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Abstract—Considering the diversity of natural conditions,
including fog,low light,and strong light, as well as the im-
pact of various diseases on leaves, we propose an improved
apple leaf disease detection method based on the YOLOv8n
model. This method first uses a Multi-Scale Progressive Feature
Network(MSPN) as the neck network to integrate multiple
morphological lesions and enhance the model’s information
integration capability. Then, a Global Self Attention Module
(GSAM) is applied at the end of the backbone to help the
model capture spatial relationships in the image and reduce
interference from extremely complex background conditions.
Next, we replace the convolution blocks in the backbone with
Receptive Field-Focused Convolution Block (RFFconv) to effec-
tively improve the model’s recognition accuracy through shared
receptive field weights. Finally, we add a small object detection
layer for small lesions to enhance the model’s generalization
performance. Experimental results show that the proposed
MPGA-YOLOv8 model effectively detects six types of apple leaf
diseases in complex backgrounds, including healthy samples,
with an average mAP accuracy of 74.3%. Compared to classic
models like SSD, Faster RCNN, YOLOv3 tiny, YOLOv5, and
YOLOv6, the mAP performance improves by 20.9%, 38.4%,
9.8%, 10.0%, and 14.3%, respectively. This model enables rapid
and accurate detection and recognition of apple leaf diseases,
providing viable technical support and solutions for disease
prevention and control.

Index Terms—Appleleafdisease detection, Attention mechan-
ism, Field-Focused Convolution, Multi-Scale feature.

I. INTRODUCTION

APPLE as one of the widely grown fruits in the world,
requires a significant investment of manpower and

resources every year to cultivate and cultivate apples, in order
to ensure their quality and yield. However, monitoring and
controlling apple leaf diseases during the growth process
is crucial [1]. The traditional manual monitoring method
is not only inefficient, but also has strong subjectivity and
high misjudgment rate, which further increases the cost of
artificial planting and the effect is not satisfactory.

In the 1980s, scholars began using advanced digital image
processing and feature egineering for diagnosing plant dis-
eases, with research evolving from early image preprocessing
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to feature extraction, disease spot segmentation, and detec-
tion [2]. Image processing techniques include edge detection,
color segmentation, and texture analysis. Feature engineering
involves manual feature extraction and machine learning
algorithms like support vector machines (SVM) and random
forests [3]. While these methods are simple and user-friendly,
they have low accuracy and robustness in complex situations.
Their ability to extract nonlinear features and adapt to varied
scenes is limited. Additionally, extracting features in complex
backgrounds demands significant manpower and resources,
hindering wider adoption.

In recent years, deep learning convolutional neural net-
works have addressed limitations in traditional methods.
Compared to conventional vision techniques, deep learning
models offer higher accuracy, flexibility, and adaptability.
Object detection is a key task in computer vision, known
for its real-time performance. Detection methods are mainly
categorized into single-stage and two-stage detectors. Two-
stage detectors first generate candidate regions, then classify
and refine them [4].Single-stage object detection has seen
significant research in agricultural disease detection. In 2022,
Li et al.[5] proposed a multi-scale feature fusion method
for detecting corn leaf diseases using convolutional neural
networks (CNN). Their experiments tackled complex con-
ditions, such as overlapping occlusions and similar textures
in disease areas, providing a feasible solution for detecting
corn plant diseases. Also in 2022, Chen et al.[6] introduced
a cucumber leaf disease detection method based on an
improved Fast Region-based CNN. Their results showed an
mAP value of 83.

