
 

Abstract—This study introduces an efficient prediction 
method for pressure flow fields in orifice plates by integrating 
Proper Orthogonal Decomposition (POD) with 
Backpropagation Neural Networks (BPNN). The methodology 
begins with Latin hypercube sampling to create a wide range of 
operating conditions, which are then used in Computational 
Fluid Dynamics (CFD) simulations to generate corresponding 
flow field data. This data is compressed using the snapshot 
POD method, which extracts spatial modes and modal 
coefficients. A neural network is subsequently trained to map 
these operating conditions to the modal coefficients. For new 
conditions, the trained network predicts the modal coefficients, 
which are then combined with the base modal matrix to 
reconstruct the pressure flow field. Validation against CFD 
results demonstrates high accuracy and efficiency, with 
prediction errors below 2.5% across all tested conditions and 
computation times under 0.5 seconds. 
 

Index Terms—POD-BPNN, Snapshot POD, Orifice Plate, 
Pressure Flow Field 
 

I. INTRODUCTION 
rifice Plates are widely used in fluid transport and 
control systems, such as in nuclear power plants and 
the chemical industry, to manage the fluid flow. As 

fluid passes through an orifice plate, upstream pressure 
drops, which may lead to cavitation. Cavitation occurs when 
vapor bubbles form and subsequently collapse, generating 
localized high temperatures, pressures, and high-velocity 
impacts. This phenomenon can induce vibrations and noise 
within the pipeline, contributing to pipeline fatigue and 
potential structural damage. Thus, predicting whether the 
internal fluid pressure in an orifice plate will fall below the 
cavitation pressure under varying operating conditions is 
crucial for ensuring the safe operation of fluid transport and 
control systems. 

In recent years, Computational Fluid Dynamics (CFD) 
has become a critical tool, either supplementing or replacing 
experimental approaches for fluid flow analysis([1], [2]). 
For orifice plate flows, numerous studies have employed 
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CFD to investigate flow characteristics ([4], [5], [6], [7], [8]). 
These studies have shown a high alignment between CFD 
predictions and experimental results. Some researchers have 
multiphase flow models in CFD to examine cavitating flows 
in orifice plates, reporting improved agreement between 
numerical and experimental results ([4], [9], [10], [11], 
[12]). 

To predict regions in the pressure flow field of an orifice 
plate where pressure falls below the cavitation threshold, it 
is necessary to simulate multiple operating conditions within 
a specified range. This process typically involves solving the 
flow field repeatedly across different conditions, which can 
be computationally expensive if using full-scale CFD 
simulations. However, a reduced-order surrogate model 
could enable rapid prediction of flow field solutions across 
various conditions, thereby avoiding repetitive, large-scale 
CFD computations and enhancing computational efficiency. 

The Proper Orthogonal Decomposition (POD) method is 
commonly applied in fluid dynamics for reduced-order 
modeling. It decomposes flow fields into optimal modes 
based on least-squares minimization, generating a set of 
spatial modes and associated modal coefficients that a 
surrogate model can approximate. As fluid problems 
increase in complexity, the relationship between input 
variables and POD-derived modal coefficients often 
becomes nonlinear. Neural networks are well-suited to 
capture these nonlinear relationships, as they can be trained 
to map input variables to outputs without needing explicit 
functional forms. Consequently, the POD-BPNN approach 
has garnered increasing attention in recent studies ([12], [13], 
[14], [15], [16], [17]). 

The existing literature on POD-BPNN applications for 
fluid flow analysis ([17], [19]) has largely focused on classic 
cases, such as two-cylinder flows, with most studies 
centered on predicting the temporal evolution of flow fields 
under constant boundary conditions. This study 
distinguishes itself by integrating the POD method with a 
multilayer neural network to predict flow fields across 
varying boundary conditions, marking a significant 
advancement in applying POD techniques for flow field 
prediction in dynamic operational settings. 

 

II. ORIFICE PLATE GEOMETRY MODEL 
The orifice plate model in this study aligns with the thick 

orifice plate model described in [6]. A three-dimensional 
geometric representation of this thick orifice plate is 
illustrated in Fig. 1. Key dimensions include the length 

]=69.85[L mm , the inner diameter 0 6.35[ ]d mm= ,  the 
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outside diameter 1 28.5[ ]d mm= , and the length of the 
throttling section 0 12.7[ ]L mm= .  

