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Abstract—Simulated Moving Bed (SMB) chromatographic

separation technology is an innovative method that combines
traditional fixed-bed adsorption operation with real moving
bed (TMB) chromatographic separation technology. In order
to accurately evaluate the purity and yield of extracted and
residual in the SMB chromatography separation process, a
extreme learning machine soft-sensing model based on
multi-strategy fusion coati optimization algorithm (COA) was
proposed. This model selects auxiliary variables based on the
analysis of the SMB chromatographic separation process. The
proposed multi-strategy fusion COA includes logistic mapping,
prey position vector and meme grouping to enhance the
randomness and diversity of COA. Simulation results
demonstrate that the optimized ELM can proficiently predict
the key pecuniary and technical index of the SMB
chromatography separation process.

Index Terms—SMB chromatographic separation process,
Soft-sensor modeling, Extreme learning machine, Coati
optimization algorithm, Multi-strategy fusion

I. INTRODUCTION
MB chromatography separation technology is a

groundbreaking method of separation that has emerged
from traditional fixed-bed adsorption operations and moving
bed chromatography [1]. By periodically operating multiple
columns to simulate the counter-current flow between two
phases, this technology allows for a continuous supply of
feed and removal of products. SMB chromatographic
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separation technology is widely recognized for its
exceptional continuity, low energy consumption and high
efficiency in adsorption separation processes. As a result, it
has found extensive applications in various industries,
including chemical, biological and food [2]. The SMB
system exhibits non linearity, non-ideal characteristics, and
non-equilibrium behavior in continuous production. With
multiple degrees of freedom, this complex system faces
challenges in simultaneously achieving optimal
performance indicators, such as product purity, yield and
mobile phase consumption in a stable periodic state. The
separation mechanism of SMB chromatography is intricate,
with various elements influencing the effectiveness of the
separation process. The sensitivity of these operating
elements and disturbances adds to the complexity of
maintaining the process at its optimal operating point over
an extended duration [3]. Obtaining accurate measurements
of purity and yield of components presents considerable
difficulties in real-world applications. Constraints, such as
limited access to advanced detection devices and site
limitations, hinder the ability to obtain real-time pecuniary
and technical index of SBM chromatographic separation
during actual production. Consequently, achieving direct
quality closed-loop control becomes a significant challenge
in practice [4-5]. The soft-sensor technology offers an
effective solution by enabling the prediction of key
indicators in complex industrial processes [6]. Ref. [7]
investigated various auxiliary variables and key pecuniary
index for soft-sensing models in SMB chromatographic
separation technology, which can accurately predict the
purity of the extract and raffinate solutions. A
accommodating soft-sensing modeling method by utilizing
the neuro-fuzzy network with dynamic structure and a
temporal sliding window approach. Additionally, a
soft-sensing model was implemented by combining the
neuro-fuzzy network with with Kalman filter algorithm,
linear least squares method and extended Kalman filter
method [8]. Ref. [9] proposed a method for predicting the
purity of extracts and raffinates in the SMB chromatography
separation process by combining the improved particle
swarm optimization algorithm with the least mean square
method to optimize the neural fuzzy inference system. Ref.
[10] proposed a soft-sensor modeling method based on the
neural fuzzy system for predicting the component purity of
extracts and raffinates in the SMB chromatographic
separation process.
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Extreme Learning Machine (ELM) is a new type of
feed-forward artificial neural network (ANN), which has a
similar structure with the traditional back-propagation (BP)
ANN, but with a fixed quantity of layers including the input
layer, hidden layer and output layer. Unlike the BP ANN,
the ELM model randomly assigns weights and offsets
between the input layer and hidden layer. On the other hand,
the weights between the hidden layer and output layer are
determined through the least squares method, which
minimizes the difference between the actual and desired
output values. Thanks to its efficient training time, sweeping
generalization capability and efficient performance, the
ELM model has found widespread application in various
fields, such as face recognition, fault diagnosis, soft-sensing
modeling and intelligent control of photovoltaic systems.
Consequently, it has proven to be an effective tool in these
applications [11-16]. Additionally, ELM can handle
large-scale datasets, which is crucial for soft-sensing as
monitoring and estimation systems often involve vast
amounts of sensor data. To address the issue of excessive
hidden layer neurons in ELM, an improved version of ELM
was proposed to provide an effective solution for its
application in soft-sensing modeling technology [17]. The
learning algorithm of the feed-forward ANN is an advanced
technology that offers significant advantages. It greatly
improves training efficiency and demonstrates strong
generalization capabilities, making it highly practical in
various real-world applications. One popular
implementation of this algorithm is the extreme learning
machine (ELM), which has gained widespread adoption in
computer vision, natural language processing, time series
analysis, and other fields [18-22]. However, using a fixed
quantity of the hidden layer nodes in ELM may lead to a
decline in prediction accuracy and stability due to the
stochastic nature of the hidden layer biases and input
weights. To tackle this issue, researchers have proposed
various ELM variants that utilize swarm intelligence
optimization algorithms, such as cuckoo search (CS),
particle swarm optimization (PSO), grey wolf optimizer
(GWO) and genetic algorithm (GA) [23-25]. In Ref. [26],
the PSO algorithm was used to enhance the performance of
ELM. To improve the accuracy of PV power generation
prediction, a short-term PV power prediction model was
presented by combining the variation mode decomposition,
the improved archery algorithm and the improved ELM.
Firstly, the PV data is decomposed into variation modes, and
then a hybrid kernel function is applied to enhance the ELM.
The archery algorithm is subsequently enhanced by using a
random reverse learning strategy, followed by the utilization
of the improved archery algorithm to optimize the nucleus
elements of the hybrid nucleus-based ELM and establish a
prediction model [27]. To derive the distribution law and
prediction model for extreme rainfall in Hebei Province,
researchers optimized the ELM model by using an improved
pigeon swarm algorithm (MPIO-ELM), which was
employed to forecast the extreme rainfall [28]. For
addressing the issues of low accuracy and efficiency in
predicting soil fertilizer supply in traditional agricultural
irrigation systems, a crop soil fertilizer supply prediction
model was introduced based on an improved sparrow search
algorithm and ELM [29]. Additionally, Ref. [30] presents an