While two-stage detectors excel in accuracy, their com-
plex steps and multiple modules for generating candidate
regions slow down detection speed. In agricultural scenar-
ios requiring real-time performance, single-stage detectors
are more advantageous. To address the limitations of two-
stage detectors in achieving real-time performance, single-
stage detectors directly generate bounding boxes on images
and classify them, with YOLO and SSD series as notable
examples. Jiang et al.[7] proposed an object detection algo-
rithm based on INAR-SSD for real-time detection of apple
leaf diseases. By incorporating the GoogLeNet Inception
structure and Rainbow cascade, they detected five common
apple leaf diseases—Alternaria leaf spot, brown spot, mosaic,
gray spot, and rust—achieving a detection performance of
78.80% mAP. Liu et al.[8] introduced a lightweight Shuf-
fleNetv2 network with a CBAM attention mechanism in
the YOLOv3 model, improving the accuracy of grape leaf
disease and insect detection to 90.4%. The Sun team[9]
enhanced YOLOv5 by adding a Ghost structure (Ghost conv
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and Ghost Bottleneck), CBAM attention mechanism, and a
bidirectional feature pyramid network (BiFPN), achieving
90.9% accuracy for four apple leaf diseases: bitter fruit
disease, anthracnose, ring disease, and fruit rust.Yue et al.[10]
proposed an improved YOLOX Nano model for detecting
apple leaf lesions in 2022. They enhanced the YOLOX Nano
backbone network using an asymmetric ShuffleBlock, CSP-
SA module, and blueprint separable convolution (BSConv),
significantly boosting feature extraction and detection per-
formance.Despite the progress of single-stage detectors in
plant leaf disease detection, challenges remain, such as low
detection accuracy for small diseases, limited identifiable
categories, false detections from multiple diseases on leaves,
and issues in noisy conditions. Considering the complexity
of the apple orchard environment and the need for real-
time detection, this study proposes an improved algorithm
based on the YOLOv8n model to effectively address these
challenges and enhance the detection speed of apple leaf
diseases.

II. MATERIALS AND METHOD

A. Data acquisition and labeling

The AppleLeaf dataset is a comprehensive fusion of four
distinct datasets: the renowned PlantVillage dataset, the Ap-
pleLeaf Disease Segmentation Dataset (ATLDSD), as well as
the specialized PPCD2020 and PPCD2021 datasets[11]. This
integration of diverse sources ensures a robust and varied
dataset, providing a solid foundation for effective apple leaf
disease detection and segmentation.

The PlantVillage dataset is a publicly available large-
scale plant disease image dataset created and maintained
by researchers at Cornell University. The dataset aims to
facilitate the automatic identification and study of plant
diseases and support scientific research in the field of plant
health care and agriculture. Fig.1. shows the dataset.

Fig. 1. AppleLeaf dataset (a) frog eye leaf spots; (b) healthy; (c) powdery
mildew

AppleLeaf Disease Segmentation dataset (ATLDSD) was
collected from four different apple experimental demon-
stration stations. ATLDSD was collected in the laboratory
(about 51.9%) and in the field (about 48.1%) under different
weather conditions. At the same time, because some disease
categories of ATLDSD, PPCD2020, and PPCD2021 are the
same, some images of the three datasets are fused. This is
shown in Fig.2.

From the collected dataset, we selected five types of
diseased leaves and healthy leaves for training, including fro-
geye leaf spot, powdery mildew, rust, scab, and brown spot,
along with six types of healthy leaves. To enhance sample
diversity, we included images taken under varying lighting
conditions and different disease severity levels, selecting a
total of 2,931 images. The dataset was split into a training set

Fig. 2. ATLDSD apple leaf disease segmentation dataset (d) rust disease;
(e) scab; And (f) brown spot

and validation set at a ratio of 8:2. Labelimg software was
used for labeling, where rectangular bounding boxes were
added to each object, and a category label was assigned to
each box. The label information included the category index
or name of the object, the normalized coordinates of the
bounding box center relative to the image dimensions, and
the normalized width and height of the bounding box relative
to the image. This dataset is referred to as ”Appleleaf” (Apple
Leaf Disease). The specific distribution is shown in Table I.

TABLE I
APPLELEAF IMAGE LEAF DISTRIBUTION

Type of disease Quantity
Frogeye leaf spot 495
Powdery mildew 576

Scab disease 576
Brown spot 376

Health 432
Rust 496
Total 2931

B. Data augmentation

Considering the impact of complex orchard environments
on data collection, it is crucial to account for scenarios where
multiple environmental factors may interfere with disease
detection [12]. By enhancing the dataset, we can simulate
and expose the model to various conditions that may exist
in apple orchards. This comprehensive data augmentation
strategy improves the model’s robustness and generalization
ability, enabling it to better handle real-world complexities
and improve the accuracy and reliability of disease detection.

We applied data augmentation techniques such as image
rotation, scaling, and mosaic transformation, and simulated
different weather conditions to create apple leaf datasets un-
der low-light, overexposure, and fog conditions. Additionally,
recognizing the possibility of multiple diseases affecting the
same leaf, we used Photoshop for special image manipula-
tions to reflect these conditions. Through this augmentation
process, we expanded the dataset to 6,150 images, enhancing
the model’s ability to learn more features and improve
generalization. The result enhanced images are shown in
Fig.3.