To ensure the accuracy of the CFD simulation, both 
upstream and downstream portions of the orifice plate 
piping are incorporated. Specifically, the upstream pipe 
length is set to 06L , and the downstream pipe length to 

020L , allowing for a more accurate representation of fluid 
dynamics across the orifice plate. Fig. 2 depicts the overall 
2D fluid domain, including the upstream and downstream 
sections surrounding the thick orifice plate.  

 

A. CFD Calculation Model 
For the CFD simulations in this study, Fluent 2020R2 was 

utilized. The boundary conditions employed were 
pressure-inlet and pressure-outlet, with the pressure-inlet 
values ranging from 1500 to 5500 psi(consistent with the 
values used in [9] for subsequent comparisons). The 
pressure-outlet values were set to 0.1 to 0.8 times the 
corresponding pressure-inlet values. 

To simplify the CFD calculations, an axisymmetric model 
was implemented. The materials considered in the 
simulation included liquid water as the primary phase and 
water vapor as the secondary phase, with the flow assumed 
to occur at a temperature of 300 K. Convergence criteria for 
all residuals during the simulation were established at 1e-05. 
Additional parameter settings for the simulation model are 
detailed in Table 1. An unstructured mesh was employed to 
discretize the fluid domain, as illustrated in Fig. 3. 

 

B. Grid Independence Verification 
The accuracy of CFD solution results is influenced by the 

number of meshes used in the simulation[19]. To ensure 
numerical accuracy while minimizing computational time, a 
grid independence verification was conducted with different 
mesh densities for the thick orifice plate: 25,593, 53,357, 
105,550, and 203,249 cells.  

Each meshing model was simulated under identical 
conditions, and the resulting pressure and velocity 
distributions along the axis were compared across the 
different flow fields. As illustrated in Fig. 4, the results from 
the four mesh densities exhibited a high degree of 
consistency with minimal error. Therefore, it was 
determined that the CFD model's solution results within the 
mesh range of 25,593 to 203,249 cells are independent of 
the mesh density. Consequently, a mesh model with 53,357 
cells was selected for all CFD simulations in this study, 
excluding those related to grid independence verification.  

 

C. CFD Model Reliability Validation 
To validate the accuracy of the CFD calculation model 

presented in this study, the numerical simulation results 
were compared with existing literature [9]. The axial 
pressure distribution obtained from the CFD calculations for 
the orifice plate at various pressure ratios was compared to 
the results from the literature using a fixed inlet pressure of 
5000 psi. As shown in Fig. 5, the CFD model results 
strongly agreed with those from the literature, demonstrating 
the reliability of the CFD model utilized in this study. 

III. FAST PREDICTION METHOD FOR PRESSURE FLOW FIELD 
To enable rapid prediction of the pressure flow field for 

the orifice plate under varying operating conditions, the 
process begins with sampling the parameter space using the 
Latin hypercube sampling method. Subsequently, the 
sampled flow field solutions are downscaled utilizing the 
snapshot POD method. Finally, a BPNN model is employed 
to capture the nonlinear relationship between the input 
operating conditions and the output modal coefficients. 

 

A. Latin Hypercube Sampling Method 
Latin Hypercube Sampling (LHS), introduced by McKay 

in the 1970s [20], is a stratified sampling technique that 
ensures an even distribution of samples across the input 
space. In LHS, each input random variable is first sampled, 
followed by a rearrangement of sampled values to minimize 
correlations among them. Compared to random sampling 
methods, LHS produces a more uniformly distributed 
sample set and can capture sample points at lower 
probability densities with fewer samples. In CFD 
optimization problems utilizing surrogate models, LHS is 
commonly applied to construct representative sample pools 
efficiently. 

 

B. POD Method 
The POD method uses a set of reduced-order bases to 

provide an optimal low-dimensional approximation of data 
in high-dimensional, nonlinear spaces. Traditional POD 
achieves data reduction through eigenvalue decomposition 
of the data matrix. Since eigenvalue decomposition applies 
only to square matrices, it is necessary to construct a 
covariance matrix R  for eigenvalue decomposition when 
dealing with non-square matrices. An alternative approach 
to achieve POD decomposition is Singular Value 
Decomposition (SVD) [21]: 
 TA U V= Σ  (1) 
Where A  is the data matrix to be downscaled. The matrix's 
singular values, arranged on the diagonal, form the modal 
matrix and the corresponding modal coefficient matrix. 

