
 

 

Abstract—Comprehension of spoken language is essential in 

dialog systems, as it supports two fundamental tasks: intent 

classification and slot filling. At present, federated modeling 

methodologies prevail in the domain of spoken language 

comprehension. Nevertheless, current models encounter 

constraints in accurately representing the interrelations among 

activities and utilizing cross-domain semantic data. This study 

introduces the Multi-Domain Graph-Enhanced Joint Intent and 

Slot Learning (MDG-JISL) paradigm to tackle these difficulties. 

MDG-JISL amalgamates a pre-trained BERT model with a self-

trained FastText model to create superior sentence-level and 

word-level representations. A syntactic dependency tree is 

employed to create graph structures among words, which are 

subsequently refined by the implementation of a Graph 

Convolutional Network (GCN) to more effectively capture 

relationship properties. A Conditional Random Field (CRF) 

model is utilized for decoding, enhancing the model's efficacy in 

natural language processing tasks. Experimental findings 

indicate that MDG-JISL attains remarkable performance on 

cross-domain datasets, with Slot(F1), Intent (Acc), and Overall 

(Acc) metrics of 98.7%, 98.4%, and 92.4%, respectively. The 

results validate the model's efficacy in intent classification and 

slot filling. 

 
Index Terms—Graph Convolutional Networks, Intent 

Recognition and Slot Filling, BERT, Feature Fusion, 

Dependency Syntax Analysis. 

I. INTRODUCTION 

 apid advancements and breakthroughs in artificial 

intelligence have facilitated the pervasive use of Natural 

Language Processing (NLP) technologies in daily life, 

particularly in interactive systems such as chatbots and voice 

assistants. Notable instances include Apple's Siri [1], 

Microsoft's Cortana [2], and Baidu's Xiaodu. These 

sophisticated human-computer dialogue systems exemplify 

fundamental elements of artificial intelligence and human-

computer interface technology. In these systems, Spoken 

Language Understanding (SLU) is essential for transforming 

users' natural language inputs into structured semantic data 

that computers can interpret, facilitating precise 

comprehension and replies to human communication. 

 SLU involves two core tasks: intent recognition  and slot 

labeling. Intent recognition aims to determine the user's 

purpose from their input, typically framed as a task involving 

sentence categorization. On the other hand, slot labeling 

focuses on identifying critical information from the text and 

assigning it to predefined categories, where each word is 

classified according to its corresponding semantic role. 

Therefore, slot labeling is generally viewed as a sequence 

annotation task. The effectiveness of these two subtasks 

directly impacts the accuracy and overall performance of the 

spoken language understanding system, significantly 

improving the user experience. Table I delineates the intent 

and slot details for the phrase “查看大棚的温度” (Verify the 

temperature inside the shed). 

TABLE I 

SENTENCE ANALYSIS TABLE 

sentence 查 看 大 棚 的 温 度 

slot O O B-Place I-Place O B-Item I-Item 

Intent Check the temperature 

Domain Agriculture 

 Traditional methods for the two sub-tasks of SLU often 

employ a distinct modeling approach. Intent classification 

encompasses conventional machine learning algorithms, 

including Support Vector Machine (SVM) [3] and Random 

Forest (RF) [4], alongside contemporary deep learning 

approaches such as Recurrent Neural Network (RNN) [5] and 

Bidirectional Long Short-Term Memory (BiLSTM) [6]. The 

primary methods for slot filling include the Hidden Markov 

Model (HMM) [7], Conditional Random Fields (CRF) [8], 

and Long Short-Term Memory (LSTM) networks [9]. 

Nevertheless, these algorithms frequently neglect the 

semantic relationships between the two tasks, failing to 

leverage shared information to improve overall performance 

[10]. Consequently, extensive research has aimed to integrate 

these activities into a unified framework. The initial efforts 

employed a three-layer CRF architecture that incorporated 

token features, slot labels, and intent labels, demonstrating 

the effectiveness of pipeline execution for these subtasks [11]. 

The emergence of deep learning has accelerated the 

development of collaborative models, leading to promising 

outcomes. Zhou et al. [12] presented a collaborative modeling 

approach utilizing a two-layer LSTM network. In this setup, 

the upper hidden layer corresponds to slot labels, while the 

lower layer represents intent labels. Additionally, they 

introduced a collaborative loss function exhibiting strong 

generalization properties. Zheng et al. [13] proposed 

employing a BiLSTM encoder-decoder for intent detection 

and semantic parsing in navigation dialogues, but distinct 
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losses are utilized for intent and slots. Liu et al. [14] 

introduced an RNN-LSTM model that employs a single loss 

function for both tasks, but its ability to generalize is limited 

because there is no direct connection between the two 

processes. Firdaus et al. [15] introduced a transformer-based 

multilingual multitasking model that does intent detection 

and slot filling in three languages with a shared phrase 

encoder. 