C. Description of YOLOv8 algorithm

YOLOv8 offers a new state-of-the-art (SOTA)model de-
signed to meet the needs of various scenarios and supports
tasks such as image classification, object detection, instance
segmentation, and pose detection [13]. YOLOv8 is a fast
and accurate object detection algorithm that uses a single-
stage detection approach and an anchor-based method for
detecting objects. It employs a powerful backbone network
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Fig. 3. Enhanced image (a) original image (b) fog (c) exposure (d) rotation
(e) Mosaic (f) multi-disease

and a feature pyramid network to extract image features,
along with an attention mechanism and an improved loss
function. This enables the model to comprehensively con-
sider factors like bounding box position, category prediction,
and confidence, resulting in high performance and efficiency
in object detection tasks.

Considering the real-time performance and accuracy re-
quirements of the task, YOLOv8 has higher accuracy and
faster speed in object detection while maintaining the char-
acteristics of lightweight, so YOLOv8 is selected as the
baseline model of this study.

The network structure of YOLOv8 is mainly composed of
three parts: backbone network, neck network and detection
head.

Backbone network: a series of convolution and deconvo-

lution layers are used to extract features. At the same time,
residual connection and bottleneck structure are also used
to reduce the size of the network and improve performance.
In this part, the C2f module is used as the basic constituent
unit. Compared with the C3[14] module of YOLOv5, the C2f
module has fewer parameters and better feature extraction
ability.

Neck network: Multi-scale feature fusion technology is
used to fuse the feature maps from different stages of Back-
bone to enhance the feature representation ability. Specifi-
cally, the Neck part of YOLOv8 includes a SPPF module, a
PAA[15] module, and two PAN[16] modules.

Detection head: It is responsible for the final object detec-
tion and classification tasks, including a detection head and
a classification head. The detection head contains a series of
convolutional and deconvolution layers to generate detection
results; The classification head uses global average pooling to
classify each feature map Fig.4. shows the YOLOv8 network
model.

III. THE PROPOSED ALGORITHM

A. Multi-Scale Progressive Feature Network

The proposed Multi-Scale Progressive Feature Network
structure is illustrated in Fig.5. The first stage involves the
fusion of two features with different resolutions. As the
feature extraction process progresses from the bottom to the
top of the backbone network, we gradually integrate high-
level features related to leaf diseases. Through asymptotic
fusion, we interactively combine the semantic information
from low-level features with high-level features. To ensure

Fig. 4. YOLOv8 network model diagram
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dimensional alignment and facilitate feature fusion, we uti-
lize 1×1 convolutions and bilinear interpolation methods
for upsampling the features. Additionally, we apply various
convolution kernels and strides for downsampling, based on
the required downsampling rate.

Fig. 5. Multi-Scale Progressive Feature Network (MSPN)

To optimize the multi-level feature fusion process, this
study introduces a new data-driven method called Adaptive
Spatial Feature Fusion (ASFF). ASFF incorporates learnable
weights that dynamically adjust the contribution of feature
maps from different scales. By learning these weights, the
model can adaptively select and fuse features based on
the disease characteristics at various scales. Additionally,
ASFF employs a spatial alignment operation to ensure that
feature maps of different scales maintain the same spatial
resolution during fusion. Given the challenge of detecting
small-sized lesions in apple leaf diseases, we added a small
object detection layer to YOLOv8. This allows us to perform
feature fusion across four levels of features with varying
resolutions. We applied 2x2 convolution with a stride of 2 for
2× downsampling and 4x4 convolution with a stride of 4 for
4× downsampling, among others. After the feature fusion, we
used four residual units to continue learning features, similar
to ResNet, with each residual unit comprising two 3x3 convo-
lutions. Recognizing that features from different levels con-
tribute differently to disease characteristics, Adaptive Spatial
Feature Fusion (ASFF) dynamically allocates spatial weights
to enhance critical levels. By assigning varying degrees of
importance to these features, ASFF improves the model’s
ability to capture and represent subtle and complex patterns
of leaf diseases. This process not only boosts the recognition
accuracy for key disease indicators but also ensures that
less relevant features are downweighted, thereby optimizing
the model’s focus on significant areas, the Adaptive Spatial
Feature Fusion structure demonstrated in Fig.6.