The conventional POD method requires solutions over the 
entire domain, which is computationally intensive for 
high-dimensional problems and may result in reduced 
accuracy and stability. The snapshot POD method [22] 
addresses these issues, enabling efficient extraction of 
optimal modes by constructing a snapshot matrix from the 
flow field solutions of sampled conditions: 
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Where cpU  is the snapshot matrix of the flow field, N  is 
the number of operating conditions, and M  represents the 
number of grid nodes. Each row of the matrix corresponds 
to a specific pressure flow field solution under a given 
condition. The snapshot matrix can be decomposed into an 
average matrix and a fluctuation (pulsation) matrix: 
 cp cp cpU U U= +   (3) 

IAENG International Journal of Computer Science

Volume 52, Issue 2, February 2025, Pages 394-416

 
______________________________________________________________________________________ 



( ) ( ) ( )1 2
1 1 1

, , ,
N N N

i i i M
i i i

u c p u c p u c p

N N N

ϕ

= = =

=

 
 
 
 
  

∑ ∑ ∑





 (4) 

 

1

cp

N

U

ϕ
ϕ

ϕ
×

 
 
 =
 
 
 









 (5) 

Where cpU  is the average matrix, cpU  is the pulsation 
matrix, and ϕ  represents the average value of the flow 
field solutions across various conditions. By reducing the 
dimensionality of the pulsation matrix instead of the original 
matrix, computational costs are further minimized. To 
reduce the dimensionality of the pulsation matrix, the 
optimal low-dimensional solution is sought in the least 
squares sense: 

 T T

1
,

N

cp cp
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min U U I
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Where Φ  is the orthogonal base set that provides the 
optimal low-dimensional solution. Each mode in the modal 
matrix aligns with a singular value in the diagonal matrix, 
and the squared singular value of a mode termed its energy 
value reflects the impact of that mode on the reconstructed 
matrix. During reconstruction, modes with smaller energy 
values are omitted, with only the highest-energy modes and 
their corresponding coefficients retained for reconstructing 
the pulsation matrix, significantly reducing the number of 
modal coefficients required for BPNN prediction. In SVD 
decomposition, modal energies are calculated as follows: 
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Where m  is the number of singular values. E  represents 
the cumulative energy of all modes, ik  is the energy 
proportion of the i-th mode, and sumk  is the cumulative 
proportion of the first i-th modes’ energy. When sumk  
exceeds a specific threshold, the pulsation matrix can be 
accurately approximated by the first i-th modes, allowing 
the remaining modes to be discarded, as illustrated in Fig. 6. 
 

C. BPNN Network Architecture 
The Back Propagation neural network (BPNN) is one of 

the most widely used neural network models, featuring an 
architecture that includes one input layer, one or more 
hidden layers, and a single output layer. While BPNN is 
effective, traditional implementations face challenges such 
as slow convergence speeds, a tendency to get trapped in 
local optima, and limited generalization capabilities. To 
mitigate these issues, various optimization techniques have 
been proposed, with the Levenberg-Marquardt  (LM) 
algorithm being a notable enhancement known as 

LM-BPNN. This method iteratively optimizes the BPNN's 
weights and biases. 

This study employed the LM-BPNN to model the 
relationship between input operating conditions and the 
corresponding modal coefficients. The designed neural 
network consists of five layers: one input layer, three hidden 
layers, and one output layer, as illustrated in Fig. 7. The 
dataset comprises 976 samples, which were partitioned into 
a training set, a test set, and a validation set in a ratio of 
7:2:1. Fig. 8 depicts the overall workflow for the 
POD-BPNN methodology, outlining the integration of POD 
with BPNN for efficient prediction of pressure flow fields 
under varying conditions. 

 

IV. RESULTS AND DISCUSSION 

A. Latin Hypercube Sampling Results 
976 samples were obtained by sampling in the working 

condition sample space using the Latin Hypercubic 
Sampling method, and some of the sample points are shown 
in Table 3.  

