this subsection, this study compared the SGD-PDSBB 

algorithm with other algorithms (SGD and SGD-BB) in 

terms of step size, sub-optimality, and classification accuracy 

when solving model (13).  

i) Step size 

The datasets used in this study are real-sim, a9a, 

covtype.binary, and ijcnn1, with small difference in initial 

step size settings for each datasets. Detailed information on 

the initial step sizes is provided in Table IV.  

From the choice of initial step sizes, it can be observed that 

the initial step size for the SGD algorithm varies across 

different datasets. This variation is because during the 

numerical experiments, it was found that the algorithm SGD 

is sensitive to the initial step size, and different initial step 

size leads to different results. For example, on the real-sim 

and a9a datasets, an initial step size of 10 causes SGD to fail 

to converge and prevents it from computing the optimal value. 

Therefore, a relatively small initial step size was chosen for 

these two datasets. However, the SGD-BB and SGD-PDSBB 

algorithms are not sensitive to the choice of initial step size. 

In (a), (b), (c) and (d) of Figure 5, constant step sizes are 

represented by dotted lines. The step sizes for the SGD-BB 

and SGD-PDSBB algorithms are represented by solid lines. It 

should be noted that the choice of the initial step size is 

consistent in both Figure 5 (a)-(d) and Figure 6 (a)-(d) .  

From Figure 5 (c), it can be observed that on the 

covtype.binary dataset , both the SGD-BB and SGD-PDSBB 

algorithms converge to a step size of approximately 1.8. On 

the other three datasets, the step size did not converge to a 

specific value, which is consistent with the convergence 

analysis. However, Figure 5 (a), (b), and (d) also shows that 

on these three datasets, the step size of the SGD-BB 

algorithm dropped to  1010−  after 10 epochs. In contrast, the 

new SGD-PDSBB algorithm avoids this situation. Although 

the step size exhibits fluctuations, it generally stays within a 

relatively small range. As stated earlier, a step size that is too 

small can slow down the convergence of the algorithm and 

potentially lead to it getting stuck in a local optimum.  

ii) Sub-optimality 

Figure 6 (a)-(d) displays the sub-optimality results of the 

SGD, SGD-BB, and SGD-PDSBB algorithms on different 

datasets with varying initial step sizes when solving model 

(13). The results for the SGD algorithm are represented by 

dotted lines, the SGD-BB algorithm by dashed lines, and the 

SGD-PDSBB algorithm by solid lines. Different initial step 

sizes are consistent with the selection presented in Table IV. 

Specific details can be referred to in the legend of each 

sub-figure. 

Figure 6 (a)-(d) shows the sub-optimality results, 

indicating a significant difference in performance across 

datasets. The SGD-PDSBB algorithm achieves a 

sub-optimality of 
1010−

 on covtype.binary dataset, while its 

performance is the worst on the a9a dataset with a 

sub-optimality of only 
210−

 . The performance on the a9a 

dataset is the most stable in terms of sub-optimality, whereas 

the SGD-PDSBB algorithm exhibits the strongest 

oscillations on the covtype.binary dataset. All four 

sub-figures demonstrate that the SGD-BB and SGD-PDSBB 

algorithms achieve similar sub-optimality to SGD with a 

fixed step size of 1.   

As a whole, the performance of the SGD-PDSBB 

algorithm is better than that of the SGD and SGD-BB 

algorithms on the real-sim dataset. The performance of 

SGD-PDSBB algorithm is similar to SGD-BB and superior 

to SGD on the a9a and covtype.binary datasets. For the ijcnn1 

dataset, SGD-PDSBB algorithm outperforms SGD in both 

stability and sub-optimality aspects, although its stability is 

not as good as that of SGD-BB. 

