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Abstract—The remote sensing image contains a lot of dense
small targets, which increases the difficulty of object detection.
The loss of small target feature information in feature fusion is
rarely taken into account by the target detection algorithms
used in remote sensing images today. A dense small object
detection method based on improved YOLOv8s, namely BCS-
YOLOv8s, is proposed to address this issue. The innovation
of the proposed method is mainly reflected in three aspects.
First, the backbone network was modified to incorporate Bi-
Level Routing Attention (BRA), a dynamic sparse attention
mechanism, which increased the model’s concentration on tiny
targets without appreciably changing its parameters. Second,
CSNeck is employed as the neck of the model. Content-Aware
ReAssembly of Features (CARAFE) is implemented as the
upsampling module to minimize information loss of tiny targets
in the feature combination. To enhance the model’s capacity
to identify tiny targets, a detection head and small target
detection layer are also incorporated. Thirdly, pre-selected
frame regression may be made faster and more accurate by
employing structured IoU (SIoU). The ultimate experimental
findings demonstrate that BCS-YOLOv8s lowers the missed
rate of tiny targets and enhances the model’s detection ability.
The average detection accuracy (mAP) of this model on the
DIOR dataset is 89.5%, which is 3.2% higher than the base
model. Compared with other mainstream models such as
YOLOv5 and YOLOv7, this model has better performance in all
aspects. By using this strategy, the model’s capacity to recognize
dense and tiny targets is successfully improved.

Index Terms—small object detection, remote sensing,
YOLOv8, DIOR, SIoU, Bi-Level Routing Attention, CARAFE.

I. INTRODUCTION

IMAGES from remote sensing have become more and
more significant in people’s lives and careers in the past

few decades. Additionally, as target recognition technology
advances, the use of target recognition in images collected
by remote sensing is becoming progressively more crucial.
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However, the task of target detection is made more difficult
by the complex background and the abundance of small,
dense targets in these images. Thus, the focus of study has
shifted to how to get around these challenges and enhance
the efficiency and accuracy of remote sensing picture target
recognition techniques [1].

In remote sensing image identification, deep learning pow-
ered object recognition approaches have shown impressive
results, surpassing conventional object detection methods in
terms of accuracy and efficiency. The two types of object
detection methods are one-stage approaches and two-stage
approaches, which are determined by the detection strategy.
Where the two-stage approaches divide the object detection
task into: generating region suggestions and classifying and
correcting the location of the region suggestions in a classi-
fier, such as R-CNN [2], SPP-Net [3], Fast R-CNN [4], Mast
R-CNN [5]and Faster R-CNN [6]. The one-stage approaches
generates bounding boxes directly by regression prediction
objects, such as the You Only Look Once (YOLO) series
[7]–[10], SSD [11]and EfficientDet [12].

In the subject of remote sensing picture target recognition,
there are a lot of study findings available right now. Zhou
et al. [13]proposed a data enhancement approache to solve
the problem of monotonous image background. An attention-
based feature combination SSD approach was presented by
Lu et al. [14] to enhance the effectiveness of model detection
for tiny targets. Liu et al. [15] introduced ResNet [16] in
YOLOv3 to optimize the backbone network. An end-to-end
pyramid network for multiple sizes target identification was
proposed by Wang et al [17]. Wu et al. [18] proposed a
SEF module in YOLOv8 based on lightweight convolution
(SEConv), which speeds up the detection process. And the
multi-scale attention mechanism is added to the method,
thus increasing the feature extraction capability. Wang et
al. [19] introduced a bidirectional feature pyramid network
(BiFPN) into the YOLOv8 model, while multi-head self-
attention is integrated into the network and data enhancement
techniques are used to improve model robustness. Li et al.
[20] integrating the Conv2Former module into the YOLOv7+
model, which enhances the extraction of spatial information
features with more precision. At the same time, there are
a number of studies that can be informative. Zhang et
al. [21] proposes a double-layer semicomposite backbone
network structure to enhance the ability of the backbone
network to extract target features. Zhang et al. [22] propose
a bidirectional partial dynamic fusion module to facilitates
cross-level interactive fusion of feature information.

High altitude above the ground and a single imaging view-
point characterize photos from remote sensing. As a result,
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there are many different types and quantities of objects in
photographs from remote sensing, as well as a huge number
of small, compact objects, and the object’s orientation might
change. Photos from remote sensing will be modified by
various shooting platforms, weather and lighting conditions,
and other factors.