The figure shows the fusion process of three levels of
features. Since the features of the three layers are fused,
let the feature vectors representing the positions (i, j) from
layer n to layer l be represented. The resulting feature vector,
represented as ylij , is obtained through adaptive spatial fusion
of multi-level features, consisting of a linear combination of
feature vectors xn→l

ij is shown in equation (1).

ylij = αl
ij · x1→l

ij + βl
ij · x2→l

ij + γl
ij · x3→l

ij (1)

In the formula, the sum of αl
ijβ

1→l
ij γl

ijα
l
ij +βl

ij +γl
ij = 1

Fig. 6. Adaptive patial fusion(ASFF)

represents the spatial weight of the third level features at
the first level. Under constraints, considering the difference
in the number of fused features in each stage of MSPN,
an adaptive spatial fusion module with a specific number of
stages is implemented.

B. Global Self Attention Module

In apple leaf disease detection, different types of lesions
can coexist in the same leaf, and some smaller areas of the
lesion may be covered by surrounding healthy parts or other
lesions, which often affects the accuracy of the detection
results. To solve this problem, we choose to add an attention
mechanism at the end of the backbone network, and the
Global Self-attention module (GSAM) effectively extracts
global information using sparse token region relationships. It
can quickly focus on key areas and extract the features of the
lesion when faced with complex environments. However, the
non-overlapping space reduction used to reduce the number
of tokens disrupts the spatial structure near the block bound-
aries and lowers the quality of the tokens. To address this
issue, the Global Self-Attention Module (GSAM) introduces
overlap spatial reduction (OSR) by using larger overlapping
patches to represent the spatial structure near the patches
better. Firstly, we perform a linear transformation operation
on the input feature X, mapping it to the query vector Q. At
the same time, we use the OSR module to downsample the
input feature X. In this study, we reduce the spatial resolution
of the feature map through depthwise separable convolution.
The downsampled feature map s is convolved through a local
convolution layer to generate a new feature map. Then, the
convolved feature map is added to the original downsam-
pled feature map s and mapped to the final key vector K
and value vector V. This step is to preserve some of the
original information while downsampling and enhancing the
feature representation through residual connections. Finally,
we reshape and transpose the QKV three vectors and send
them to the Multi-Head Self Attention mechanism. As shown
in Fig.7.

The OSR module is instantiated as a depthwise separable
convolution, where stride follows PVT and the kernel size is
equal to stride plus 3. It can also be expressed using equations
(2) (3) (4) (5) :

Y = OSR(X) (2)
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Fig. 7. Global Self-Attention Module (GSAM)

Q = Linear(X) (3)

K,V = Split(Linear(Y + LR(Y ))) (4)

Z = Softmax(
QKT

√
d

+B)V (5)

Where LR() represents a local refinement module instanti-
ated by a 3x3 depth convolution, B is a position bias matrix,
and d is the number of channels in each attention head.
The global self-attention mechanism is added to capture
the long-term distance information, and the sparse labeled
region relationship is used to extract the global information
efficiently, so as to improve the ability of the model to extract
features.

C. Receptive Field-Focused Convolution Block
The spread and reproduction of pathogens, changes in

environmental conditions, plant defense responses, fusion of

disease spots, and the growth and aging of leaves themselves
can all lead to changes in the shape and size of disease
spots. To address this issue, we introduced Receptive Field-
Focused Convolution Block (RFFconv) to replace the origi-
nal convolutional blocks in the backbone network. RFFconv
focuses on the spatial features of receptive fields. Firstly,
adaptive average pooling is used to adjust the shape of the
input feature map, and the Softmax function is introduced
to calculate the weights w1, w2, and w3. By adding atten-
tion mechanism to adjust the parameters of the convolution
kernel, it can dynamically respond to changes in different
regions. Afterwards, three non shared convolutional layers,
group1, group2, and group3, were generated for separate
feature extraction and updating. Through the non shared
features, different leaf diseases were learned. This flexibility
enables the model to effectively capture and process the
temporal changes of apple leaf lesions. By enhancing the
understanding and processing of local areas, RFFconv can
improve the accuracy and efficiency of lesion detection,
and adapt to the dynamic changes in lesion morphology

Fig. 8. Receptive Field-Focused Convolution Block (RFFconv)
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Fig. 9. MPGA-YOLOv8 model structure diagram

and size, thereby more accurately identifying and analyzing
lesion features. The convolutional structure of receptive field
attention demonstrated in Fig.8.