iii) Classification Accuracy  

Table V, Table VI, Table VII and Table VIII present the 

 
TABLE IV 

INITIAL STEP SIZE IN ALGORITHM SGD, SGD-BB AND SGD-PDSBB  

Datasets SGD SGD-BB SGD-PDSBB 

real-sim 

0.01 0.1 0.1 

0.1 1 1 

1 10 10 

 0.1 0.1 0.1 

covtype.binary 1.8 1 1 

 10 10 10 

a9a 

0.001 0.01 0.01 

0.01 0.1 0.1 

0.1 1 1 

 0.1 0.1 0.1 

ijcnn1 1 1 1 

 10 10 10 
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classification accuracy of SGD, SGD-BB, and SGD-PDSBB 

algorithms on different datasets with varying initial step sizes 

at the end of 35 epochs. The SGD algorithm utilizes a fixed 

step size of  , while the SGD-BB and SGD-PDSBB 

algorithms utilize the BB step size and the PDSBB step size 

with 0 1 = . 

In general, the algorithms achieve reasonably good results 

on the real-sim and covtype.binary datasets which exceeds 

77% and 60%, respectively. The classification accuracy of 

the SGD-BB algorithm for the a9a dataset remained constant 

at 0, indicating that the SGD-BB algorithm cannot perform 

classification on this dataset. Based on the observation of the 

experimental procedure, the step size of the SGD-BB 

algorithm becomes very small, reaching 1010− , after 

approximately 10 steps. The program exits the loop, which 

indicates the failure of the SGD-BB algorithm, thus 

explaining why the accuracy is 0.0000. For all instances 

where the accuracy is 0.0000, repeated runs of the program 

show that after the SGD-BB algorithm fails, the accuracy is 

0.0000. However, the SGD-PDSBB algorithm effectively 

solves this problem by providing a stable adaptive step size 

whenever the step size becomes extremely small. Therefore, 

the new SGD-PDSBB algorithm proposed in this study has 

shown promising accuracy which exceeds 84%. The 

classification accuracy of SGD, SGD-BB, and SGD-PDSBB 

algorithms on the ijcnn1 dataset is poor, with values either at 

0 or below 10%. This is a relatively poor numerical result, 

and it is related to the inherent characteristics of the original 

SGD algorithm.  

F. Comparison between SGD-PDSBB and both SGD and 

SGD-BB in solving model (14)  

In this subsection, the SGD-PDSBB algorithm is 

compared to other algorithms (SGD, SGD-BB) in terms of 

step size, sub-optimality, and classification accuracy when 

solving model (14) on the datasets real-sim, a9a, w8a, and 

ijcnn1.  

i) Step size 

Figure 7 (a)-(d) presents a comparison of step sizes in the 

SGD-PDSBB, SGD-BB, and SGD algorithms. The figure 

includes four subplots, with the solid lines representing the 

SGD-PDSBB algorithm, dashed lines representing the 

SGD-BB algorithm, and dotted lines representing the SGD 

algorithm. For all four datasets, the initial step sizes of 0.1, 1, 

and 10 were consistently selected.  

The plot indicates that the step size of the SGD-BB 

algorithm dropped close to zero shortly after the initial few 

epochs, while the SGD-PDSBB algorithm maintains a 

consistent step size through all epochs. Whenever the step 

size approaches zero, the configuration of this algorithm 

ensures that the step size is set to the average of the step sizes 

from the previous k epochs. This prevents the algorithm 

from becoming ineffective due to excessively small step 

sizes. The figure demonstrates that the SGD-PDSBB 

algorithm effectively prevents the issues of ineffectiveness 

that can arise with the SGD-BB algorithm due to too small 

step sizes.  