integrated learning approach that enhances the ELM through
the utilization of sample entropy and an improved Pathfinder
algorithm. Accurate load forecasting greatly impacts the
security, stability, and pecuniary benefit of power grids, thus
making it a crucial component in power grid dispatching. To
tackle the volatility caused by randomly generated input
layer weights and hidden layer thresholds in ELM, Ref. [31]
proposed a load prediction method that employs an
improved GA to optimize ELM. Certain critical variables in
the wastewater treatment process, like biochemical oxygen
demand and chemical oxygen demand, can be challenging to
measure accurately and promptly through traditional means.
In order to overcome this challenge, a novel soft-sensing
method is proposed based on ant-lion optimizer to construct
a soft-sensing model [32].
Based on multi-strategy fusion COA, an ELM

soft-sensing model of SMB chromatographic separation
process was established with the component purity and yield
of extract and residual solution as prediction index. The
structure of the paper is described as follows. The second
section introduces SMB chromatographic separation
technology and soft-sensing model structure. The third
section introduces the ELM. The fourth section introduces
the COA and the multi-strategy fusion COA. The fifth
section carries out the experimental simulation and result
analysis. Finally, the conclusion of the paper is given.

II. SMB CHROMATOGRAPHIC SEPARATION
TECHNOLOGY AND SOFT-SENSOR MODELING

A. SMB Chromatography Separation Technology
Simulating the reverse flow of the fixed phase adsorbent,

the SMB chromatography continuously reverses the position
of each inlet and outlet. The intention of SMB is to create a
loop by connecting the starting and ending phases of
multiple chromatographic columns. By systematically
moving the positions of the eluent inlet, extraction outlet,
raw material inlet and raffent outlet along the direction of the
mobile phase, the flow of the fixed phase and the mobile
phase simulate a counter-current movement. This setup
allows for the separation of two components. In Fig. 1, the
process principle of SMB chromatographic separation is
illustrated by using the separation of components A and B as
an example [27].

Fig. 1 Working principle of SMB chromatographic separation process.
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Component A exhibits a stronger adsorption capacity than
component B. The eluent used for desorption is represented
by D, while N, F and M stand for the extract, feed and
raffinate, respectively. The process can be divided into four
zones, labeled as 1, 2, 3 and 4, each performing a specific
function based on the position of the liquid inlet and outlet
and the role of the entire bed.

B. Soft-sensor Model of SMB Chromatographic Separation
Process
Measuring the purity and yield of product components in

real time during the SMB chromatography adsorption
separation process presents a significant challenge.
Additionally, there are various factors that can affect the
changes in component purity and yield. Therefore, the
research on the soft-sensing model that can predict
component purity and yield during the separation process
holds great theoretical significance and engineering value.
The fundamental concept behind soft-sensing technology is
to use easily measurable variables as substitutes for complex
or temporarily unavailable variables and then make
estimations or inferences based on mathematical
relationships. The soft-sensing model can be expressed as
follows:

ˆ ( , , , , )X f d u y X t (1)

where, X


is the estimated variable, d is the disturbance
factor, u is the control input variable, y is the measurable
output variable and X  is the offline sampling value of the
estimated variable or the analytical calculation value. The
soft-sensing model structure of the SMB chromatography
separation process is shown in Fig. 2.
Based on prior knowledge and the SMB chromatography

separation process, the following variables have been
selected as auxiliary variables in the model.
1) Flow rate of the feed-stock liquid at the inlet pump (F

pump), measured in ml/min.
2) Flow rate of the flushing pump (D pump), measured in

ml/min.