The recent integration of the pre-trained BERT model has 

led to significant advancements in SLU. Chen et al. [16] 

innovated the application of BERT for the simultaneous tasks 

of intent classification and slot filling, yielding substantial 

performance improvements. Guo et al. [17] further enhanced 

the approach by employing an attention mechanism to encode 

the hidden states of various sub-labels into context 

vectors.The context vectors are then input into the slot-filling 

encoder, addressing the problem of label length disparities 

caused by BERT's Word Piece implementation, which 

segments each input into many sub-labels. 

Owing to significant advancements in deep learning 

methodologies and their ability to evaluate complex language 

models and comprehend human language, researchers are 

increasingly employing these techniques for more 

sophisticated tasks. Graph neural networks (GNNs) have 

attracted considerable attention for their capacity to model the 

structural and relational properties of data, making them 

especially suitable for tasks such as intent classification and 

slot filling, which demand a comprehensive understanding of 

language and contextual connections. He et al. [18] proposed 

a unified approach that applies a Graph Convolutional 

Network (GCN) on a dependency tree to integrate syntactic 

structures, enabling the simultaneous learning of both intent 

detection and slot filling. For sentence dependency analysis, 

Tang et al. [19] combined a GCN with grammatical structural 

information, representing words as nodes in a graph and 

annotated grammatical relationships as the connecting edges. 

Wei et al. [20] proposed the Wheel-network Attention 

Network, which creates a network of intent and slot nodes, 

leveraging an attention mechanism to enhance the flow of 

information between these nodes. The integration of intent 

nodes enables the acquisition of discourse-level semantic data, 

crucial for slot filling, while the inclusion of slot nodes aids 

in retrieving keyword information relevant to intent, hence 

improving the overall effectiveness of SLU. 

A cross-domain model for slot filling and intent 

classification, named MDG-JISL, is proposed, leveraging the 

integration of associative information through a GCN. This 

work makes the following key contributions: 

(1) Annotated several Chinese datasets for semantic slot 

filling and intent classification across diverse domains and 

trained corresponding FastText models for each annotated 

domain. 

(2) In the fine-grained text embedding layer, sentence-level 

and word-level features are treated independently, facilitating 

a more nuanced treatment of each feature type. 

(3) By constructing a collocation matrix derived from 

phrase dependencies, the detailed features are fed into a GCN, 

which adeptly captures the intricate links among words in a 

sentence. This method significantly improves the 

effectiveness of intent recognition and slot filling tasks. 

Sophisticated decoding skills from CRF are utilized, leading 

to enhanced intent recognition and slot extraction accuracy. 

II. MDG-JISL 

The MDG-JISL model is structured into three key 

components: the basic feature extraction module, the module 

that integrates contextual information for feature extraction, 

and the label representation module. The total structure is 

illustrated in Fig. 1. The model initially extracts sentence-

level and word-level features independently, subsequently 

integrating them to establish the model's fundamental 

features. Subsequently, it analyzes the syntactic dependency 

structures of the sentences, constructs an adjacency matrix, 

and feeds this matrix along with the basic features into a 

graph convolutional network for feature representation. The 

derived feature vectors are fed into the output layer for 

decoding, resulting in the intent categorization of the input 

sentence and the identification of word slots. 

A. Basic Feature Extraction Module 

This module utilizes the BERT model to derive sentence-

level representations, emphasizing the complex meaning-

related relationships embedded in intricate sentence 

structures. Subsequently, the FastText word vector method is 

employed to encode word-level feature vectors. The word 

vectors are input into a BiLSTM, which produces an 

improved representation that augments the comprehension of 

contextual interdependencies across words. The sentence-

level and word-level properties are ultimately merged as the 

fundamental components of the model. 

a) Word-level feature-based embedding 

During the feature selection phase, FastText is employed 

to generate word vector representations. This popular word 

embedding method is distinguished by its ability to model the 

internal composition of words using n-gram features [21]. 

During the slot filling process, FastText employs n-gram 

features to capture word morphology, hence enabling the 

efficient handling of atypical words and variations in word 

forms. In intent classification, FastText's word vectors 

provide comprehensive global semantic information, aiding 

in the comprehension of the sentence's overall meaning and 

its classification into predefined intents. 

b) BiLSTM 

The BiLSTM network is a modification of the LSTM 

architecture that acquires information in both forward and 

backward directions within sequential data, hence improving 

the comprehension of long-term dependencies [22]. By 

analyzing data sequences bidirectionally, BiLSTM 

successfully alleviates the gradient vanishing and exploding 

issues typically encountered by conventional recurrent neural 

networks. In intent classification, BiLSTM effectively 

captures the contextual information inherent in the sequence 

by examining the complete user utterance. BiLSTM 

effectively collects essential information from user input for 

slot filling and assigns it to the appropriate slots via its 

bidirectional comprehension of sequential data. For a given 

input vector 𝑣𝑖 , the BiLSTM output ℎ𝑏𝑖−𝑙𝑠𝑡𝑚  is obtained 

according to the following equation: 