 

TABLE V 

CLASSIFICATION ACCURACY FOR SGD, SGD-BB AND SGD-PDSBB IN 

SOLVING MODEL (13) ON REAL-SIM DATASET  

Algorithm  Step size η  
Step size 

0 1=η η  
Accuracy  

SGD 0.01  0.7513 

SGD-BB  0.1 0.7795 

SGD-PDSBB  0.1 0.7791 

SGD 0.1  0.7791 

SGD-BB  1 0.7789 

SGD-PDSBB  1 0.7791 

SGD 1  0.7700 

SGD-BB  10 0.7787 

SGD-PDSBB  10 0.7790 

 
 

TABLE VI 
CLASSIFICATION ACCURACY FOR SGD, SGD-BB AND SGD-PDSBB IN 

SOLVING MODEL (13) ON A9A DATASET 

Algorithm  Step size η  
Step size 

0 1=η η  
Accuracy  

SGD 0.001  0.8438 

SGD-BB  0.01 0.0000 

SGD-PDSBB  0.01 0.8460 

SGD 0.01  0.7936 

SGD-BB  0.1 0.0000 

SGD-PDSBB  0.1 0.8424 

SGD 0.1  0.8436 

SGD-BB  1 0.0000 

SGD-PDSBB  1 0.8444 

 

 

TABLE VII 

CLASSIFICATION ACCURACY FOR SGD, SGD-BB AND SGD-PDSBB IN 

SOLVING MODEL (13) ON COVTYPE.BINARY DATASET 

Algorithm  Step size η  
Step size 

0 1=η η  
Accuracy  

SGD 0.1  0.6044 

SGD-BB  0.1 0.6044 

SGD-PDSBB  0.1 0.6044 

SGD 1.8  0.6044 

SGD-BB  1 0.6044 

SGD-PDSBB  1 0.6044 

SGD 10  0.6044 

SGD-BB  10 0.6044 

SGD-PDSBB  10 0.6044 

 
 

TABLE VIII 

CLASSIFICATION ACCURACY FOR SGD, SGD-BB AND SGD-PDSBB IN 

SOLVING MODEL (13) ON IJCNN1 DATASET 

Algorithm  Step size η  
Step size 

0 1=η η  
Accuracy  

SGD 0.1  0.0960 

SGD-BB  0.1 0.0000 

SGD-PDSBB  0.1 0.0960 

SGD 1  0.0960 

SGD-BB  1 0.0000 

SGD-PDSBB  1 0.0960 

SGD 10  0.0960 

SGD-BB  10 0.0960 

SGD-PDSBB  10 0.0960 
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ii) Sub-optimality 

Figure 8 (a)-(d) presents a comparison of suboptimality 

performance between the SGD-PDSBB, SGD and SGD-BB 

algorithms on the real-sim, a9a, w8a, and ijcnn1 datasets 

using varying initial step sizes. The plots display the results 

of the SGD algorithm with dotted lines, the SGD-BB 

algorithm with dashed lines, and the SGD-PDSBB algorithm 

with solid lines. 

On the a9a dataset, it is observed that after 30 epochs, the 

efficacy of the SGD-BB algorithm diminishes, while the 

SGD-PDSBB algorithm continues to perform well. This 

indicates that the SGD-PDSBB algorithm improves upon the 

SGD-BB algorithm. When the SGD-BB algorithm fails in 

certain specific cases, the SGD-PDSBB algorithm maintains 

a consistent level of suboptimal. 

On the real-sim and ijcnn1 datasets, the SGD-PDSBB 

algorithm achieved comparable sub-optimality for the SGD 

algorithm with a step size of 1 = . Meanwhile, on the w8a 

dataset, the sub-optimality of the SGD-PDSBB algorithm 

exceeded both SGD and SGD-BB algorithms.  

In summary, the sub-optimality performance of the 

SGD-PDSBB algorithm is similar to the SGD and SGD-BB 

algorithms on certain datasets, while it outperforms them on 

others. 

iii) Classification Accuracy  

Table IX, Table X, Table XI, and Table XII display the 

classification accuracy of the SGD, SGD-BB, and 

SGD-PDSBB algorithms on the real-sim, a9a, w8a, and 

ijcnn1 datasets. The SGD algorithm used fixed step sizes of 

0.1, 1, and 10 during the runtime process, while 0 1 =  was 

implemented for the SGD-BB and SGD-PDSBB algorithms.  