3) Time required for valve switching, measured in
minutes.
Choose the following variables as output variables for the

model:
1) Concentration of the desired substance in the effluent at

port N. If there are impurities present at port N, the
concentration will be less than 1.
2) Concentration of impurities in the effluent at port M. If

there is a flow of the desired substance exiting at port M, the
concentration will be less than 1.
3) Ratio of the mass of the desired substance flowing out

at port N to the mass of the sampled desired substance,
representing the yield of the desired substance at port N.
4) Ratio of the quality of the impurity flowing out at port

M to the quality of the injected impurity, indicating the yield
of impurity at port M.
The primary and auxiliary variables utilized in the SMB

chromatography separation soft-sensor model can be found
in Table Ⅰ. The auxiliary variables act as inputs, while the
purity of the desired substance in the effluent at port N, the
purity of the impurity in the effluent at port M, the yield of
the desired substance at port N and the yield of the impurity
at port M are utilized as outputs. The interrelationship
between these variables exhibits non-linearity and is
modeled by using ELM, which helps develop a prediction
model for relevant pecuniary and technical index. The
soft-sensing model involves 1000 sets of data presented in
Table Ⅱ.

III. EXTREME LEARNING MACHINE

The structure of ELM, a novel version of Single-hidden
layer feed-forward neural network (SLFN), bears
resemblance to the structure of BP ANN. To illustrate, Fig. 3
presents a diagram of the ANN model for ELM. consisting
of three layers (the input layer, the hidden layer and the
output layer). If the ELM model has n input variables x ,
then there will be n corresponding neurons in the input
layer.

Fig. 2 Soft-sensor model structure.

TABLE Ⅰ. VARIABLE UNITS AND RANGES

Name Injection pump flow
capacity (F pump)

Injection pump flow
capacity (D /pump)

Switch
time

Purity of target
substance in N port

Impurity purity
in M port

Yield of target
at port N

Yield of impurity
at port M

Unit ml/min ml/min min mg/ml mg/ml % %

Range 0-1 0-1 0-1 11-20 0-1 0-100 0-100
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TABLE Ⅱ. DATA OF SMB CHROMATOGRAPHIC SEPARATION PROCESS

Serial
quantity

F pump flow rate
(ml/min)

D pump flow
rate (ml/min)

Switch time
(min)

Purity of target
substance in N port

(%)

Impurity purity in
M port (%)

Yield of target
at port N (%)

Yield of impurity
at port M (%)

1 0.15 0.50 11.00 41.25 24.96 12.53 64.20

2 0.15 0.50 12.00 85.11 34.21 32.16 88.75

3 0.15 0.50 13.00 97.38 42.46 92.03 97.35

4 0.15 0.50 14.00 99.55 51.24 63.61 99.42

5 0.15 0.50 15.00 99.92 59.75 74.12 99.89

6 0.15 0.50 16.00 99.99 69.69 83.27 99.98

7 0.15 0.50 17.00 100.00 84.55 92.97 100.00

8 0.15 0.50 18.00 100.00 95.32 98.11 100.00

9 0.15 0.50 19.00 100.00 99.37 99.75 100.00

… … … … … … … …

1000 0.15 0.50 20.00 100.00 99.98 99.98 100.00

Fig. 3 ELM neural network structure.

Continue setting according to the corresponding rules, if
the quantity of neurons in the prediction layer is m , then the
quantity of output variable y is also m . If the weight of
both the input layer and the hidden layer is w , then there is:
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(2)

The fundamental structure of ELM is the fully connected
structure.  is set to the link weight between the output
layer and the hidden layer:
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(3)

where, jk represents a connection weight of the kth
neuron of the output layer and the jth neuron of the hidden
layer. Set b as the threshold for hidden layer neurons:
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 (4)

Continue with a training set, and then set its sample
quantity to Q , and obtain two essential matrices, which are
the output matrix Y and the input matrix X .
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Finally,  g x is set as the activation function of neurons
in the hidden layer, which can be obtained from the ELM
shown in Fig. 3, and the output T of ELM can be
represented as:
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where,  1 2i i i inw w w w  ,  1 2
T

i i i inx x x x  .
In this case, Eq. (6) can be expressed as:

'H T  (7)

where, 'T is the transpose of T . H is the hidden layer
output matrix of ELM, whose expression can be expressed
as:
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If the quantity of training set samples in ELM is the same
as the quantity of neurons in the hidden layer, then according
to the w and b in the above formula, the ELM can also
approximate the training samples with high precision, that
is:

1
0

Q

j j
j
t y



  (9)

where,  1 2 1,2,
T

j j j mjy y y y j Q     . The
actual training set sample Q is usually a relatively large
value. In general, considering the computational efficiency,
the quantity of hidden layer neurons K in the ELM ANN
will not be more than the amount of Q . The training error of
the ELM model can approximate an arbitrary 0  ,
namely:

1

Q

j j
j
t y 



  (10)

If the activation function  g x of the ELM is
continuously differentiable, the elements in the ELM model
can experience minimal changes. Both w and b remain
constant throughout the training process, and their initial
values are arbitrarily initialized. During this operation, the
solutions of the subsequent equations can be considered as
specific values, representing the connection weights
between the hidden layer and the output layer of ELM.