 

B. POD Decomposition Results 
CFD simulations were performed across 976 operating 

conditions to capture the corresponding pressure flow fields, 
forming a snapshot matrix. This matrix underwent POD 
decomposition to extract modes and their respective modal 
coefficients, resulting in 976 modes. The modal energy 
values were calculated, and the cumulative energy of the 
first 30 modes is displayed in Fig. 10. Notably, with just the 
first 20 modes, the cumulative energy reached 99.9999% of 
the total energy. Thus, these 20 modes are sufficient to 
reconstruct the flow field with high accuracy, allowing us to 
discard higher-order modes and focus only on the modal 
coefficients of these first 20 modes for BPNN training.  

Fig. 9 illustrates the first 20 modes obtained from the 
POD for the pressure flow field around the orifice plate 
under specific operating conditions. Each mode captures 
unique flow field structures, with the first and second modes 
prominently showcasing large-scale flow characteristics 
common in CFD results. Specifically, the first mode 
emphasizes primary vortex structures near the wall region of 
the orifice plate, reflecting the dominant flow behavior. The 
second mode portrays a characteristic pressure decrease 
across the orifice plate. 

For the remaining higher-order modes (modes 3–20), we 
observe numerous, smaller-scale vortex structures within the 
wall region, representing the finer flow dynamics 
surrounding the orifice plate. As the modal order increases, 
the number of vortices near the orifice plate wall gradually 
increases, reflecting the instability of the flow process 
within the orifice plate. As shown in Fig. 9 (c)-(t), with the 
increase in modal order, the number of vortices on the wall 
gradually increases while the volume of individual vortices 
gradually decreases. As to the contour plots for individual 
modes, they reveal that high-pressure vortex regions and 
low-pressure vortex regions are arranged alternately. Due to 
the small singular values corresponding to these modes, the 
flow field characteristics of the orifice plate are still 
dominated by the first-order and second-order modes. 
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However, these additional modes contribute critical details, 
offering a more comprehensive perspective on the flow 
patterns and enhancing the fidelity of the overall flow field 
reconstruction. 

 

C. Results Predicted By The POD-BPNN Method 
To assess the accuracy and efficiency of the POD-BPNN 

method, we randomly selected 12 additional working 
conditions from the original sample space, as detailed in 
Table 2. Pressure flow fields for these conditions were 
calculated using both CFD simulations and the POD-BPNN 
method. The computational results are presented in Figs. 12 
through 23, each containing four subplots for enhanced 
clarity. Subplots (a) and (b) are contour plots providing a 
vivid representation of flow field structures: subplot (a) 
displays the pressure flow field as computed by CFD, while 
subplot (b) shows the corresponding flow field predicted by 
POD-BPNN. Both use a unified color scale to directly 
compare structural differences between the CFD and 
POD-BPNN results. 

Subplot (c) presents isoline highlighting numerical value 
distributions across the flow field. Although isoline contours 
may not illustrate flow structure as intuitively as contour 
plots, they distinctly outline the numerical distribution, with 
colored lines representing CFD isocurves and black lines 
indicating those from the POD-BPNN. This color distinction 
enables an effective visual comparison between the two 
methods, illustrating any minor deviations in magnitude at 
corresponding flow field positions.  

To quantify differences, we calculated the relative error 
relativee  at each node and the average relative error relativee  

across all nodes, as shown below: 
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Subplot (d) then maps the relative error distribution 

across the flow field, comparing POD-BPNN predictions to 
CFD results.  

Figs. 12 through 23 illustrate that subplots (a) and (b) 
align closely, with the POD-BPNN method accurately 
reproducing CFD-derived flow field structures across all 
selected conditions. The POD-BPNN predictions 
consistently capture pressure reduction trends in regions of 
abrupt cross-sectional changes, as well as low-pressure 
vortex regions near walls and downstream flow field 
changes. When the pressure ratio decreases to a certain 
threshold, the low-pressure vortex on the wall will further 
develop and begin to extend across the entire constricted 
area. The POD-BPNN method can accurately predict this 
phenomenon. As shown in Fig. 14 (a), the low-pressure area 
represented by the blue region does not manifest as a vortex 
attached to the wall but instead forms a segment within the 
constricted area of the orifice plate that is entirely filled with 
low-pressure blue regions. Fig. 14 (b) demonstrates that the 
pressure flow field predicted by the POD-BPNN method 
under extreme conditions remains consistent with the results 

predicted by CFD simulations. 
In subplot (c), isoline contours demonstrate high 

consistency in value distribution between POD-BPNN and 
CFD results. While some deviations appear between 
POD-BPNN and CFD isocurves, these are generally minor 
and indicate only slight discrepancies in magnitude. The 
overall shape and trend of isocurves between CFD and 
POD-BPNN remain consistent, reinforcing their alignment 
in flow field structure predictions. 