The present paper proposes a BCS-YOLOv8s remote sens-
ing picture target recognition approach based on YOLOv8
to address the issues mentioned above. This model exhibits
strong performance in enhancing the detection accuracy for
remote sensing images, and the main contributions are as
follows:

(1) A novel dynamic sparse attention mechanism is intro-
duced in the backbone network to improve the model’s cap-
ture and mapping of key features, optimizing the detection
performance without overburdening the parameter count.

(2) A new neck structure, CSNeck, is proposed. A content-
aware upsampling operator is introduced in the neck, and
the detection layer for small targets is extended so that
the model better preserves small target feature information
during feature fusion.

(3) To increase the algorithm’s preselection box regres-
sion’s speed and accuracy, SIoU is used as the loss function.

II. RELATED WORK

The You Only Look Once (YOLO) family of models
is currently the dominant object detection model and has
accomplished remarkable success in the domain of computer
vision.

The YOLOv8 model combines the advantages of many
excellent models, and it has more powerful performance than
previous versions. Figure 1 depicts the network topology of
the YOLOv8 model, which is comprised of three sections:
the head, neck, and backbone.

A. Backbone

The backbone network of YOLOv8 is borrowed from the
structure of CSPDarknet53, and improvements are made on
it. To create five feature maps at various sizes for feature
combination in the neck, the input features are downsampled
five times using additional feature extraction methods. A
convolutional layer, a BN normalization layer, and a SiLU
activation function constitute the CBS module. It is used
for downsampling operations; To increase the network’s
capacity for extracting features, the C2f module is capable
of expanding the receptive field. The C2f module adds extra
layer hopping links and split operations compared to the
C3 module and eliminates the convolutional operations in
the branches. It greatly increases the effectiveness of the
algorithm by ensuring lightweighting while also obtaining
greater gradient flow data and adjusting the total amount of
channels in accordance with the algorithm’s size; the SPPF
module achieves multi-scale fusion by three consecutive
maximal pooling with residual structure and finally fusing
the pooling front with the result of each pooling. Compared
with the SPP structure, the SPPF structure reduces the
computational volume and further increases the receptive
field while ensuring multi-scale fusion.
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Fig. 1. The YOLOv8 structure diagram

B. Neck

Feature fusion is the primary task of the neck. By adopting
the PAN-FPN construction, which is split into two halves
for the feature fusion process from top to bottom and from
bottom to top and fully using the features gained from
the backbone network, the neck may improve the semantic
expression and localization ability on different scales. Firstly,
the deep feature maps are fused with the coarse-grained
feature maps from top to bottom by up-sampling operation
to get richer feature representations. Secondly, the fused
shallow feature map is then subjected to a down-sampling
operation to fuse it again with the feature map in the first
step.

In the up-sampling operation, the YOLOv8 model uses
bilinear interpolation, which only considers the neighborhood
of the interpolated pixels and ignores the overall continuity,
which will seriously affect the overall quality of the feature
map. Another commonly used upsampling method is the
deconvolution method, which uses the same convolution
kernel globally, which severely limits the model’s ability to
cope with local variations. At the same time, both approaches
invariably include a lot of variables, which slows down the
model. This is particularly noticeable when attempting to
identify objects in photos from remote sensing.

C. Head

The head is used to predict the object position and cate-
gory. The YOLOv8 model uses the Decoupled Head design.
The Coupled Head uses a sequence of convolutional and fully
connected layers at the network’s conclusion to forecast the
bounding box’s position, size, and category at several scales
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concurrently. Decoupled Head is to separate the classification
and detection heads, two parallel branches are taken to
extract the category features and location features respec-
tively. The two parallel branches complete the classification
and localization tasks with one layer of 1 ∗ 1 convolution
respectively to enhance target detection performance.

The decoupled head not only improves model accuracy,
but also enhances the network’s convergence performance.
The decoupled head also has a better expressive ability
than the coupled head, which enhances the robustness of
the model, allows for better modeling of the relationship
between position and category, and improves object detection
performance.

D. Loss function

The loss function in the YOLOv8 model consists of two
parts: classification loss and regression loss, which uses a
cross entropy loss (BCE Loss) for classification loss and a
combination of DFL + CIoU Loss for regression loss.