𝑖𝑡 = σ(𝑊𝑖[𝑣𝑖; ℎ𝑡−1] + 𝑏𝑖) (1) 
𝑓𝑡 = 𝜎(𝑊𝑓[𝑣𝑖 ; ℎ𝑡−1] + 𝑏𝑓) (2) 

𝑜𝑡 = 𝜎(𝑊𝑜[𝑣𝑖; ℎ𝑡−1] + 𝑏𝑜) (3) 
𝑐̃ = tanh(𝑊𝑐[𝑣𝑖; ℎ𝑡−1] + 𝑏𝑐) (4) 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐̃ (5) 
ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝑐𝑡) (6) 
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Fig. 1. Model Architecture Diagram 

 

ℎ𝑏𝑖−𝑙𝑠𝑡𝑚 = ℎ𝑡
⃗⃗  ⃗ + ℎ𝑡

⃖⃗ ⃗⃗  (7) 

In this context, “σ” denotes the sigmoid function, evaluated 

elementwise to ascertain the extent of information flow. The  

“*” symbol signifies element-wise multiplication. During 

each time step t, the input vector is denoted as 𝑣𝑖, while  ℎ𝑡 

signifies the hidden vector that defines the current state. The 

weight matrices 𝑊𝑖 ,𝑊𝑓 ,𝑊𝑜,𝑊𝑐  and the bias terms 

𝑏𝑖 , 𝑏𝑓 , 𝑏𝑜, 𝑏𝑐  are parameters acquired through the optimization 

process. The hidden state ℎ𝑡
⃗⃗  ⃗  is produced by the forward 

LSTM, whereas  ℎ𝑡
⃖⃗ ⃗⃗ ⃗ is generated by the reverse LSTM.  

c) Sentence-level feature-based embedding 

BERT is a deep learning model built upon a multilayer 

bidirectional Transformer encoder [23]. The core operation 

relies on a multi-head self-attention mechanism combined 

with linear transformations, enhanced by residual 

connections. This architecture allows BERT to obtain 

extensive contextual information from textual data. BERT's 

inputs comprise three categories: word embeddings generated 

by the Word-Piece algorithm, segment embeddings 

indicating separate text sections, and positional embeddings 

that represent the word sequence. The model undergoes 

preliminary training on a vast, unlabeled text corpus to 

capture general linguistic patterns, making it highly versatile 

for different text processing tasks. In text categorization, 

BERT employs a [CLS] token at the start of the input, and the 

corresponding output vector acts as a representative feature 

for the entire input sequence. BERT utilizes [SEP] tokens to 

distinguish between two sentences and assigns separate 

segment embeddings to each. In sequence labeling tasks, 

BERT utilizes the output vectors of each word position, 

ensuring an exhaustive representation of each word's 

semantics within its context. Fig. 2 illustrates a schematic 

representation of the model's architecture. 

d) Feature Fusion 

 This paper proposes a multi-tiered feature representation 

that amalgamates sentence-level and word-level data. Fig. 3 

illustrates the process. The input sentences are first 

segmented using Spacy to enable the extraction of word-level 

features. Subsequently, each word is vectorized using a self-

trained FastText model, and the resulting word vectors are 

input into a BiLSTM network to generate word embeddings.  

The BERT model simultaneously analyzes the entire text to 

generate sentence-level embeddings. The word embeddings 

and sentence embeddings are ultimately combined at the    
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Fig. 2 Input Representations of BERT 

 

feature level, yielding a comprehensive representation that 

includes both specific word-level details and the broader 

semantic context of the phrase. 

 
Fig. 3 Feature Fusion Diagram 

B. Feature Extraction Module Fusing Associative 

Information 

In the initial phase of text feature extraction, the 

significance of syntactic information has been inadequately 

recognized, despite employing the BERT model to capture 

global semantic attributes at the sentence level and the self-

trained FastText model to acquire nuanced word-level 

information. Syntactic information is essential for language 

comprehension, as it accurately delineates the text's structure 

and the relationships among words, which are vital for 

elucidating sentence structure and constituent relationships. 

Consequently, it is evident that examining word interactions 

is crucial for attaining a deep comprehension of sentence 

objectives and slot relationships. This work presents an 

innovative approach to enhance feature representation and 

expand the model's understanding of language structure by 

using the dependent syntactic structure of sentences as 

supplementary information. This methodology is expected to  

significantly improve the model's ability to process complex 

linguistic structures, hence enhancing overall text 

comprehension. 

a) Associative Information via Dependency Syntax 

The LTP tool was utilized in this research to create 

comprehensive dependency analysis graph. Fig. 4 illustrates 

the dependency analysis tree produced form the phrase “关闭

大棚的传感器和灯光” (turning off the sensors and lighting 

in the greenhouse). 