Subplot (d) highlights that relative errors tend to be 
higher near narrow cross-sectional areas and lower in 
regions with larger cross-sections. Specifically, the 
distribution characteristics of relative error are closely 
related to the low-pressure regions of the orifice plate. As 
shown in Figs. 12, 13, and 15 to 23, the pressure values in 
the vortex regions near the orifice plate wall are relatively 
lower, and correspondingly, the relative error of the 
POD-BPNN method is also higher in these vortex regions. 
Moreover, the shape and position of these vortices are 
roughly consistent with those in the pressure contour plots. 
In Fig. 14 the low-pressure region extends to a specific 
section of the orifice plate, and the region with higher 
relative error also extends to this section. Higher pressure 
ratios between outlet and inlet show lower error rates, while 
smaller pressure ratios lead to larger errors in narrow areas, 
suggesting slightly reduced accuracy for the POD-BPNN 
method under extreme flow conditions. 

The relative error contour plot primarily illustrates trends 
and patterns in relative errors. For a more quantitative 
representation, boxplots of relative errors for each of the 12 
working conditions were generated, as shown in Figs. 27 
and 28. These reveal that, for all conditions, the mean 
relative error of the POD-BPNN method remains below 
2.5%. Additionally, the interquartile range (IQR) is 
relatively close to the mean, indicating consistency. 
However, outliers are present beyond the whiskers of some 
boxplots, with notably large values. For example, in sample 
condition 3, the mean value extends beyond the box due to 
the influence of these outliers. 

To further characterize relative error distribution, Table 4 
presents the mean, median, standard deviation, and IQR for 
each sample. Most samples show close mean and median 
values, along with small standard deviations, suggesting that 
the mean effectively represents the error level in 
POD-BPNN results. In sample condition 3, however, the 
high standard deviation and noticeable difference between 
the median and mean reflect greater data dispersion, 
highlighting the impact of outliers on the mean. In this case, 
the median better represents the POD-BPNN error, 
reaffirming that prediction accuracy decreases in more 
challenging flow conditions. 

In addition, we investigated the impact of various 
operating conditions on the error of the POD-BPNN method 
during testing. Fig. 24 illustrates the trend of the average 
and median errors of the POD-BPNN method as the 
pressure ratio at the outlet and inlet of the orifice plate varies. 
The figure shows that when the pressure ratio at the outlet 
and inlet is either low or high, the error of the POD-BPNN 
method is relatively larger compared to when the pressure 
ratio is moderate. This indicates that the POD-BPNN 
method has higher predictive accuracy for situations with a 
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moderate pressure ratio. Fig. 26 depicts the trend of the 
average and median errors of the POD-BPNN method as the 
pressure difference across the orifice plate changes. With the 
increase in the pressure values at both ends, the average and 
median errors do not exhibit a clear trend, suggesting that 
the pressure interpolation is not significantly related to the 
pressure difference between the two ends. Fig. 25 presents 
the trend of the average and median errors of the 
POD-BPNN method as the inlet pressure of the orifice plate 
varies. Similarly, as the inlet pressure increases, the average 
and median errors do not show a clear trend, indicating that 
the inlet pressure is not a major factor affecting the error. 
Integrating the previous comparisons and discussions, it can 
be concluded that the accuracy of the POD-BPNN method 
in this study is primarily influenced by the pressure ratio 
between the outlet and inlet pressures. 

Contour plots from CFD calculations offer a clear and 
intuitive depiction of flow field structure, aiding 
understanding flow development trends and internal 
conditions. Beyond contour plots, CFD provides rigorous 
quantitative analysis by extracting numerical values from 
specific flow field regions. A critical aspect of CFD 
calculations for orifice plates is illustrating pressure drop 
characteristics, typically through axial pressure distribution 
within the pressure flow field. To evaluate the POD-BPNN 
method's accuracy and practicality comprehensively, we 
have also plotted axial pressure distribution curves for the 
orifice plate as determined by both CFD and the 
POD-BPNN method. 