CIoU calculates the loss by calculating the distance and
the overlapping area between the center of the preselected
box and the real box. CIoU includes an aspect ratio term to
ensure the regression quality. Even yet, there are still some
issues with CIoU. For instance, the aspect ratio term does not
appropriately react to a situation in which the dimensions of
the real and preselected box differ, but their aspect ratios
are consistent. Meanwhile, due to the application of inverse
trigonometric functions, the speed of the model receives
limitations.

III. METHOD

This study presents the BCS-YOLOv8s model, which is an
improvement on YOLOv8, figure 2 shows its structure. The
improvement enhances the algorithm’s incapacity to identify
tiny, dense objects. The next section provides a detailed
description of it.

A. Improvements in Backbone

Figure 3 illustrates the introduction of Bi-Level Routing
Attention (BRA) [23] into the YOLOv8 architecture to
enhance the feature extraction capability for tiny items in
remote sensing pictures. The main concept is to filter the
region with low correlation first, instead of directly calcu-
lating the correlation between two elements. This approach
can successfully avoid the model size from being too big
while boosting the algorithm’s accuracy by comparison to
the usual attention mechanism. The benefit is particularly
noticeable on remote sensing photos.

Firstly, the feature map X ∈ RH∗W∗C is divided into S∗S
non-overlapping regions, and then each region has HW/S2

feature vectors. Then we are able to obtain Q, K,and V, i.e.,
query, key, and value for each region. Next, the region-to-
region routing of the directed graph is used. Calculate the
average values Qr and Kr of Q and K for each region, and
then use matrix operation to acquire the adjacency matrix
Ar ∈ RS2∗S2

of the area friendship network. Next, determine
the routing index matrix Ir via row-by-row topk operation,
as shown in Equations (1) and (2).

Ar = Qr (Kr)
T (1)
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Fig. 2. BCS-YOLOv8s structure diagram

Ir = topkIndex (Ar) (2)

Finally, the anchor box attention mechanism is used. For
each query in area i, BRA will pay attention to all key-
value pairs in the concatenation of k routing areas indexed
as Ir (i, 1), Ir (i, 2), ..., Ir (i, k), as shown in Equation (3).

Kg = gather (K, Ir) , V g = gather (V, Ir) (3)

The gathered combinations of key-value are then the center
of attention, as illustrated by Equation (4), where Kg, V g is
a collection of key-value tensors and LCE (V ) is a local
context augmentation term.

O = Attention (Q,Kg, V g) + LCE (V ) (4)

B. Improvements in Neck

Remote sensing images contain a multitude of densely
distributed small-scale targets, and the general model only
focuses on the fusion of deep feature maps, and some of
the small targets appear to lose semantic information after
repeated deep feature extraction and fusion, which reduces
the reliability of the algorithm recognition. Furthermore, the
YOLOv8 algorithm’s detecting head is unable to recognize
small-scale objects accurately, which is necessary to finish
the target identification job of photos from remote sensing.
Therefore, a new neck structure, CSNeck, is proposed to
address the above problems, which can meaningfully amelio-
rate the situation of small target semantic loss and insufficient
performance. Its structure is displayed in Figure 4.
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Content-Aware Reassembly of Features(CARAFE) [24]
module is introduced in CSNeck to replace the original
up-sampling module. Compared to the original up-sampling
module, the CARAFE module has a larger receptive field

and can better aggregate contextual information to form
coherent features. Secondly, it can perform content-aware
processing on different samples to form an adaptive kernel
applicable to the current sample, which solves the problem
of insufficient ability to cope with local changes of, for
example, deconvolution methods. In addition, the CARAFE
module is able to introduce a small number of covariates to
enhance the model’s effectiveness, solving the problem of
large computational volume. The specific flow of CARAFE
is as follows.

CARAFE will reorganize feature map X of size C ∗H ∗W
into feature map X ′ of size C∗σH∗σW in two steps, and for
each feature position l′ = [σi, σj] in feature map X ′ there
is a position l = [i, j] located in the original feature map
corresponding to it, where σ is the up-sampling rate. Firstly,
the kernel prediction module Ψ generates a recombination
kernel Wl′ of size Cup∗H ∗W based on the neighborhood l′

of location l in the original feature map X , and this process
can be expressed as Equation (5). where N(Xl, k) stands
for the neighborhood of location l in the original feature
map X of size k ∗ k. Cup is the number of channels of the
recombination kernel, which is used to specify the kernel
dimension, and can be expressed as Equation (6).