 

 
Fig. 4 Dependency Syntax Tree 

The graph is represented by an n × n adjacency matrix, A, 

where 𝐴𝑖𝑗=1 signifies the existence of an edge from word 𝑋𝑖 

to word 𝑋𝑗 . Fig. 5 illustrates the adjacency matrix that 

delineates the relationships among the terms in the phrase. 

 
Fig. 5 Neighborhood Matrix Diagram 

 

b) GCN-based feature representation 

Graph Convolutional Networks (GCNs) have garnered 

significant attention for their effectiveness in encoding 

graphical structural information [24]. GCNs excel in 

capturing syntactic and semantic relationships among words, 

hence facilitating the modeling of complex linguistic 

structures. In intention classification, GCNs excel in 
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understanding and representing intricate relationships among 

words. GCNs have a robust capacity to encode structural 

information, facilitating the precise identification of 

nonlinear relationships between words for enhanced slot 

filling accuracy. By constructing an adjacency matrix that 

represents sentence dependencies and integrating 

comprehensive fundamental features into the GCN, GCNs 

enhance the representation of intricate word relationships 

within sentences, thereby improving the performance of 

intent recognition and slot extraction tasks. 

 GCN enhances the representation of each node by 

integrating neighboring information through operations 

performed on the graph. This process is shown in Fig. 6. The 

input channels of the GCN are denoted by I, signifying the 

dimensionality of the feature vector for each node 𝑋𝑖 . The 

number of output channels is represented as O, according to 

the dimension of the updated node representation 𝐻𝑖 . The 

label 𝑌𝑖  of each node is finally forecasted based on these 

parameters. 

 

 
Fig. 6 GCN Model Diagram 

 

In the L-layer GCN, the input vector is represented as 

ℎ𝑖
(𝑙−1)

 and the output vector as ℎ𝑖
(𝑙)

, where i signifies the ith 

node and l indicates the lth layer, it may be derived. 

ℎ𝑖
(𝑙) = σ(∑𝐴𝑖𝑗̃𝑊

(𝑙)ℎ𝑗
(𝑙−1)

/𝑑𝑖

𝑛

𝑗=1

+ 𝑏(𝑙)) (8) 

𝐴𝑖𝑗̃ = 𝐴𝑖𝑗 +  𝐸 (9) 
where 𝑑𝑖  denotes the degree of the vertices, 𝐴𝑖𝑗 represents 

the adjacency matrix, 𝐸  signifies the identity matrix, 𝑊(𝑙) 

indicates a linear transformation, 𝑏(𝑙) refers to a bias term, 

and σ is a nonlinear function. 

C. Label Representation Module 

In the label representation module, the output of the GCN, 

represented as a vector with dimensions [V, E] (where V 

signifies the number of nodes and E indicates the hidden 

dimension), is first converted into a vector with dimensions 

[batchsize, max_qen, hidden_side] via the fully connected 

layer, thereby preparing it for the CRF layer [25]. The 

procedure for conversion is outlined as follows: 

ℎ𝑓𝑐 = 𝑊𝑓𝑐 ∙ ℎ𝑔𝑐𝑛 + 𝑏𝑓𝑐  (10) 

where ℎ𝑔𝑐𝑛is the output of the GCN, 𝑊𝑓𝑐 and 𝑏𝑓𝑐 are the 

weights and biases of the fully connected layer, and ℎ𝑓𝑐 is the 

output of the fully connected layer. 

A CRF layer is subsequently established to anticipate the 

label of each slot and the aim of the entire sequence 

depending on the input feature vector. 

𝑃(𝑦|𝑥) =
1

𝑍(𝑥)
exp (∑𝜃𝑖𝑓𝑖(𝑦−1, 𝑦, 𝑥𝑖)

𝑛

𝑖=1

) (11) 

In this case, Z(x) represents the normalization factor, while 

𝜃𝑖  is the weight parameter associated with the feature 

function.  

For slot filling, the parameters [batchsize, max_qen, 

hidden_sides] function as inputs to the CRF, which is 

responsible for predicting a label for each slot. For intent 

classification, the input to the CRF is represented by the 

dimension [batchsize, hidden_size], facilitating the CRF 

component in determining the intent for the full sequence. 

III. EXPERIMENT AND RESULT ANALYSIS 

A. Dataset Labeling 

A dataset consisting of five domains was annotated with a 

total of 1,500 samples, including several everyday tasks such 

as agriculture, music, health, meal, and travel. The collection 

has five domains, each including unique intentions and 

corresponding phrase examples. Additionally, the keyword 

slots corresponding to each intent have been designated (for 

further information, please consult Table Ⅱ). The dataset was 

split into two subsets: 1,050 samples for model training and 

450 samples for evaluating performance. 

B. Evaluation Metrics 

In this experiment, the semantic Slot F1 value is adopted 

as the evaluation index for the slot filling task, as in Eq.12 

𝑆𝑙𝑜𝑡(𝐹1) =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 （12） 

Where Precision is the proportion of identified positive 

instances that are actually positive, while Recall is the 

proportion of true positive instances that are correctly 

identified by the model. 