Receptive Field-Focused Convolution Block (RFFconv) is
a method based on non-overlapping sliding Windows. When
a 3×3 convolution kernel is used to extract features, each
3×3 window represents a receptive field slider. This method
not only emphasizes the importance of different features
within the receptive field slider, but also prioritises the spatial
features of the receptive field. This method not only empha-
sizes the importance of different features, but also solves
the problem of parameter sharing of traditional convolution
kernels, thereby improving the learning ability of the model
in complex image patterns. By dynamically generating the
spatial features of the receptive field, RFFconv can more
accurately capture and process the change characteristics of
leaf disease spots, making the disease spot detection more
accurate and efficient.

D. MPGA-YOLOv8 model

This study proposes MPGA-YOLOv8 for apple leaf dis-
ease detection, based on the YOLOv8n model. MPGA-
YOLOv8 improves accuracy while maintaining detection
speed. We enhance the Attention Mechanism (GSAM),
Multi-Scale Progressive Feature Network (MSPN), and Re-
ceptive Field-Focused Convolution Block (RFFconv).We add
the GSAM attention mechanism after the SPPF structure in
the backbone network. This focuses on disease features, sup-
presses useless information, and improves detection accuracy.
The neck network is replaced by MSPN, which fuses irregu-
lar disease features at multiple scales and combines context
information to enhance the model’s representation.RFFconv
replaces the backbone network convolution. This adaptively
adjusts the network’s attention to objects of different scales,
improving the detection of small and dense objects. Detecting
small lesions early is challenging, so we add a small object

detection layer [17] to YOLOv8n. This extracts small object
features on high-resolution images, enhancing small object
detection performance. MPGA-YOLOv8 is shown in Fig.9.

IV. EXPERIMENT

A. Experimental equipment and parameter Settings

The model runs on ubuntu system and uses pytorch deep
learning framework for training and testing.Device Specifi-
cations: Intel(R) Xeon(R) Gold 6139M CPU @ 2.30GHz
processor, 32GB RAM,NVIDIA GeForce RTX 3060 graph-
ics card, 12GB video memory, CUDA version 11.6, cudnn
version 8.9.5, python version 3.9. The image size was nor-
malized to 640x640, the initial learning rate was set to 0.01,
the learning rate was reduced by cosine annealing method,
the number of training rounds epoch was set to 200, and the
image batch size was 32. As shown in Table II.

TABLE II
HYPERPARAMETER SETTINGS

Hyperparameter Settings value
imgsz 640x640

Workers 8
Lr0 Auto

Momentum 0.01
Epochs 200

Batch size 32
Patience 50

B. Evaluation Metrics

YOLOv8n model algorithm performance evaluation in-
dicators include model accuracy, recall, mean Average
Precision (mAP)[18], model size, floating-point arithmetic
(FLOPS), FPS, etc., which are used to measure the accuracy
and real-time performance of the model in object detection
tasks. As the most common evaluation index, Precision
represents the meaning that precision measures the accuracy
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of the model in the samples predicted as positive samples.
More attention is paid to the accuracy of the model predicted
as positive samples, and the calculation formula (6) is as
follows:

precision =
TP

TP + FP
(6)

Recall is a key indicator of object detection, meaning that
recall measures the proportion of positive samples correctly
detected by the model, and more attention is paid to the
coverage of positive examples by the model. The calculation
formula (7) is as follows:

Recall =
TP

TP + FN
(7)

Class Mean Average Precision (mAP) is the overall perfor-
mance of the model in multi-classification tasks and object
detection tasks, which is determined by precision and Recall.
AP is the integral of precision and recall, and mAP is
the average of AP. TP stands for the number of positive
samples correctly identified by the model, FP stands for
the number of negative samples incorrectly identified by the
model as positive samples, and FN stands for the number
of positive samples incorrectly identified by the model as
negative samples. n is the number of disease species. Formula
(8) and (9) are calculated as follows:

AP =

∫ 1

0

P (R)dR (8)

mAP =

∑n
i=1 APi

n
(9)

The number of floating-point operations required to pro-
cess an image allows a fair comparison of the detection speed
between different algorithms. FLOPs and FPS are used as
evaluation metrics. For convolutional layers, the formula is
as follows:

FLOPS = 2HW (Cink
2 + 1)Cout (10)

Where is the number of channels of the input tensor of the
convolution layer, is the number of channels of the output
tensor of the convolution layer, and K refers to the size of
the convolution kernel Cin/Cout.