'

1
min( )
j

H T


 (11)

The calculation result of Eq.(11) is as follows:

'=H T


 (12)

where, H  is called the Moore-Penrose generalized inverse
of the output matrix H of the hidden layer of ELM. It
should be noted here that it takes a lot of learning time to
compute the inverse matrix efficiently, so the solution of the
inverse matrix is very important.
It can be seen from the above steps that the weight w and

offset b of ELM are all arbitrary choices, and how to deal
with these two values will greatly affect the results.
Therefore, it is important not only to know the excitation
function  g x and its element  of the hidden layer
neurons, but also consider the quantity of hidden layer
neurons in ELM. The following is the specific training
process of ELM.
(1) Firstly, the quantity of neurons is given, and the

weight w and offset b of the ELM model are arbitrarily
selected;
(2) Given the qualified activation function of ELM, H in

the ELM model is calculated;

(3) Finally, the output layer weight '=H T 
 

： in the
ELM model is calculated.

IV. COATIS OPTIMIZATION ALGORITHM

A. Algorithm Initialization Process
The natural behaviors of coatis have served as the

foundational inspiration for the design of COA. In the COA,
Coatis are considered as members of the population, and
their position in the search space determines the value of the
optimal variable. Therefore, the placement of Coatis in COA
represents a potential solution to the problem being
addressed. The COA implementation starts by randomly
assigning the positions of Coatis in the search space by using
Eq. (13).

 
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lbubrlbX jjjiji
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(13)

where, iX is the position of the ith Coati in the search space,
jiX , is the value of the jth optimal variable, N is the

quantity of Coatis, m is the quantity of optimal variables, r
is a random real quantity between 0 and 1, and jlb and jub
are the local upper and lower limits of the jth optimal
variables, respectively. The population matrix X represents
the coatis population in COA mathematically.
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The intention function is evaluated with different values
by associating optimal variables with candidate solutions.
These values are expressed through Eq. (15).
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(15)

where, F is the vector of the obtained intention function and
F is the value of the intention function based on the ith
Coati.
The COA incorporates the intention function value to

evaluate the quality of candidate solutions. Consequently,
the population member that produces the best evaluation of
the intention function is identified as the best member of the
population. Throughout the iterations of the algorithm, the
candidate solutions undergo modifications, leading to
updates in the best members of the population at each
iteration.

B. Mathematical Model of COA
The process of updating the areas where Coatis are found

in COA involves simulating two natural behaviors of the
animals: attacking iguanas and avoiding predators. This
results in two distinct phases of revitalization for the COA
population.
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(1) Phase 1. It is known as the exploration phase to mimic
the hunting and attack strategies used by Coatis when
attacking iguanas. Some Coatis climb trees to scare the
iguanas down to the ground, while others wait under trees
for them to fall. Once the iguanas are on the ground, the
Coatis attack and capture them. This strategy allows COA to
explore different locations within the searching space, and
enabling global search capabilities and thorough exploration
of the problem-solving space.
The design of COA assumes that the best member of the

population is located where the iguana is. Another approach
is to divide the Coatis into two groups: half of them climb
trees and the other half wait for the iguanas to fall to the
ground. This arrangement maximizes the collaborative
abilities of the Coatis and increases the success rate of
hunting iguanas. By connecting the location of the best
member to that of the iguana and organizing the Coatis into
two groups with different roles, COA effectively harnesses
the population members' collaborative abilities to enhance
problem solving and improve the overall search process.
The mathematical simulation for the position of the Coatis

climbing the tree is represented by Eq. (16).
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After the iguana lands, it is randomly positioned within
the search space. In accordance with this random placement,
the coatis on the ground will navigate within the same search
space. This navigation process is simulated by using Eq.
(17)-(18).
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If the intention function value increases, the new position
calculated for each Coati is considered acceptable during the
update process. If the intention function value does not
increase, the Coati will stay in its original position. This
update condition is applicable to Ni ,,2,1  and is
represented by Eq. (19).
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where, 1P
iX is the new position calculated for the ith coatis;

1
,
P
jiX is its jth magnitude; 1P

iF is its intention function
value; r is a random real quantity between 0 and 1; uanalg
represents the iguana's position in the search space, actually
referring to the member with the best position; juanalg is
its jth magnitude; I is an integer, randomly selected from
the set  21 ; Guanalg of the iguana's position on the
ground is randomly generated, with G

juanalg as its jth
magnitude; GuanaFlg is the value of its intention function and

  is the base function (also known as the largest integer
function).
(2) Phase II: Predator Escape Development Phase. In this

phase, the focus is on developing a mathematical model that
represents the natural behavior of coatis when encountering
and fleeing from predators. When a coatis is under attack, it
quickly reacts to escape its current position. The COA aims
to simulate the coatis' behavior, demonstrating effective
exploitation during local searches. Its strategy involves
relocating the coatis to a safer area while minimizing the
distance from its current location. This showcases COA's
ability to effectively use its own skills in local search,
thereby enhancing problem-solving effectiveness. By
mathematically modeling the coatis' predator evasion
behavior, COA can leverage the information within the
search space to obtain superior solutions. To simulate this
behavior, random positions near the coatis' locations are
generated by using Eq. (20)-(21).