Intent Accuracy (Intent Acc) as a metric for the intent 

recognition task is formulated as follows. 

𝐼𝑛𝑡𝑒𝑛𝑡(𝐴𝑐𝑐) =
𝑁𝐴𝑐𝑐−𝑖𝑛𝑡𝑒𝑛𝑡

𝑁𝑎𝑙𝑙−𝑖𝑛𝑡𝑒𝑛𝑡

 (13) 

Where 𝑁𝐴𝑐𝑐−𝑖𝑛𝑡𝑒𝑛𝑡 d represents the quantity of correctly 

predicted intents， and 𝑁 𝑎𝑙𝑙−𝑖𝑛𝑡𝑒𝑛𝑡 denotes the quantity of all 

predicted intents. 

Overall (Acc), as an evaluation metric for sentence-level 

semantic frames, is formulated as follows. 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙(𝐴𝑐𝑐) =
𝑁𝐴𝑐𝑐−𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

𝑁𝑎𝑙𝑙−𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

 (14) 

Where  𝑁𝐴𝑐𝑐−𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒  indicates the amount of correctly 

identified sentences, and 𝑁 𝑎𝑙𝑙−𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒  denotes the amount 

of all identified sentence. 

C. Parameter Setting 

A range of feature extraction and fusion methodologies is 

utilized to enhance performance. Word-level attributes are 

derived using 300-dimensional word vectors trained using the 

FastText algorithm and subsequently fed into a BiLSTM to 

capture the contextual interactions among words. Features at 

the sentence level are obtained from the vectors generated by 

BERT, which represent the overall semantics of the sentences. 

In the initial stage, feature extraction is carried out using an 

LSTM network, which consists of 128 neurons in each layer 

to capture sequential dependencies. During the fusion phase, 

a three-layer graph convolutional network (GCN) is 

employed to integrate structural information, generating an 

output representation with a dimension of 64 to enhance 

feature learning and representation. The Adam optimizer is 

employed for model training, with a learning rate of 0.001 

and a decay factor set at 0.9.
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TABLE Ⅱ 

 DATA SET LABELING (PARTIAL) 

Domain Intent Quantity Sentences Slots 

Agriculture 

Check the 
temperature 

100 

请告诉我现在大棚的温度。 
(Please let me know the temperature of the shed 

right now.) 

{Date: 现在, Place: 大棚} 

Check prices 100 

我想了解最新的玉米和大豆的市场价格。 

（I would like to know the latest market prices for 

corn and soybeans. ） 

{Product 1: 玉米, Product 2: 大豆} 

Unpack 100 

启动自动化采摘机器，收割成熟的水果和蔬菜。 

（Start the automated picking machine to harvest 

ripe fruits and vegetables. ） 

{Operation: 启动, Object: 自动化采摘机器, 

Target: 成熟的水果和蔬菜} 

Music 

Play music 100 
请播放周杰伦的《七里香》并循环播放 

(Please play Jay Chou’s “Seven Miles” and loop it). 

{Singer: 周杰伦, Song: 七里香, Play mode: 

循环播放} 

Search for songs 100 
我想找一些适合跑步时听的动感音乐。 

(I’d like to find some dynamic music for running). 
{Occasion: 跑步, Type of music: 动感} 

Collection of 

songs 
100 

将《爱在西元前》添加到我的收藏夹中 
(Add “Love Before the Western Era” to my 

favorites) 

{Song: 爱在西元前, Operation: 添加} 

Health 

Make an 

appointment to 

register 

100 

我想预约下周三下午三点的北京协和医院皮肤科

专家号。 
(I would like to make an appointment with a 

dermatologist at Peking Union Medical College 
Hospital next Wednesday at 3pm.) 

{Date: 下周三, Time: 下午三点, Location: 

北京协和医院, Department: 皮肤科} 

Inquire about 
symptoms 

100 

最近总是头疼，伴随着恶心，可能是什么原因？ 
(Recently, I always have a headache accompanied 

by nausea, what could be the cause?) 

{Symptom 1: 头疼, Symptom 2: 恶心} 

Purchase 

medications 
100 

我需要购买一盒感冒药和两瓶维生素C。 
(I need to buy a box of cold medicine and two 

bottles of vitamin C.) 

{Medicine 1: 感冒药, Quantity 1: 一盒, 

Medicine 2: 维生素C, Quantity 2: 两瓶} 

Meal 

Ordering food 100 

我想要一份麻婆豆腐，两碗米饭，还有一瓶可

乐。 

(I would like an order of Mapo Tofu, two bowls of 

rice, and a bottle of Coke.) 