It should be noted that accuracy varies across the different 

datasets. On the real-sim dataset, the three algorithms employ 

fixed or initial step sizes, achieving classification accuracy of 

approximately 77%. In the a9a dataset, the SGD-BB 

algorithm experiences a failure, resulting in a zero-accuracy 

score, while the SGD-PDSBB algorithm performs 

comparably or even superiorly to the SGD algorithm. The 

classification accuracy results of the three algorithms on the 

w8a dataset are relatively satisfactory with accuracy reaching 

about 99%. However, on the ijcnn1 dataset, the performance 

of all three algorithms is unsatisfactory, with accuracy less 

than 10%. The SGD-BB algorithm even completely fails with 

zero accuracy. This underscores the dependence of the 

numerical performance of SGD-type algorithms on the 

dataset. The SGD-PDSBB algorithm performs comparably 

better as compared to the SGD and SGD-BB algorithm.  

This analysis introduces the improved BB step size, known 

as the PDSBB step size, combined with the SGD step size to 

create a new algorithm called SGD-PDSBB. A theoretical 

analysis of the convergence of this new algorithm is 

presented, along with numerical experiments to demonstrate 

its effectiveness. Furthermore, comparisons are made with 

the SGD and the SGD-BB algorithms in terms of 

sub-optimality, step size, and classification accuracy in 

solving model (13) and model (14). Based on the numerical 

experiments, the proposed SGD-PDSBB algorithm 

demonstrates effectiveness with comparable or better 

performance in step size, sub-optimality, and classification 

accuracy in contrast to the original SGD and SGD-BB 

algorithms. In fact, it also achieved a more desirable outcome 

even in the case when the SGD-BB algorithm fails. 

 

TABLE XII 
CLASSIFICATION ACCURACY FOR SGD, SGD-BB AND SGD-PDSBB IN 

SOLVING MODEL (14) ON IJCNN1 DATASET 

Algorithm  Step size η  
Step size 

0 1=η η  
Accuracy  

SGD 0.1  0.0960 

SGD-BB  0.1 0.0960 

SGD-PDSBB  0.1 0.0960 

SGD 1  0.0960 

SGD-BB  1 0.0000 

SGD-PDSBB  1 0.0960 

SGD 10  0.0960 

SGD-BB  10 0.0000 

SGD-PDSBB  10 0.0960 

 

 

TABLE XI 
CLASSIFICATION ACCURACY FOR SGD, SGD-BB AND SGD-PDSBB IN 

SOLVING MODEL (14) ON W8A DATASET 

Algorithm  Step size η  
Step size 

0 1=η η  
Accuracy  

SGD 0.1  0.9920 

SGD-BB  0.1 0.9908 

SGD-PDSBB  0.1 0.9920 

SGD 1  0.9911 

SGD-BB  1 0.0677 

SGD-PDSBB  1 0.9922 

SGD 10  0.9806 

SGD-BB  10 0.9919 

SGD-PDSBB  10 0.9922 

 

 

TABLE X 
CLASSIFICATION ACCURACY FOR SGD, SGD-BB AND SGD-PDSBB IN 

SOLVING MODEL (14) ON A9A DATASET 

Algorithm  Step size η  
Step size 

0 1=η η  
Accuracy  

SGD 0.1  0.8498 

SGD-BB  0.1 0.0000 

SGD-PDSBB  0.1 0.8474 

SGD 1  0.8428 

SGD-BB  1 0.0000 

SGD-PDSBB  1 0.8491 

SGD 10  0.7369 

SGD-BB  10 0.0000 

SGD-PDSBB  10 0.8488 

 