Ttwhere
t
ub

ub
t
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lb jlocal
j

jlocal
j ,,2,1,,  (20)
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It is acceptable if the newly calculated position raises
the value of the intention function, and this condition is
simulated by using Eq. (22).
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where, 2P
iX is the new location of the calculation of the ith

Coatis in the second stage of COA; 2
,
P
jiX is its jth

magnitude; 2P
iF is its intention function value; r is a

random real quantity between 0 and 1; t is the quantity of
iterations; local

jlb and local
jub are the local upper and lower

limits of the jth optimal variable, and jlb and jub are the
upper and lower limits of the jth optimal variable,
respectively.
After updating the Coatis' locations in the search space

through the first and second stages, the iteration of the COA
comes to an end. The population renewal process is carried
out according to Eq. (16)-(20). This process continues until
the final iteration of the algorithm is reached. Upon
completing a run of the COA, the best solution obtained
during all iterations is returned as the output. The various
stages of COA implementation are illustrated in the flow
chart in Fig. 4.

C. Multi-strategy Fusion Coati Optimization Algorithm

(1) COA Based on Chaotic Mapping

In this section, the hybrid Coati Optimization Algorithm
(HCOA) was proposed by incorporating an enhanced
chaotic mapping technique. The key concept behind this
approach is to utilize a chaotic map for generating a chaotic
sequence, which is essentially a sequence of randomness
derived from a simple deterministic system.
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Fig. 4 Flowchart of COA.

In the realm of optimization, chaotic maps can serve as
alternatives to pseudo-random quantity generators, enabling
the generation of chaotic quantity within the range of 0 to 1.
Experimental evidence has demonstrated that incorporating
chaotic sequences in the initialization, selection, crossover
and mutation stages of the population significantly
influences the overall algorithmic process, oftentimes
resulting in improved outcomes compared to the utilization

of pseudo-random quantity. This study introduces the
Logistic mapping depicted visually in Fig. 5 and represented
by Eq. (23).

 
   4,0,0.1,75.0,5.0,25.0,0

1

0

1







z
zzz kkk (23)

To enhance the level of randomness and diversity within
the population, the COA incorporates a chaotic map during
the initial stage of population initialization. In the original
version of COA, the population is randomly initialized by
generating a position matrix within predetermined upper and
lower limits. However, with the integration of chaotic
mapping, each individual in the population creates its
position matrix by using Eq. (24). This integration allows for
a more varied and diverse population, contributing to
improved optimization outcomes.

 




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 1
1

11 imtmtumt
irandmt

iii

i (24)

(2) COA Based on Meme Grouping

The shuffled frog leaping algorithm (SFLA) is a recently
developed heuristic population evolution algorithm that
offers efficient computing performance and exceptional
global search capability. It effectively combines the
desirable traits and advantages of meme-based algorithms
and PSO algorithm. This approach can be described as the
fusion of meme algorithms and PSO algorithm to utilize
their respective advantages to accomplish an efficient and
precise optimization process on COA.
Suppose that the initial population formed by

NFFFL ,...,, 21 is a group of frogs, where
iSiii xxxF ,...,, 21 represents the ith frog in the

S-magnitude space in the problem. In addition, each frog in
this population is ranked in descending order according to
fitness value. Let m be the quantity of memes that the whole
population is divided into, the first frog enters the first meme
group, the second frog enters the second meme group, the m
frog enters the m meme group, the 1m frog enters the

1m meme group, and so on, until all the frogs are
allocated. At the same time, the frog with the best fitness in
each meme group is labeled as bF , the frog with the worst
fitness is labeled as wF , and the frog with the best fitness in
the whole population is labeled as gF . Then, the local
position update operations are performed for frogs in each
meme group. The specific update formula is described as
follows:

  maxmax DDD
DFF
FFrD

ww

wb 







(25)

where, r is a quantity randomly generated from 0 to 1, the
jump distance is represented by D , the current position of
the frog is represented by wF , and the maximum jump
distance of the frog is represented by maxD . Assuming that
the updated position is better than before, the original
updated frog wF can be replaced with a new frog. Otherwise,
replace bF with gF and perform the local location update
operation.
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  maxmax DDD
DFF
FFrD

ww

wg 







(26)