C. Display of results

Through the improvement of YOLOv8n model for apple
leaf disease detection task, AppleLeaf dataset was used for
training and testing, and the baseline model was compared.
The class average precision is increased by 9.5% when
iou=0.5, and it can be seen that brown spot, powdery mildew
and scab diseases have a relatively large improvement, in-
creasing by 15.9%, 10.7% and 7.8% respectively. At the same
time, among all disease types, the recognition accuracy of
scab disease is low, which has been greatly improved after
improvement. The results are shown in Table III.

TABLE III
MODEL EVALUATION

Models YOLOv8n(AP%) MPGA-YOLOv8(AP%)
all 0.865 0.926

Brown spot 0.797 0.956
Frogeye leaf spot 0.957 0.935

Health 0.905 0.958
Powdery mildew 0.839 0.946

Rust 0.975 0.966
Scab 0.717 0.795

The improved model was tested under different natural
backgrounds and compared with the baseline model, which
was divided into haze weather, strong light conditions, nor-
mal weather and the presence of multiple diseases on leaves.
The improved model MPGA-YOLOv8 accurately detected
disease spots in these extreme environments, and the im-
proved model paid more attention to small-size disease spots.
The improved model can learn the disease characteristics
well and adapt to the size changes of different diseases.
The undetected disease spots are marked with red or yellow
circles, and the baseline model of YOLOv8n is compared
with the improved model, the results are shown in Fig.10.

The baseline model YOLOv8n and the improved model
MPGA -YOLOv8 were trained for 150epochs respectively,
and the accuracy (Presicion), Recall, class average precision
mAP@0.5 and mAP@0.95 were compared, and the results
are shown in Fig.11.

To further explore the interpretability of the model, this
paper uses the Grad-CAM method to visualize the class
activation maps, as shown in Fig 12. This approach allows
us to visually observe the model’s attention distribution
during object detection and the degree of focus on different
regions.In the experiment, we compared the YOLOv5s and
YOLOv8n models, using the SPPF layer as the detection
layer. We visualized and analyzed four representative leaf

Fig. 10. Comparison of test charts before and after model improvement. (a) fog condition (b) frog eye leaf spot under normal weather condition (c) same
plant multiple disease condition (d) rust disease under normal weather condition (e) scab disease under normal weather condition(f) strong light condition
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Fig. 11. Model Performance comparison plot (Precision, Recall, mAP@0.5, mAP@0.95)

disease images. The comparison of Grad-CAM heatmaps
clearly shows that the MPGA-YOLOv8 model exhibits more
concentrated and relevant activations in key task areas, accu-
rately identifying and locating disease regions. In contrast,
the other models have more scattered attention points and
lower accuracy, indicating that the MPGA-YOLOv8 model
performs better in task understanding and detection.

D. Ablation experiment

To further validate the effectiveness of the experiment and
improve the performance of the algorithm, we conducted
ablation experiments by comparing the individual modules
and controlling variables to maintain input consistency. All
images and training epochs remained unchanged. To better
evaluate the experimental results of our model, we used
mean Average Precision (mAP@0.5) and Recall as our
performance metrics, which are critical for accurate disease
identification and localization. In the experiment, we se-
quentially added Multi-Scale Progressive Feature Networks
(MSPN), Receptive Field Focusing Convolution Blocks (RF-
Fconv), Global Self-Attention Modules (GSAM), and Small
Target Detection Layers (STD layer) to the baseline model

YOLOv8n. The experimental results showed that, without
any algorithmic improvements, the baseline model achieved
an mAP of 64.8% and a Recall of 40.5%. After adding
the Multi-Scale Progressive Feature Network (MSPN), the
mAP increased by 4.4%,and Recall increased by 0.7%. This
significant improvement suggests that the fusion of multi-
level features effectively enhanced the lesion characteristics,
though the localization performance for the disease was not
significantly improved.Next, we sequentially added the Re-
ceptive Field Focusing Convolution Block (RFFconv) and the
Global Self-Attention Module (GSAM). The results showed
that when all three modules were updated together, the model
achieved the best performance, with the mAP increasing by
7.2% and Recall increasing by 7.1%. This indicates that
RFFconv enhanced the flow of information between different
layers of the deep network, expanding the receptive field
while focusing more on the changes in lesion features, while
GSAM helped the model better understand the global context
of the image, leading to more accurate object recognition
and localization.Finally, to improve the detection ability for
small lesions, we incorporated the Small Target Detection
Layer (STD layer), which ultimately increased the mAP
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Fig. 12. Grad-CAM visualization results of different algorithm

by 9.5% and Recall by 12%. The model achieved its best
performance. Therefore, the experimental results demonstrate
that our proposed improvements are effective and applicable.
The results are shown in Table IV.