{Dish 1: 麻婆豆腐, Quantity 1: 一份, 

Additional 1: 米饭, Quantity 2: 两碗, 

Additional 2: 可乐, Quantity 3: 一瓶} 

Query the menu 100 

能否提供一下你们餐厅的特色菜单和价格列表？ 
(Can you provide a list of your restaurant’s 

specialty menus and prices?) 

{Object of enquiry: 特色菜单, Type of 

information: 价格列表} 

Feedback 

comments 
100 

我对上次点的宫保鸡丁非常满意，味道很正宗。 
(I was very satisfied with the Kung Pao Chicken I 

ordered last time, it tasted very authentic.) 

{Dish: 宫保鸡丁, Rating: 非常满意, 

Description: 味道很正宗} 

Travel 

Inquire about 

attractions 
100 

北京有哪些著名的旅游景点？ 
(What are the famous tourist attractions in Beijing?) {Location: 北京, Type: 旅游景点} 

Book a hotel 100 
我想预订一间上海的双人间。 

(I would like to book a double room in Shanghai.) 
{Location: 上海, Room type: 双人间} 

Itinerary planning 100 

我打算下个月去云南旅游，能帮我规划一下五天

四夜的行程吗？ 
(I am planning to travel to Yunnan next month, can 
you help me plan a 5 days and 4 nights itinerary?) 

{Time: 下个月, Location: 云南, Duration: 五

天四夜} 

D. Training the word vector FastText 

Initially, the labeled cross-domain Chinese dataset was 

processed for word segmentation in this experiment. The 

processed textual data served as input for training the 

FastText model to produce word vectors. The skip-gram 

model was employed for training, with the model's essential 

parameters configured as follows: The vector dimension was 

set to 300, with a context window size of 5, the amount of 

training iterations was 10 to adequately facilitate the model's 

learning of contextual information and vector representations 

of the vocabulary, and the minimum word frequency was 

established at 1 to guarantee the inclusion and effective 

training of all vocabulary words in the dataset. After the 

training is completed, the model's efficacy is assessed 

through nearest-neighbor lexical analysis and inter-lexical 

similarity computation for designated terms, evaluating how 

well the model captures semantic relationships. Table Ⅲ 

presents the specific evaluation results, alongside the 

corresponding lexical similarity analysis, offering detailed 

insights into model performance. 

 
TABLE Ⅲ 

FEXTTEXT EFFECTIVENESS EVALUATION FORM 

proximity and similarity 

玉米 
(0.9997599720，

小麦) 

(0.9988487708，

大豆) 

(0.9941645447，

高粱) 

七里香 
(0.9997599895，

青花瓷) 

(0.9997599720，

夜曲) 

(0.9997599795，

晴天) 

头疼 
(0.9963153206，

眼睛疲劳) 

(0.9962143207，

颈椎痛) 

(0.9963143213，

胃疼) 

臭豆腐 
(0.9973453204，

麻辣烫) 

(0.9964553212，

烤串） 

(0.9963153138，

粽子) 

双人间 
(0.9993153207，

单人间) 

(0.9992153206，

标准间) 

(0.9973153204，

豪华套房) 

 

Analysis of Experimental Results: As indicated in Table III, 

we selected one term from each of the five distinct domains: 

"玉米" (corn), "七里香" (a song title), "头疼" (headache), "

臭豆腐 " (stinky tofu), and "双人间 " (double room) to 

examine the similarity of their associated terms in detail. The 

findings reveal that the similarity between these words and 
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their associated terms exceeds 0.99, strongly indicating that 

our trained word vector model exhibits exceptional 

performance.  

E. Ablation Experiment 

A set of comparative experiments was conducted to assess 

the effectiveness of the MDG-JISL model and to examine the 

importance of its individual components through ablation 

studies. The specifics of the experimental design are outlined 

in the subsequent section. 

FastText Baseline Experiment: This experiment uses 

exclusively self-trained FastText to generate word-level 

representations, which are subsequently fed into a conditional 

random field for classification. This baseline model illustrates 

the efficacy of a straightforward text representation and 

classification method that eschews the use of complex 

network topologies. 

Integration of FastText and BiLSTM: A word-level vector 

representation is obtained from the FastText Baseline. 

Subsequently, the aforementioned representation is fed into a 

BiLSTM, yielding a more extensive input for the conditional 

random field classification. 

BERT Baseline Experiment: The BERT model is utilized 

for the direct extraction of textual features, which are then 

input into a conditional random field for classification. 

Combining FastText and BERT: Integrates textual 

attributes obtained from BERT with those acquired from 

FastText and BiLSTM, which function as the primary 

features employed in the CRF for categorization. 

Our Model: The vectors produced by FastText-trained 

word embeddings and those obtained from BERT are 

combined to form the essential features. Thereafter, the 

aforementioned features are transmitted to the GCN, which 

generates supplementary features for classification utilizing 

the adjacency matrices of the designated vectors and words. 