Wl′ = Ψ(N (Xl, kencoder)) (5)

Cup = σ2k2up (6)

Secondly, the content-aware recombination module recom-
bines the features with the kernel to generate a new feature
map X ′ , the process that can be represented as Equation
(7). Φ is the content-aware recombination module, which is
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responsible for combining each of the local feature maps
with the corresponding recombination kernel Wl′ , as shown
in Equation (8), where r = kup/2.

X ′
l′ = Φ(N (Xl, kup) ,Wl′) (7)

Φ (X ′
l′) =

r∑
n=−r

r∑
m=−r

Wl′(n,m) ∗X(j+n,j+m) (8)

There are two main parameters kencoder and kup that
determine the final result in the CARAFE process, repre-
senting the size of the context area used to generate the
recombination kernel and the size of the context area used
for feature recombination, respectively. Typically, the rela-
tionship is shown in Equation (9). Through experiments, we
determined the optimal parameter as kencoder = 1, kup = 3.

kencoder = kup − 2 (9)

Meanwhile, we also introduce the shallow feature maps
from the backbone network into CSNeck, add new small-
target feature fusion structures and small-target detection
heads, and further improve the model’s capacity to learn
multi-size target feature information.

C. Improvements in Loss function

SIoU is utilized as the loss function to both accelerate
the speed and enhance the accuracy of anchor regression.
Compared with CIoU, SIoU solves the defect of aspect ratio
by separately computing the length and width of anchor
boxes and real boxes. Also SIoU takes into account the angle
between the two boxes by defining an angular penalty metric,
which enables the anchor box to quickly drift to the nearest
axis first, and the subsequent regression process only needs
to regress to one coordinate (X or Y). SIoU can be divided
into four parts: angular loss, distance loss, shape loss, and
IoU loss.

Angle loss is used to describe the minimum angle between
the line segment connecting the centres of the preselector
box and the real box and the x-y axis (shown in Fig. 5),
Λ = 0 when the two centrally connected lines overlap the x
or y axes, and Λ = 1 when α = 45o. This penalty directs
the preselector box to move to the nearest axis and reduces
the total number of degrees of freedom in the BBR. The
equations are shown in Equation (10) to Equation (13).

Λ = 1− 2 ∗ sin2
(
arcsin (x)− π

4

)
(10)

x =
ch
σ

= sin (α) (11)

σ =

√(
bgtcx − bcx

)2
+
(
bgtcy − bcy

)2
(12)

ch = max
(
bgtcy , bcy

)
−min

(
bgtcy , bcy

)
(13)

Distance loss is used to describe the gap between the
anchor box’s centroid and the real box’s centroid (as shown
in Fig. 6), and this penalty cost is positively correlated with
the angle loss. When α → 0, the contribution of distance
loss will gradually decrease; when α = 45o, its contribution
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Fig. 5. Angular loss schematic

is the largest. The formulas are shown in Equation (14) to
Equation (16).

∆ =
∑
t=x,y

(
1− e−γρt

)
(14)

γ = 2− Λ (15)

ρw =

(
bgtcx − bcx

cw

)2

, ρh =

(
bgtcy − bcy

ch

)2

(16)
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B
GT

Cw

Ch

Fig. 6. Distance loss schematic

In shape loss, SIoU factors in the proportional relationship
between length and width of the anchor boxes and real
boxes, nonetheless, in contrast to CIoU, it is determined by
computing the difference between the lengths of the two
boxes and the ratio of the maximum lengths of the two
boxes (same for the widths). SIoU achieves the effect of
the overall shape convergence by the convergence of the two
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edges separately. The formulas are shown in Equation (17)
and Equation (18).

Ω =
∑

t=w,h

(
1− e−ωt

)θ
(17)

ωw =
|w − wgt|

max (w,wgt)
, ωh =

|h− hgt|
max (h, hgt)

(18)

Among them, θ is an important parameter. For different
datasets, the value of θ is different. When θ = 1, SIoU
immediately corrects the shape of the anchor boxes, which
seriously affects the free motion of the regression. It is
derived from the experiments that the value of θ should be
between 2 and 6.

At this point, we obtain the overall composition of SIoU,
which is shown in Equation (19).

Lbox = 1− IoU +
∆+Ω

2
(19)

IV. EXPERIMENT

A. Experimental Setting

The datasets, related valuation indicators, training method-
ology, and setup of the experiment are all covered in this
section.