In Fig. 29, the left side shows axial pressure distribution 
curves from CFD calculations under the 12 working 
conditions, while the right side presents POD-BPNN results. 
For easier comparison, Figs. 30 and 31 plot both methods’ 
results on the same coordinate system for each sample, with 
blue for CFD and red for POD-BPNN. The results show that 
axial pressure distributions predicted by POD-BPNN closely 
align with CFD outcomes across all conditions, accurately 
capturing the sharp pressure drop along the axis and the 
partial recovery afterward. 

To assess computational efficiency, Table 5 compares the 
processing times of the two methods for the 12 samples. 
CFD computation time reflects the solver's convergence 
duration, while POD-BPNN time includes neural network 
inference and vector operations. Calculations were 
performed in a Windows 11 environment with 16 GB RAM 
and an AMD Ryzen 5 5600G processor. Table 6 
demonstrates that POD-BPNN computation times do not 
exceed 0.5 seconds per sample, showing a significant 
efficiency gain over CFD with computational times reduced 
by several orders of magnitude. 

 

V. CONCLUSION 
This study developed the POD-BPNN method based on 

CFD results to rapidly predict the pressure flow field in 
orifice plates. The following conclusions were drawn: 

（1）After employing POD method to decompose the 
snapshot flow field, a multitude of modes is obtained, each 
with its corresponding singular value. These singular values 
can be utilized to calculate the energy of the modes, which 

in turn reflects the significance of the modes in 
reconstructing the flow field. Based on this principle, it is 
possible to discard the majority of modes and reconstruct the 
flow field using only the remaining modes. The number of 
modes to retain can be determined based on the cumulative 
energy of these modes. In this study, we retained modes that 
account for a cumulative energy of 99.9999%, which 
corresponds to the first twenty modes. 

（2）The modes used for reconstructing the flow field, 
when multiplied by their corresponding specific modal 
coefficients and summed, can yield a specific flow field. 
After decomposing the snapshot flow field, multiple sets of 
modal coefficients can be obtained, with each set 
corresponding to different conditions. In this study, each set 
of modal coefficients corresponds to different working 
conditions of the orifice plate. Due to the presence of 
multiple modal coefficients and their corresponding 
conditions, a neural network can be employed as a surrogate 
model, leveraging its strong fitting capabilities to model the 
relationship between different conditions and their 
respective modal coefficients. Such a surrogate model is 
purely data-driven, making it more flexible and universal. In 
this study, the POD-BPNN method has demonstrated high 
accuracy and low computational time when predicting the 
pressure flow fields under different operating conditions of 
the orifice plate.  

（3）In the existing research on the combination of 
POD with neural networks for predicting flow fields, most 
literature focuses on flow fields that change over time and 
predicts the flow field results at future moments. In these 
studies, different modal coefficients correspond to different 
time points. However, in this study, the snapshot flow field 
is composed of steady-state flow fields under various 
working conditions, which means that different modal 
coefficients correspond to different working conditions. The 
results of this study indicate that the POD-BPNN method is 
not only applicable for predicting flow fields that change 
over time but also effectively predicts the flow field results 
for specific objects under different operating conditions. 

In summary, the POD-BPNN approach has shown 
promising accuracy and efficiency, offering a novel 
framework for applying POD-BPNN under complex 
working conditions. This advancement contributes to the 
field of nonlinear flow field prediction, providing a valuable 
tool for fast and accurate analysis in complex scenarios. 
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Fig. 1 3D model of the orifice plate 

 
 
 
 
 
 

 

Fig. 2 Geometrical model and computational domain of the orifice plate 
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Fig. 3 Results of the mesh generation for the computational domain of the orifice plate 

 
 
 
 
 
 
 

 
Fig. 4 Results of the grid independence verification 
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Fig. 5 Comparison of the results of this paper with the results of the reference 

 
 
 
 
 
 

 
Fig. 6 The principle of the POD method 
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Fig. 7 Structure of the neural network 

 

 
Fig. 8 Flowchart of the POD-BPNN method 
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Fig. 9 Contour plots of the first 20 modes 
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Fig. 10 Cumulative energy of the first 20 modes 