 
TABLE Ⅳ 

TABLE OF ABLATION EXPERIMENT RESULTS 

No. method 
Slot 

(F1)/% 
Intent 

(Acc)/% 
Overall 
(Acc)/% 

1 
FastText Baseline 

Experiment 
73.2 75.8 69.2 

2 
Integration of 

FastText and Bi-

LSTM 

78.3 77.6 71.1 

3 
BERT Baseline 

Experiment 
95.1 96.4 87.2 

4 
Combining 

FastText and 

BERT 

96.7 97.8 88.9 

5 our model 98.7 98.4 92.4 

 

The effectiveness of five methods was assessed utilizing 

the dataset, with the results presented in Table IV. A 

comparative analysis of the experimental findings reveals that 

the distinction between Experiment 1 and Experiment 2 

pertains to the inclusion or exclusion of a BiLSTM layer. For 

the test set, Slot (F1) improved by 4.9 percentage points, 

Intent (Acc) by 1.8, and Overall (Acc) by 1.9, indicating that 

the BiLSTM layer effectively captures bidirectional 

information across words and considerably enhances the SLU 

task. Experiment 4 contrasts with Experiment 3 in that its 

input CRF features are derived from the features obtained in 

Experiments 2 and 3. The improvements are clearly evident 

in the measures for slot (F1), intent (Acc), and overall 

accuracy (Acc). The aforementioned improvements were 1.6, 

1.4, and 1.7 percentage points, respectively. This illustrates 

the benefits of the BERT pre-trained model in encoding 

efficiency and highlights the significance of word-level 

characteristics in semantic understanding tests. In 

Experiment 5, the GCN layer was executed in accordance 

with the findings of Experiment 4. The important elements 

derived from the examination of dependent syntactic relations 

were used to generate the collocation matrix. The results of 

Experiment 4 were later included into the GCN layer, which 

was applied to optimize the performance in the relevant 

categories. The accuracy rates increased by 2.0, 0.6, and 3.5 

percentage points, respectively. This demonstrates the GCN's 

capability in extracting and employing features inside the 

graph, hence affirming the efficacy of the MDG-JISL model. 

F. Comparison experiments with different word vectors 

This study conducts a comparative examination of three 

word embedding models—FastText, Word2Vec, and 

GloVe—to demonstrate the advantages of FastText in word 

vector extraction, with results presented in Table Ⅴ. The 

experimental results show that FastText achieves 

improvements of 6.6, 5.4, and 3.1 in the Slot (F1), Intent 

(Acc), and Overall (Acc) metrics compared to GloVe, and 

demonstrates gains of 6.2, 6.5, and 3.5 in these metrics when 

compared to Word2Vec.FastText employs subword n-gram 

modeling to effectively manage atypical and unregistered 

words, resulting in improved performance in intent 

classification and slot filling tasks. In contrast, Word2Vec 

depends on the context window to produce word vectors, 

which struggles with intricate variations in word forms, hence 

impacting the precision of intent categorization. Although 

GloVe effectively collects global word co-occurrence data, 

its performance in slot filling tasks is inferior to that of 

FastText since it cannot evaluate subwords. 

 
TABLE Ⅴ  

COMPARISON OF WORD-LEVEL EMBEDDING MODELS 

method Slot(F1)/% Intent (Acc)/% Overall (Acc)/% 

Word2Vec 92.5 91.9 88.9 

GloVe 93.1 93.0 89.3 

FastText 98.7 98.4 92.4 

 

G. Comparison Experiments Different Graph 

Convolutional Layers 

The optimal number of GCN layers for achieving the most 

efficient model is determined by assigning a value between 1 

and 5 to each layer. The corresponding Slot (F1), Intent (Acc), 

and Overall (Acc) for different GCN layer numbers are 

shown in Fig. 7. 

The results are meticulously examined, and it is widely 

acknowledged that the addition of network layers reduces 

error and enhances accuracy. Consequently, this results in a 

more complex network, thereby extending the training period 

and increasing the likelihood of overfitting. This study 

examines dependent syntactic parsing, which uses a binary 

system (0 or 1) to define the relationship between two words. 

This is insufficient for the purpose of intent categorization 

with slot filling. Analysis of Fig.7, alongside the previously 

presented data reveals that the model demonstrates enhanced 

performance in the Slot (F1), Intent (Acc), and Overall (Acc) 

metrics when the convolution layers are set to 3. This 

indicates that this configuration is optimal for the present task, 

yielding the highest performance. 
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Fig. 7 Comparison of Different GCN Layers 

 

TABLE VI  
COMPARISON OF DIFFERENT BASELINE 

Models 
Slot(F1)/% Intent (Acc)/% Overall (Acc)/% 

Ours ATIS SNIPS Ours ATIS SNIPS Ours ATIS SNIPS 

Attention BIRNN 94.1 94.1 87.6 91.2 91.3 96.3 78.8 78.3 74.4 

Slot-Gated 94.5 95.2 89.0 93.2 95.3 97.4 82.1 84.9 75.1 
Joint BERT 96.1 96.0 96.8 92.6 96.8 97.8 88.1 88.3 92.8 

SASGBC 96.5 96.8 96.3 97.4 98.1 97.8 90.4 91.6 91.1 

Task Conditioned BERT 95.9 96.3 94.7 97.2 97.7 98.0 90.3 87.1 87.3 
Co-transformers 96.1 96.5 94.8 97.3 97.8 98.2 90.7 90.2 91.5 

our model 98.7 98.4 96.9 98.4 98.7 98.8 92.4 92.5 92.6 

 

H. Comparison Experiments of Different Models 

This part provides a comparison of the MDG-JISL model 

against several baselines, as elaborated in the subsequent 

paragraphs. 