If the frog doesn't find a better solution by executing Eq.
(26), or if it exceeds the maximum distance allowed, it will
be replaced by a randomly generated frog. This process of
updating local locations is repeated multiple times, while the
frogs in all the groups are rearranged and separated. The next
set of local location updates is then carried out. The iterative
process continues until a specific convergence condition is
met or the maximum quantity of mixing iterations is reached.
By repeatedly going through this loop, the frogs' positions
are gradually optimized to better achieve the algorithm's
intention.
The COA incorporates the concept of leapfrog meme

grouping and it is named as SCOA. The idea behind it is as
follows. In the initial stage of COA, half of the coatis climb
the tree while the other half wait for the iguana to fall to the
ground. This grouping method is randomized. By
incorporating the grouping approach used in the SFLA, the
COA sorts the population based on fitness from largest to
smallest. The even-quantityed coatis then wait for the iguana
to fall to the ground.
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(27)

(3) COA Based on Prey Position Vector
The gray wolf, a member of the canine family, is an apex

predator and holds the highest position in the food chain.
They typically live in packs consisting of 5 to 12 individuals.
These packs have a fascinating social hierarchy, as shown in
Fig. 6 [34]. The alpha wolf, who is the leader, makes
decisions regarding hunting locations, sleeping
arrangements and waking times. Assisting the alpha is the
beta wolf, the second-ranking member in the pack. At the
bottom of the hierarchy is the omega wolf, often targeted by
more dominant wolves and serving as a scapegoat.

Fig. 5 Logistic mapping image.

Fig. 6 Hierarchy of grey wolves.

In some cases, omegas also care for the young in the pack.
Wolves without alpha, beta or omega status are considered
subordinate wolves and are referred to as delta wolves.
These wolves are obligated to follow the instructions of
alphas and betas but ultimately fall under the authority of the
omega wolves. The gray wolf demonstrates important social
behaviors such as pack hunting and establishing a social
hierarchy. The hunting process was categorized into several
stages, including tracking, chasing and approaching the prey.
This study utilized mathematical modeling to describe both
the hunting technique and the social ranking within gray
wolf packs. The research resulted in the development of the
gray wolf optimizer, which has been applied to optimize
various tasks, showcasing its practical application beyond
the understanding of wolf behavior.
In this section, a coatis optimization algorithm with

improved prey position vector (GCOA) is proposed. The
vector coefficient of the position update formula in GWO is
introduced to replace the random quantity r in the COA,
and the vector coefficient araA  1*2 in the GWO is
introduced, where a is the real quantity that linearly
decreases from 2 to 0 in the iterative process, and 1r is the
random real quantity from 0 to 1. Substitute A into Eq.
(26)-(27) to obtain:
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In addition, the position update formula in the exploration
stage of the COA is an integer I , that is, randomly selected
from the set {1,2}. In order to increase its accuracy, I is
improved to i

NEW eI  , which is the exponential multiple
changing with the quantity of populations. Then it is
substituted into the Eq. (29) to obtain:
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(30)

(4) Flowchart of Multi-strategy COA
Based on the above three strategies to improve COA, a

multi-strategy fusion coatis optimization algorithm
(SHGCOA) is proposed by combining these three strategies.
Its pseudo-code is shown in TableⅢ.

V. SIMULATION EXPERIMENT AND RESULT ANALYSIS

A. Performance Index
To facilitate the SMB chromatographic separation

process, the soft-sensor models were established for various
elements including the purity of the target at exit N, the
purity of the impurity at exit M, the yield of the target at exit
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N and the yield of the impurity at exit M. These models were
built on an optimized ELM with a hidden layer consisting of
30 nodes. A set of 1000 representative data sets was selected
from historical data related to SMB chromatography
separation. Among these, 900 data sets were randomly
assigned as training sets for the ELM model, while the
remaining 100 were utilized as test sets to assess the
predictive performance of the soft-sensor model. In order to
effectively compare the prediction abilities of the soft-sensor
model, four specific indicators were selected for evaluation,
which are maximum percentage error (MPE), sum of
squares error (SSE), mean absolute percentage error (MAPE)
and root mean square error (RMSE). These indicators are
presented in Table Ⅳ, where ŷ is the estimated value and
y is the actual value.

B. Soft-sensor Model of SMB Chromatographic Separation
Process Based on COA with Single Strategy
To optimize the ELM model, a simulation experiment

was conducted by using the enhanced COA algorithm with a
single strategy. The established soft-sensor model for the
SMB chromatographic separation process includes
additional variables such as the flow rate of the feedstock
liquid inlet pump (F pump), the flow rate of the flushing
liquid inlet pump (D pump) and the valve switching time.
This model provides outputs for the purity of the target in the
effluent at port N, the purity of the impurity in the effluent at
port M, as well as the yield of the target and impurity at their
respective ports. The optimized ELM accurately captures
the non-linearity between these variables, enabling the
development of a prediction model for the corresponding
pecuniary and technical indices.
Fig. 7-14 presents the simulation results of the SMB