Table 1 displays the ambient conditions as well as the
hardware platform utilized throughout the experiment.

TABLE I
COMPARISON OF FEATURE EXTRACTION MODULES

Parameters Configuration

CPU i5-12400F 2.50GHz
GPU NVIDIA GeForce RTX 3060
RAM 32G

GPU memory size 12G
Operating systems Windows 11

Deep learning architecture Pytorch2.0.1+Cuda11.8

The YOLOv8 model is classified into five models accord-
ing to the width and depth. In order to have better research
and improvement, YOLOv8s is used as the base model. Table
2 displays some key parameters in the algorithm training.

TABLE II
KEY TRAINING PARAMETERS

Parameters Setup

Epoch numbers 500
Momentum setting 0.937
Initial learning rate 0.01
Final learning rate 0.01

Weight decay 0.0005
Batch size 8

Input image size 640
Optimizer Auto

The DIOR dataset [25], a well-known object recognition
dataset for photographs from remote sensing, contains 20
types of targets, with a total of 23463 images and 192472
targets. The DIOR dataset contains a rich variety of types
of detected objects, a large number of objects, an irregular

distribution, and a large span of sizes, which can better
validate the advantages of the improved model.

Figures 7 and 8 show the distribution of the number
of targets of various classes in the dataset as well as the
distribution of target bounding box sizes as well as locations.
The target size of this dataset spans a wide range, the
distribution is dense, and the target distribution location
covers the whole picture, which can be a good test of the
model performance. In the present study, the ratio of the
training, validation, and test sets is 6:2:2.

 

 

Fig. 7. distribution of target bounding box

The NWPU VHR-10 dataset [26] is a geographic remote
sensing dataset produced by the Northwestern Polytechnical
University (NWPU) in 2014, which has 650 images contain-
ing targets and 150 background images, totaling 800 images,
with a total of 10 target categories. This dataset is used in this
paper for assisted validation and generalizability validation
experiments.

Precision (P), recall (R), total average precision (mAP0.5,
mAP0.5:0.95), number of parameters, model size, and de-
tection speed were utilized as assessment criteria to pre-
cisely analyze the enhanced algorithm’s detection ability. In
the definitions of each performance metric below, samples
classified as TP are those that both the model and the data
really anticipated to be positive; FP denotes samples that
were really negative but were predicted by the model to be
positive; FN denotes samples that were positive even though
the model had projected them to be negative.
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As demonstrated by Equation 20, precision (P) is the
ratio of the number of positive data samples that the model
predicts to the total number of samples that are projected to
be positive.

P =
TP

TP + FP
(20)

Equation 21 illustrates recall (R), which is the ratio of
the number of positive data samples that the model correctly
predicted to the actual number of positive samples.

R =
TP

TP + FN
(21)

Average Precision (AP) is the area enclosed by the P-R
curve and represents the average prediction precision of the
samples in a given category, as shown in Equation 22.

AP =

∫ 1

0

P (r) dr (22)

Recall is plotted on the x-axis of the P-R curve, while
precision is plotted on the y-axis. The average accuracy is
shown by the region that is bounded by the P-R curve, the
x- and y-axes.

The total average precision (mAP) is a parameter obtained
by the weighted average of the AP values across all sam-
ple categories, which serves as a comprehensive metric to
evaluate the model’s detection performance under all sample
categories, as shown in Equation 23.

mAP =
1

N

N∑
i=1

APi (23)

where N represents the number of sample types in the
dataset. Furthermore, when the algorithm IoU is config-
ured to 0.5, the overall average accuracy is represented by
mAP0.5, and when the algorithm IoU is configured between
0.5 and 0.95, it is represented by mAP0.5:0.95. IoU repre-
sents the ratio between the intersection and concatenation of
the predicted target bounding box and the true box.

B. Experiment Details

Comparative studies between the enhanced model and
the original YOLOv8s model on the DIOR dataset were
conducted to validate the improvement. Table 3 shows the
values of AP and mAP for each category for both models.
The improved model has a great improvement compared to
the original model, and the mAP value is increased from
0.863 to 0.895, which indicates that the improved method
can effectively improve the model’s detection accuracy and
performance of dense small targets on remote sensing im-
ages.