 
TABLE IX 

CLASSIFICATION ACCURACY FOR SGD, SGD-BB AND SGD-PDSBB IN 

SOLVING MODEL (14) ON REAL-SIM DATASET 

Algorithm  Step size η  
Step size 

0 1=η η  
Accuracy  

SGD 0.1  0.7700 

SGD-BB  0.1 0.7694 

SGD-PDSBB  0.1 0.7702 

SGD 1  0.7707 

SGD-BB  1 0.7700 

SGD-PDSBB  1 0.7706 

SGD 10  0.7703 

SGD-BB  10 0.7708 

SGD-PDSBB  10 0.7703 
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V. CONCLUSION  

This study integrates the PDSBB method with the original 

SGD algorithm, resulting in a new algorithm named 

SGD-PDSBB. This study provides an analysis of the 

convergence properties of the SGD-PDSBB algorithm. It was 

found that its convergence is particularly sensitive to the 

variance of the stochastic gradients.  

Numerical experiments were conducted on optimization 

model (13) and (14) using five datasets, primarily 

demonstrating the algorithm’s performance in terms of step 

size and sub-optimality. Regarding step size, the 

SGD-PDSBB algorithm is found to be insensitive to the 

choice of initial step size. Concerning sub-optimality, the 

SGD-PDSBB algorithm exhibits varying performances 

across different datasets.  

Comparisons were made between the SGD-PDSBB, SGD 

and SGD-BB algorithms in terms of step size, sub-optimality, 

and classification accuracy, with different initial step sizes 

across various datasets. It is concluded that SGD-PDSBB is 

effective, insensitive to the choice of initial step size, and 

prevents excessively small step sizes. While the performance 

in terms of sub-optimality varies across datasets, 

SGD-PDSBB consistently outperforms the original SGD 

algorithm and achieves better or similar sub-optimality as

 compared to SGD-BB. In terms of classification accuracy, 

SGD, SGD-BB, and SGD-PDSBB show similar performance, 

with SGD-PDSBB outperforming SGD and SGD-BB on 

some datasets. Since SGD-BB shows zero accuracy in certain 

cases, suggest that SGD-PDSBB consistently maintains 

stable suboptimal performance. 

This study integrates a stabilized BB step size called 

PDSBB into the existing SGD algorithm, addressing the 

drawbacks of the original algorithms that used fixed or 

decreasing step sizes. Improvements were also made to the 

BB step size to prevent the denominator from approaching 

zero, thereby enhancing stability. The new proposed 

algorithm which is named SGD-PDSBB improves the 

stability issues that could arise when original algorithms 

employ BB step sizes. In addition, the convergence 

properties of the new algorithm, and the reasons for the 

unstable convergence of SGD-type algorithms are also 

analyzed.  

 

Data Availability Statement 

 The five actual standard data sets used in this study were 

obtained from the LIBSVM website, 

http://www.csie.ntu.edu.tw/~cjlin/libsvm

 
Fig. 1. Step Size Results of SGD-PDSBB for Model (13) 

(a). Results on the real-sim Dataset with Different Initial Step Sizes 

 

 
Fig. 1. Step Size Results of SGD-PDSBB for Model (13) 

(b). Results on the a9a Dataset with Different Initial Step Sizes 
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Fig. 1. Step Size Results of SGD-PDSBB for Model (13) 

(c). Results on the covtype.binaty Dataset with Different Initial Step Sizes 

 

 
Fig. 1. Step Size Results of SGD-PDSBB for Model (13) 

(d). Results on the ijcnn1 Dataset with Different Initial Step Sizes 

 
Fig. 2. Sub-Optimality Results of SGD-PDSBB for Model (13) 

(a). Results on the real-sim Dataset with Different Initial Step Sizes 
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Fig. 2. Sub-Optimality Results of SGD-PDSBB for Model (13) 

(b). Results on the a9a Dataset with Different Initial Step Sizes 

 

 
Fig. 2. Sub-Optimality Results of SGD-PDSBB for Model (13) 