 

 
Fig. 11 The relationship between color-filled contour plot and contour map 
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Fig. 12 Results of sample 1 

 
 

 

Fig. 13 Results of sample 2 
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Fig. 14 Results of sample 3 

 
 

 

Fig. 15 Results of sample 4 
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Fig. 16 Results of sample 5 

 
 

 

Fig. 17 Results of sample 6 
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Fig. 18 Results of sample 7 

 
 

 

Fig. 19 Results of sample 8 
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Fig. 20 Results of sample 9 

 
 

 

Fig. 21 Results of sample 10 
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Fig. 22 Results of sample 11 

 
 

 

Fig. 23 Results of sample 12 
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Fig. 24 The Trend of Error with Respect to Pressure Ratio 

   
Fig. 25 The Trend of Error with Respect to Pressure In

 

 
Fig. 26 The Trend of Error with Respect to Pressure Drop 
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Fig. 27 Boxplot of the relative errors(sample 1-6) 

 

 
Fig. 28 Boxplot of the relative errors(sample 7-12) 

 

 
Fig. 29 CFD and POD-BPNN results of axial pressure distribution for the 12 samples 
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Fig. 30 Comparison of CFD results and POD-BPNN results for axial pressure distribution(sample 1-6) 
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Fig. 31 Comparison of CFD results and POD-BPNN results for axial pressure distribution(sample7-12) 
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TABLE 1 OTHER SIMULATION PARAMETER SETTINGS 

Name Setting 
turbulence model standard k ω−  

multiphase flow model mixture 
cavitation model Schnerr-Sauer 

solution algorithm coupled 

gradient discretization 
Least Squares 

Cell-Based 
pressure discretization PRESTO! 

momentum discretization Second Order Upwind 
turbulent einetic energy 

discretization 
First Order Upwind 

specific dissipation rate 
discretization 

First Order Upwind 

 
 
 
 

TABLE 2 VALUES OF THE SAMPLES FOR TESTING 

Sample 
Index 

Pressure Outlet, 
psi 

Pressure Inlet, 
psi 

Ratio 

1 1600 692 0.4325 
2 2600 1215.5 0.4675 
3 4800 1404 0.2925 
4 3400 2422.5 0.7125 
5 2800 1701 0.6075 
6 2000 1005 0.5025 
7 4400 2365 0.5375 
8 2200 1644.5 0.7475 
9 3600 2313 0.6425 
10 5200 3523 0.6775 
11 5400 3091.5 0.5725 
12 3800 2973.5 0.7825 

 

TABLE 3 VALUES OF SOME SAMPLES 

Pressure Inlet, psi Pressure Outlet, psi Pressure Ratio 
3438 2590.3611 0.75345 
4790 3277.0785 0.68415 
4714 756.8327 0.16055 
4258 1914.6097 0.44965 
5286 874.5687 0.16545 
5450 2198.8025 0.40345 
3834 1533.4083 0.39995 

…… 

 
TABLE 4 STATISTICAL DISTRIBUTION OF RELATIVE ERRORS ACROSS 12 TEST SAMPLES 

index Mean Value Standard Deviation Median Value Lower Quartile Upper Quartile 

1 1.348  8.897  1.126  1.050  1.685  

2 0.837  0.647  1.012  0.190  1.138  
3 2.324  45.112  0.391  0.344  0.425  
4 0.615  0.251  0.770  0.272  0.808  
5 0.445  0.423  0.179  0.135  0.991  
6 1.442  1.066  1.907  0.229  2.105  
7 0.671  0.130  0.732  0.520  0.756  
8 1.397  0.430  1.682  0.810  1.732  
9 0.266  0.140  0.336  0.085  0.376  
10 0.281  0.108  0.204  0.198  0.428  
11 0.391  0.173  0.491  0.164  0.518  
12 0.792  0.084  0.738  0.734  0.902  
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TABLE 5 TIME CONSUMPTION OF THE CFD METHOD AND THE POD-BPNN METHOD 

Method Time Cost(s) 
CFD 840 960 720 840 840 720 960 720 840 900 900 780 

POD-BPNN 0.0499  0.1395  0.0076  0.0079  0.0086  0.0091  0.0091  0.0085  0.0078  0.0072  0.0081  0.0091  
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