TABLE III
COMPARISON OF AP (MAP) BEFORE AND AFTER IMPROVEMENT ON

DIOR DATASET

Classification AP(before) AP(after)

all 0.863 0.895
Airplane 0.955 0.978
Airport 0.923 0.922

Baseballfield 0.948 0.979
Baskballcourt 0.912 0.935

Bridge 0.630 0.685
Chimney 0.931 0.935

Dam 0.825 0.829
Expressway service area 0.971 0.983
Expressway toll station 0.853 0.936

Golf course 0.864 0.900
Ground track field 0.911 0.938

Harbor 0.743 0.793
Overpass 0.703 0.769

Ship 0.954 0.954
Stadium 0.972 0.969

Storage tank 0.872 0.926
Tennis court 0.971 0.988
Train station 0.670 0.768

Vehicle 0.685 0.750
Wind mill 0.962 0.963

Figures 9, 10, and 11 show the difference between the
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improved model and the original model in terms of mAP0.5,
mAP0.5:0.95, and recall during training. The original model
starts to converge near 80 rounds, while the improved model
already converges near 30 rounds. Both the detection ac-
curacy and convergence speed of the modified algorithm
are significantly higher than the original model, proving the
effectiveness of the improvement.
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Fig. 10. Comparison of mAP0.5-0.95 before and after improvement
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Fig. 11. Comparison of Recall before and after improvement

In order to better validate the effectiveness and general-
izability of the improvement, the NWPU VHR-10 dataset
was used to perform the auxiliary validation, and Table 4
displays the experimental outcomes. This suggests that the
improvement approach may be used on many datasets and
is generally applicable.

TABLE IV
COMPARISON OF MAP BEFORE AND AFTER IMPROVEMENT ON NWPU

VHR-10 DATASET

Models mAP0.5 mAP0.5:0.95

YOLOv8s 0.88849 0.52938
BCS-YOLOv8s 0.92724 0.59142

A comparison was conducted with mainstream methods to
further validate the efficacy and superiority of the improved

method. Firstly, in terms of the attention, the BRA attention
adopted is compared with the current mainstream CA, SE,
and MHSA attention, and the results are shown in Table 4.

TABLE V
COMPARISON OF ATTENTION MECHANISMS

Model Attention mAP0.5 mAP0.5:0.95

YOLOv8s

0.863 0.636
SE 0.86 0.632

MHSA 0.868 0.641
BRA 0.876 0.652

From the above table, the BRA attention mechanism
improves the model mAP by 1.3%, which has a better effect
compared to the current mainstream attention mechanism on
remote sensing images with a multitude of densely packed
small objects. The critical content is also better enabled to
be emphasized by the model, while the feature of region-to-
region routing gives the model a higher efficiency.

Secondly, in terms of the neck, CSNeck is compared with
Bifpn, a current popular neck improvement solution, and
Table 6 displays the outcomes.

TABLE VI
COMPARISON OF NECK

Model Neck mAP0.5 mAP0.5:0.95

YOLOv8s
0.863 0.636

Bifpn 0.858 0.628
CSNeck 0.879 0.654

From the above table, it becomes apparent that CSNeck
improves the model mAP by 1.6%, compared with bifpn,
has better results on remote sensing images, improves the
information loss in feature fusion by adjusting the up-
sampling, and the introduction of the small target detection
layer is also more targeted at the identification of tiny targets.

A blation experiments have been conducted to validate that
each of the improvement strategies presented in this study
has enhanced the detection capability of the model, and the
results are shown in Table 7.

TABLE VII
RESULTS OF ABLATION EXPERIMENTS

Model YOLOv8s

BRA Y Y Y
CSNeck Y Y

SIoU Y
mAP0.5 0.863 0.876 0.890 0.895

mAP0.5:0.95 0.636 0.652 0.666 0.676
Recall 0.807 0.816 0.843 0.852

Precision 0.888 0.885 0.891 0.889
Parameter 11.1 11.4 11.9 11.9

The information in the table above shows that the model’s
detection performance has been enhanced to varying degrees
by each enhancement technique suggested in this research.
By adding the BRA attention mechanism to the backbone
network, the mAP is improved by 1.3% and the attention
to main elements is improved. CSNeck, which replaced the
previous neck, reduces the features lost during the feature
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fusion process, while the tiny target detection layer enhances
the capacity to recognize tiny objects, which improves the
mAP by 1.4%. SIoU is utilized in the loss function section to
increase the accuracy and efficiency of regression of anchor
box, resulting in a 0.5% improvement in the mAP.