(c). Results on the covtype.binary Dataset with Different Initial Step Sizes 
 

 
Fig. 2. Sub-Optimality Results of SGD-PDSBB for Model (13) 

(d). Results on the ijcnn1 Dataset with Different Initial Step Sizes 
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Fig. 3. Step Size Results of SGD-PDSBB for Model (14) 

(a). Results on the real-sim Dataset with Different Initial Step Sizes 

 

 
Fig. 3. Step Size Results of SGD-PDSBB for Model (14) 

(b). Results on the a9a Dataset with Different Initial Step Sizes 

 

 
Fig. 3. Step Size Results of SGD-PDSBB for Model (14) 

(c). Results on the w8a Dataset with Different Initial Step Sizes 
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Fig. 3. Step Size Results of SGD-PDSBB for Model (14) 

(d). Results on the ijcnn1 Dataset with Different Initial Step Sizes 

 
Fig. 4. Sub-Optimality Results of SGD-PDSBB for Model (14) 

(a). Results on the real-sim Dataset with Different Initial Step Sizes 

 

 
Fig. 4. Sub-Optimality Results of SGD-PDSBB for Model (14) 

(b). Results on the a9a Dataset with Different Initial Step Sizes 
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Fig. 4. Sub-Optimality Results of SGD-PDSBB for Model (14) 

(c). Results on the w8a Dataset with Different Initial Step Sizes 

 

 
Fig. 4. Sub-Optimality Results of SGD-PDSBB for Model (14) 

(d). Results on the ijcnn1 Dataset with Different Initial Step Sizes 

 

 
Fig. 5. Step Size Results of SGD-PDSBB, SGD-BB, and SGD for Model (13) Across Datasets 

(a). Results on the real-sim Dataset with Different Initial Step Sizes 
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Fig. 5. Step Size Results of SGD-PDSBB, SGD-BB, and SGD for Model (13) Across Datasets 

(b). Results on the a9a Dataset with Different Initial Step Sizes 

 

 
Fig. 5. Step Size Results of SGD-PDSBB, SGD-BB, and SGD for Model (13) Across Datasets 

(c). Results on the covtype.binary Dataset with Different Initial Step Sizes 

 

 
Fig. 5. Step Size Results of SGD-PDSBB, SGD-BB, and SGD for Model (13) Across Datasets 

(d). Results on the ijcnn1 Dataset with Different Initial Step Sizes 
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Fig. 6. Sub-Optimality Results of SGD-PDSBB, SGD-BB, and SGD for Model (13) Across Datasets 

(a). Results on the real-sim Dataset with Different Initial Step Sizes 

 

 
Fig. 6. Sub-Optimality Results of SGD-PDSBB, SGD-BB, and SGD for Model (13) Across Datasets 

(b). Results on the a9a Dataset with Different Initial Step Sizes 

 

 
Fig. 6. Sub-Optimality Results of SGD-PDSBB, SGD-BB, and SGD for Model (13) Across Datasets 

(c). Results on the covtype.binary Dataset with Different Initial Step Sizes 
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Fig. 6. Sub-Optimality Results of SGD-PDSBB, SGD-BB, and SGD for Model (13) Across Datasets 

(d). Results on the ijcnn1 Dataset with Different Initial Step Sizes 

 
 

 
Fig. 7. Step Size Results of SGD-PDSBB, SGD-BB, and SGD for Model (14) Across Datasets 

(a). Results on the real-sim Dataset with Different Initial Step Sizes 

 

 
Fig. 7. Step Size Results of SGD-PDSBB, SGD-BB, and SGD for Model (14) Across Datasets 

(b). Results on the a9a Dataset with Different Initial Step Sizes 
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(c). Results on the w8a Dataset with Different Initial Step Sizes 
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Fig. 8. Sub-Optimality Results of SGD-PDSBB, SGD-BB, and SGD for Model (14) Across Datasets 
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