chromatographic separation process. In Fig. 7, the predicted
output curves for different purities of the target in the
effluent at exit N are compared. These purities include ELM,
COA-ELM, HCOA-ELM, SCOA-ELM and GCOA-ELM.
Fig. 8 displays the comparison of prediction error curves.
Similarly, Fig. 9 shows the predicted output curves for the
purity of impurities in the effluent at port M, while Fig. 10
illustrates the respective prediction error curves. Fig. 11
showcases the comparison curves of the prediction output
for the yield of the target in the N-port under different
purities, namely ELM, COA-ELM, HCOA-ELM,
SCOA-ELM and GCOA-ELM, whereas Fig. 12 depicts the
corresponding prediction error comparison curves.
Furthermore, Fig. 13 demonstrates the comparison curves
for the predicted output of the yield of impurities at port M
by using ELM, COA-ELM, HCOA-ELM, SCOA-ELM and
GCOA-ELM, while Fig. 14 presents the comparison curves
for the prediction error. Lastly, Table Ⅴ provides a
comparison of the predictive performance indicators of the
established soft-sensing models. By analyzing the
simulation experiment chart, it becomes evident that the
optimized versions of COA-ELM, HCOA-ELM,
SCOA-ELM and GCOA-ELM provide more accurate
predictions compared to the unoptimized ELM model for
elements such as N-port purity, M-port purity, N-port yield
and M-port yield. Additionally, the ELM model optimized
by using the improved COA demonstrates superior
performance and greater precision compared to the
unimproved optimization models.

C. Soft-sensor Model of SMB Chromatographic Separation
Process Based on Multi-strategy Fusion COA
SHGCOA-ELM algorithm is developed by combining the

improved HCOA-ELM, SCOA-ELM and GCOA-ELM
based on the results obtained from the previous experiments.
Two other optimized models (SSA-ELM[35] and
GGO-ELM[36]) are selected for simulation and comparison
to evaluate the performance of the prediction models. The
soft-sensor model for the SMB chromatographic separation
process includes auxiliary variables such as F pump (flow
rate of the feed-stock liquid inlet pump), D pump (flow rate
of the flushing liquid inlet pump), and valve switching time.
The soft-sensor model outputs consist of the purity of the
target at port N, the purity of the impurity at port M, the yield
of the target at port N and the yield of the impurity at port M.
Utilizing the optimized ELM, a nonlinear relationship is
established among these variables, enabling the creation of a
prediction model for corresponding pecuniary and technical
index. The simulation results are illustrated in Fig. 15-22.
Table Ⅵ provides a comparison of the performance
indicators of the established soft-sensing models.

TABLEⅢ. PSEUDO-CODE OF SHGCOA

SHGCOA calculation process pseudo-code

Initialize the population size N and the maximum quantity of iterations T

Initialize the population and calculate the fitness value for each individual

For i=1:T
Determine the position of the optimal individual xbest, which is the

position of the iguana on the tree
% Phase 1

Sort by population fitness

An individual with an odd quantity

Use Eq. (25) to update each individual position

Use Eq. (14) to make greedy choices

An individual with an even quantity

The position of each individual is updated using Eq. (17) and Eq. (30)

Use Eq. (14) to make greedy choices

% Phase 2

For i=1:N

The position of each individual is updated using Eq. (20)-(21)

Use Eq. (14) to make greedy choices

End

Store the optimal solution and the optimal value

End

Output the optimal value and the optimal solution

TABLE Ⅳ. PERFORMANCE INDEXES OF SOFT-SENSOR MODEL

Index Function
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Fig. 7 Prediction results of N-port purity.

Fig. 8 Prediction error of N-port purity.

Fig. 9 Prediction results of M-port purity.
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Fig. 10 Prediction error of M-port purity.

Fig. 11 Predicted yield results of N-port.

Fig. 12 Yield prediction error of N port.
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Fig. 13 Prediction results of M-port yield.

Fig. 14 Prediction error of M-port yield.

Fig. 15 Purity prediction results of N-port.
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Fig. 16 Prediction error of N-port purity.

Fig. 17 Prediction results of M-port purity.

Fig. 18 Prediction error of M-port purity.
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Fig. 19 Prediction results of N yield.

Fig. 20 Prediction error of yield at N port.

Fig. 21 Prediction results of M-port yield.
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Fig. 22 Prediction error of M yield.