TABLE IV
ABLATION EXPERIMENT

MSPN RFFconv GSAM STD layer mAP@0.5 Recall
64.8% 40.5%

✓ 69.2% 41.2%
✓ 67.3% 42.9%

✓ 68.1% 42.6%
✓ ✓ 66.3% 42.7%
✓ ✓ 67.4% 43.2%
✓ ✓ ✓ 72.0% 47.6%
✓ ✓ ✓ ✓ 74.3% 52.5%

E. Comparison of state-of-the-art models

This study chooses SSD, Faster RCNN, YOLOv3-tiny,
Retinanet, EfficientDet, YOLOv5, YOLOv6, YOLOv8n and
other YOLO series detection models for comparison. The
model accuracy mAP@0.5, model size and the number of
images processed by the model per second are used as the
evaluation criteria. by comparing the experimental results of
different models, MPGA-YOLOv8 achieves the best detec-
tion accuracy with an mAP@0.5 of 0.743. This result is
significantly higher than other models. Its model size is only
6.07 MB, and the computation is 16.1 GFLOPS, showing
efficient performance. In comparison, SSD and Faster RCNN

have mAPs of 0.534 and 0.359, with larger model sizes
and higher computation requirements. They are less efficient
than MPGA-YOLOv8. Lightweight models like YOLOv5
and YOLOv8n have advantages in size and computation but
fall behind MPGA-YOLOv8 in accuracy. MPGA-YOLOv8
balances accuracy, model size, and computation, making
it the most effective model.The experimental results are
shown in Table V. Furthermore, considering the practical

TABLE V
MODEL COMPARISON

Models mAP@0.5 Model size (MB) FLOPS(G)
SSD 0.534 32.07 123.3

Faster RCNN 0.359 37.66 176.04
YOLOv3-tiny 0.645 23.24 19.0

Retinanet 0.625 26.15 3.7
EfficientDet 0.601 7.16 9.5

YOLOv5 0.633 4.78 7.2
YOLOv6 0.600 8.08 11.9

YOLOv8n 0.648 5.76 8.2
MPGA-YOLOv8 0.743 6.07 16.1

needs of disease detection tasks, MPGA-YOLOv8 achieves
superior inference speed and higher FPS performance. The
comparison with these advanced models further demonstrates
the superiority of the MPGA-YOLOv8 model, whose lower
model complexity makes it more suitable for deployment
on edge devices. The result of inference speed is shown in
Fig.13.
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Fig. 13. Inference Speed Comparison Chart

V. CONCLUSION

Due to the specific challenges of apple leaf disease
detection, the small size of frogeye leaf spots and rust
spots complicates the task[19]. Small lesions are difficult
for models to accurately identify and require extremely
high resolution and fine feature extraction capabilities to
ensure precise localization and detection of the diseases.
Additionally, the irregular shape of scab spots and the
evolving symptoms of the disease over time contribute to this
complexity. Diseases at different developmental stages may
exhibit varied visual characteristics, further complicating
model training and detection.to tackle these challenges, this
study proposes the MPGA-YOLOv8 object detection model,
based on an improved YOLOv8n. We combine the origi-
nal neck network with the Multi-Scale Progressive Feature
Network (MSPN), enhancing the model’s performance in
detecting objects of varying sizes through feature fusion and
enhancement techniques. The Global Self Attention Module
(GSAM) has been incorporated at the end of the backbone
network to improve the model’s ability to represent disease
points by capturing global information and long-range de-
pendencies. Using the Receptive Field-Focused Convolution
Block (RFFconv) in place of inner convolutions in the
backbone allows for more accurate capture and processing
of the time-varying characteristics of leaf lesions. Finally,
to address the challenge of detecting small target lesions,
we added a small target detection layer to further extract
features of these lesions. Through these improvements and
optimizations, we successfully addressed the detection of six
leaf disease samples (including healthy samples), focusing on
issues related to varying lesion sizes, the detection of small
target lesions, complex environments (fog, strong light, weak
light), and missed or false detections caused by multiple
diseases present on the same plant[20].
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