Attention BIRNN [26]: The architecture combines a RNN 

encoder-decoder with an attention mechanism based on the 

encoder's hidden state. 

Slot-gated [27]: Integrated within the architectural design 

is a dedicated gate control unit in the LSTM framework, 

utilizing contextual intent vectors to convey the interactions 

between slots and intents. 

SASGBC [28]: Incorporated as an encoder is BERT, 

which leverages the semantic associations between slots and 

intents through a pick-and-pass mechanism, a method for 

selecting and transmitting information. 

Co-interactive transformer [29]: The architectural design 

employs a synergistic interaction transformer, which 

proposes a synergistic interaction module that establishes a 

bidirectional connection between two tasks in order to 

account for cross-influences. 

Task Conditioned BERT [30]: A unified model based on 

BERT, trained on multiple tasks with augmented inputs, is 

put forth as a means of tuning the model for target inference. 

Table VI illustrates that the MDG-JISL model presented in 

this paper surpasses all baseline models on every criterion. 

The MDG-JISL model demonstrates enhancements of 1.6, 

1.1, and 1.7 percentage points in the Slot (F1), Intent (Acc), 

and Overall (Acc) metrics, respectively, compared to the 

existing ideal baseline model in the labeled dataset. The 

experimental results further corroborate the model's efficacy 

in utilizing graph convolutional networks to extract graph 

characteristics, hence substantially enhancing the overall 

performance of the SLU task. 

Experimental findings using publicly available datasets, 

such as ATIS and SNIPS, also demonstrate the model's 

superiority. In the SNIPS dataset, the Slot (F1) score attains 

96.9%, the Intent (Acc) is 98.8%, and the Overall (Acc) is 

92.6%. The enhancement of MDG-JISL on the SNIPS dataset 

surpasses that of current models, illustrating its robust 

applicability to multi-domain applications. Furthermore, the 

model achieves Slot (F1) of 98.4%, Intent (Acc) of 98.7%, 

and Overall (Acc) of 92.5% on the ATIS dataset, thereby 

demonstrating its exceptional generalization capabilities 

across standard datasets. 

I. Visualization analysis 

The efficacy of this paper's model is unequivocally 

illustrated by the intention-word correlation scores of the 

ideal comparative models Co-Transformer and MDG-JISL, 

as shown in Table VI. In Fig. 8, the input text is shown on the 

horizontal scale, while the expected intent categories are 

represented on the vertical scale, with darker hues reflecting 

a stronger association. In the sentence “请问大棚的温暖程

度如何” (How warm is the greenhouse), the suggested model 

has a superior correlation score for predicting the intent 

category "Check the temperature". This indicates that GCNs 

that integrate window sequence attributes can enhance the 

significance of key words, hence providing more relevant 

information to aid the slot-filling process. Conversely, the 

Co-Transformer model identified the intent of the phrase as 

"Unpack". This inaccuracy may arise due to the 

predominance of the "Unpack" function in specific terms, 

along with the Co-Transformer layer's inadequate ability to 

capture certain data features while evaluating the interaction 

effects of the two objectives, leading to erroneous prediction 

J. Summary 

This study introduces the MDG-JISL model, which 

efficiently extracts key features by combining BERT and 

FastText. Additionally, the model employs the adjacency 

matrix derived from dependent syntactic analysis to augment 

features through graph convolutional networks. The model's 

output layer employs a CRF to enhance prediction accuracy. 

The model exhibited exceptional performance, achieving 

98.7% in Slot (F1), 98.4% in Intent (Acc), and 92.4% in   
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Fig. 8 Visualization of Intention Word Relevance Score 

 

Overall (Acc), across datasets from several domains. 

Notwithstanding the favorable outcomes, there exists an 

opportunity for the model's improvement. The deployment of 

many complex models may result in increased computational 

costs and prolonged processing times, thus hindering the 

model's applicability in real-time or resource-limited settings 

Subsequently, additional work will concentrate on optimizing 

the model architecture to reduce computational requirements 

and assessing its effectiveness across a wider array of diverse 

tasks and circumstances. This will further validate the 

model's effectiveness in practical applications, particularly in 

areas such as intelligent assistants and question-and-answer 

systems. 
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