TABLE Ⅴ. COMPARISON OF PREDICTIVE PERFORMANCE INDEXES OF
SOFT-SENSOR MODELS

Performance index RMSE SSE MAPE MPE

N-port purity

ELM 0.0670 0.4488 0.0526 0.5619

COA-ELM 0.0417 0.1741 0.0399 0.2652

HCOA-ELM 0.0377 0.1420 0.0334 0.2639

SCOA-ELM 0.0338 0.1139 0.0309 0.2097

GCOA-ELM 0.0325 0.1055 0.0313 0.2188

M-port purity

ELM 0.1238 1.5318 0.5177 0.3404

COA-ELM 0.0739 0.5089 0.5508 0.3863

HCOA-ELM 0.0682 0.4658 0.5435 0.3212

SCOA-ELM 0.0670 0.4486 0.5413 0.3160

GCOA-ELM 0.0725 0.5263 0.5405 0.3694

N-port yield

ELM 0.2179 4.7469 0.4150 0.6083

COA-ELM 0.0799 0.6882 0.3579 0.4798

HCOA-ELM 0.0755 0.6009 0.3395 0.4221

SCOA-ELM 0.0794 0.6312 0.5120 0.3995

GCOA-ELM 0.0805 0.6476 0.2529 0.2703

M-port yield

ELM 0.0079 0.0062 0.0062 0.0496

COA-ELM 0.0044 0.0020 0.0071 0.0259

HCOA-ELM 0.0040 0.0016 0.0070 0.0243

SCOA-ELM 0.0039 0.0015 0.0067 0.0222

GCOA-ELM 0.0041 0.0017 0.0070 0.0238

TABLE Ⅵ. COMPARISON OF PREDICTIVE PERFORMANCE INDEXES OF
SOFT-SENSOR MODELS

Performance index RMSE SSE MAPE MPE

N-port purity

ELM 0.0698 0.4878 0.0474 0.6159

COA-ELM 0.0442 0.1957 0.0409 0.2857

SHGCOA-ELM 0.0333 0.1107 0.0285 0.2322

SSA-ELM 0.0380 0.1443 0.0346 0.2488

GOW-ELM 0.0375 0.1405 0.0357 0.2531

M-port purity

ELM 0.1150 1.3215 0.5223 0.3219

COA-ELM 0.0668 0.4461 0.5380 0.3579

SHGCOA-ELM 0.0674 0.4549 0.5345 0.2145

SSA-ELM 0.0757 0.5736 0.5291 0.2372

GOW-ELM 0.0616 0.3798 0.5496 0.2853

N-port yield

ELM 0.1779 3.1665 0.3379 0.4757

COA-ELM 0.0731 0.5350 0.7268 0.4136

SHGCOA-ELM 0.0704 0.4951 0.2451 0.2982

SSA-ELM 0.0637 0.4052 0.3806 0.3161

GOW-ELM 0.0662 0.4378 0.4032 0.3341

M-port yield

ELM 0.0095 0.0090 0.0069 0.0637

COA-ELM 0.0049 0.0021 0.0069 0.0265

SHGCOA-ELM 0.0039 0.0016 0.0067 0.0236

SSA-ELM 0.0042 0.0018 0.0070 0.0247

GOW-ELM 0.0045 0.0020 0.0067 0.0262

Fig. 15 shows a comparison of predicted outputs for
different purities of the target object in the effluent at port N
of the SMB chromatographic separation process. The
methods ELM, COA-ELM, SHGCOA-ELM, SSA-ELM
and GGO-ELM are used to represent the purities. Fig. 16
illustrates the comparison of prediction errors. In Fig. 17, the
predicted outputs for the purity of impurities in the effluent
at port M of the SMB chromatographic separation process
are shown by using the same methods. The comparison of
prediction errors can be seen in Fig. 18. Fig. 19 presents the
comparison of predicted outputs for the yield of the target at
the N-port of the SMB chromatographic separation process.
The methods ELM, COA-ELM, SHGCOA-ELM,
SSA-ELM and GOE-ELM are used. The corresponding
comparison of prediction errors is displayed in Fig. 20.
Moreover, Fig. 21 exhibits the predicted outputs for the yield
of impurities at port M in the SMB chromatographic
separation process by using the same methods. The
comparison of prediction errors can be found in Fig. 22. The
simulation experiment chart clearly demonstrates that the
soft-sensor model of SMB chromatographic separation,
optimized by using the multi-strategy fusion COA,
outperforms the single-strategy improved and unoptimized
ELM in accurately predicting the purities and yields at both
the N-port and M-port. The optimized model exhibits greater
effectiveness and accuracy in these predictions.
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VI. CONCLUSION
The soft-sensor model of the SMB chromatographic

separation selects input variables including the flow rate of
the feed-stock liquid inlet pump (F pump), the flow rate of
the flushing liquid inlet pump (D pump) and the valve
switching time. The model also considers output variables
such as the purity of the target substance in the effluent at
port N, the purity of the impurity in the effluent at port M,
the yield of the target substance at port N and the yield of the
impurity at port M. For optimization of the soft-sensing
model in SMB chromatographic separation, both single and
multi-strategy fusion algorithms are employed to optimize
the ELM model. The simulation results demonstrate that the
optimized ELM soft-sensor model with single strategy
optimization outperforms the unoptimized model.
Furthermore, the multi-strategy fusion COA significantly
improves the prediction accuracy of the optimized ELM
soft-sensor model, surpassing both the improved single
strategy and the unoptimized ELM. Additionally, the
established soft-sensor model exhibits strong predictive
capabilities for the pecuniary and technical benchmarks in
the SMB chromatographic separation process.
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