The majority of the detection measures are substantially
increased, and the revised model has a 3.2% overall improve-
ment in mAP.

The paper carries out a comparative experiment to confirm
the enhanced model’s efficacy even further. We contrast the
enhanced algorithm with a few popular ones. The results are
shown in Table 8.

TABLE VIII
COMPARISON EXPERIMENTAL RESULTS

Models mAP50 mAP50:95 Precision Recall Parameter

YOLOv5s 0.859 0.625 0.881 0.803 7.01
YOLOv6 0.846 0.628 0.885 0.780 16.3
YOLOv7 0.865 0.639 0.888 0.811 64
YOLOv8s 0.863 0.636 0.888 0.807 11.1

CSB-YOLOv8s 0.895 0.676 0.889 0.852 11.9

It can be obtained that the majority of the enhanced
algorithm’s performances, which are suggested in this study,
are found to be more effective than those of the mainstream
algorithms, demonstrating the approach’s feasibility and ex-
cellence.

C. Visualization and Analysis

In order to visualize the prediction effect of BCS-
YOLOv8s, inference experiments are conducted in this paper.
Representative images are predicted using the improved
model versus the original model. These pictures contain
cross-scale targets and an abundance of little targets, which
are objective and suitable for tests of prediction. Figure
12 and Figure 13 displays a comparison of the forecast
outcomes.

YOLOv8sYOLOv8s CSB-YOLOv8sCSB-YOLOv8sYOLOv8s CSB-YOLOv8s

Fig. 12. Comparison of Heat map

In the research, heat maps were produced using Grade
CAM. The areas of the feature map that the algorithm con-
centrates on are shown visually via the heat maps. Regions
in the feature map with high confidence gradient values tend
to be more dark red, and regions with low gradient values
tend to be more dark blue shaded. Figure 12 displays a
heat map contrast of the upgraded model with the original
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(d)(d)(d)

(a)(a)(a)
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(b)(b)

(d)(d)(d)

(a)(a)(a)
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Fig. 13. Comparison of Projected results

model. The graphic illustrates how the YOLOv8s model
is readily disrupted by background noise and pays little
attention to tiny objects. While the BCS-YOLOv8s model
pays more attention to small targets and more effectively
muffles background noise, which makes the model’s attention
more focused on the target and improves the overall model
performance.

In the Figure 13, the left side shows the prediction results
of the improved model BCS-YOLOv8s, and the right side
shows the prediction results of the original model YOLOv8s.
13(a) the original model omits the small target car in the
lower right corner, and the improved model predicts it
correctly; 13(b) the original model also has a large number
of omissions, and the correctness of the prediction of the
improved model is significantly improved; 13(c) the original
model omits the boat in the upper left corner, and the
improved model predicts correctly, and the accuracy of other
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targets is improved; the enhanced model’s capacity for pre-
diction in 13(d) is noticeably better than the original model’s.
This proves that the improvement proposed in this paper
substantially diminishes the omission rate and enhances the
accuracy of predicting small and dense targets.

V. CONCLUSION

In this paper, the initial backbone portion is supplemented
with the BRA attention to enhance the model’s attention to
crucial information, particularly the small targets; second, in
order to address the issue with semantic information loss of
the tiny objects during the feature fusion process, CARAFE
is utilized to substitute the up-sampling module in the neck;
meanwhile, a new small-target detection layer is added to
enhance the model’s ability of small target detection by
introducing a shallow feature map in the backbone into the
feature fusion; and finally, the SIoU is used to improve the
pre-selected frame regression performance to progressively
optimize the model efficiency. The model’s detection ac-
curacy for dense, tiny objects in remote sensing pictures
can be enhanced by the aforementioned changes. Without
a significant increase in model parameters, the mAP of the
algorithm is 89.5% on the DIOR dataset. The improved
average detection accuracy is 3.2% higher compared to
the original model, which significantly improves the target
detection performance and validates the generalization of the
improvement on different datasets. In addition, the improved
model outperforms the classical methods in the same class
in terms of detection accuracy.

Due to the addition of a new detection layer after the im-
provement, the complexity of the model structure increases,
resulting in an increase in the model FLOPs, and there is still
potential for enhancement of the computational resource con-
sumption. Therefore, the next step of the research focuses on
reducing the model resource consumption and the number of
parameters to make the model lightweight without affecting
the model detection effectiveness.
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