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ACMS-TransNet: Polyp Segmentation Network
Based on Adaptive Convolution and Multi-Scale
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Abstract—Accurate segmentation of colorectal polyps is crit-
ical for the early diagnosis and treatment of colorectal cancer.
With the advancement of computer vision technologies, the U-
Net framework, characterized by its encoder-decoder architec-
ture, has been widely applied to medical image segmentation
tasks. However, it still has several limitations. Traditional
convolution operations exhibit constraints in modeling spatial
and channel features, making it challenging to detect small
polyp targets effectively. Additionally, the use of simple skip
connections between the encoder and decoder lacks effective
modeling of global multi-scale contextual information, resulting
in difficulties in fusing multi-scale feature information effi-
ciently. In order to solve these problems, this study proposes
a novel model, ACMS-TransNet. The model introduces an
Adaptive Convolution Block at critical levels of the encoder and
decoder, dynamically adjusting the receptive fields of convolu-
tion kernels to accommodate features at different scales, thereby
enhancing small object detection capabilities. Additionally, it
incorporates a skip connection design combining the MHCIA
module and the SEMS-FFN module. By exploring multi-scale
global contextual information, this design establishes stronger
associations between the encoder and decoder. The MHCIA
module facilitates inter-channel information interaction through
a multi-head attention mechanism, improving the network’s
ability to capture global contextual information. Meanwhile, the
SEMS-FFN module integrates four parallel deep convolutions
at different scales with saliency feature extraction techniques,
effectively capturing multi-scale information during feature
fusion and enhancing the network’s capability to extract fea-
tures across various scales. Experimental results demonstrate
that the ACMS-TransNet model achieved a Dice coefficient of
90.46% and an IoU of 83.69% on the Kvasir-SEG dataset,
and a Dice coefficient of 94.45% and an IoU of 89.68%
on the CVC-ClinicDB dataset. These findings validate the
efficiency and accuracy of the proposed model in colorectal
polyp segmentation tasks, providing robust technical support
for the early detection and treatment of colorectal cancer.

Index Terms—Deep Learning, Polyp Segmentation, Attention
Mechanism, Adaptive Convolution, Multi-Scale Features.

I. INTRODUCTION

OLON polyps are important precursors to colon cancer,
and early detection and removal of these polyps are
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key measures in preventing colon cancer [1]. Colonoscopy
is currently the most commonly used diagnostic method;
however, it relies heavily on the experience of the doctor,
which can lead to missed diagnoses and misdiagnoses. As a
result, automated colon polyp segmentation technology has
become a research focus. The goal is to use computer-aided
diagnosis systems to accurately segment colon polyps, which
can significantly improve diagnostic efficiency and accuracy,
reduce the workload of doctors, and enhance treatment
outcomes and survival rates for patients. Polyp segmentation
is mainly to accurately identify and isolate polyp areas
from colonoscopy images. However, polyp segmentation is
challenging due to the variety of shapes, sizes, colors and
textures. In recent years, with the rapid development of deep
learning technology [2], U-Net [3] based medical image
segmentation methods have achieved significant results in
the task of colon and rectal polyp segmentation. However,
existing methods still have limitations in handling small
target lesions, complex boundaries, and insufficient feature
expression. On the one hand, traditional convolutional op-
erations have limited modeling capabilities for spatial and
channel features, making it difficult to effectively handle
complex medical image features, and small polyp targets are
easily overlooked by the network. On the other hand, single-
scale features are unable to fully express global context
information, affecting the robustness of segmentation. In
addition, the simple skip connection impairs the shallow
semantic information in the encoder as well as the fine-
grained details of the segmentation target when transferring
the encoder information. The simple skip connection has
limitations in capturing global information and long-distance
dependencies, and it is difficult to make full use of global
context information to effectively fuse multi-scale feature in-
formation. Therefore, it is easy to lose semantic information
in the process of information transmission, resulting in a
decrease in segmentation accuracy.

In order to solve the above problems, this chapter proposes
a colon polyp segmentation network based on adaptive con-
volution and multi-scale global context (ACMS-TransNet).
An innovative network structure integrating ACB module,
MHCIA module and SEMS-FFN module. By organically
combining the advantages of different modules, the network
can perform efficient feature extraction and information fu-
sion at different scales and feature levels, effectively improv-
ing the accuracy and efficiency of colon polyp segmentation.
Specifically, the contributions of this paper are as follows:

1) Adaptive convolution operations are introduced at the
key levels of the encoder and decoder to dynamically adjust
the receptive field of the convolution kernel to adapt to
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features of different scales and improve the ability to detect
small targets. Multiple convolution filter branches are used
to perform feature changes in spaces of different scales,
effectively collecting contextual information at each spatial
position, improving the accuracy of feature representation,
and generating richer and more diverse output features.

2) In the skip link part, the MSCF-SETrans network
is designed, which combines the multi-head channel in-
teraction attention module (MHCIA) and the multi-scale
feedforward neural network module (SEMS-FFN). Among
them, the MHCIA module improves Q and K in the multi-
head attention mechanism, allowing Q to perform attention
mechanism calculation on K in the global scope. Through
cross-channel feature aggregation, the information interaction
between different channels is enhanced and the dependency
between different channels is captured. The SEMS-FFN
module combines four parallel deep convolutions of different
scales with the channel attention mechanism (SE-Block),
captures multi-scale global information in the feature fusion
process, and improves the accuracy of segmentation details.

II. RELATED WORK

Medical image segmentation is a crucial research area in
computer vision. It is to automatically identify and segment
regions of interest from complex medical images, such as
organs and lesions. Early methods in medical image seg-
mentation primarily relied on traditional image processing
techniques, such as thresholding, region growing, and edge
detection [4]. While these methods perform well in some
simple scenarios, they struggle with complex structures and
multi-scale information. They are often affected by noise and
image variability, making it challenging to achieve accurate
segmentation results. Because of its strong ability of rep-
resentation learning, CNN [5]-[7] has been introduced into
the field of medical image segmentation. In 2015, Jonathan
Long et al. proposed Fully Convolutional Networks [8]. FCN
replaced fully connected layers with convolutional layers,
allowing it to handle input images of any size and perform
pixel-level classification, addressing the semantic-level image
segmentation problem. In the same year, Ronneberger et al.
built on FCNs to propose U-Net, an end-to-end encoder-
decoder architecture designed for medical image segmenta-
tion. The U-Net architecture extracted hierarchical feature
representations of images through the encoder and then
reconstructed these features into segmentation predictions of
the input image using the decoder. It introduced the concept
of skip connections between the encoder and decoder to
address the shortcomings of FCNs in preserving pixel spatial
location and contextual information. This approach resolved
the issues of local and global feature loss and achieved
significant results in medical image segmentation tasks. The
introduction of U-Net brought a revolutionary change to
medical image segmentation. In 2018, Zhou et al. proposed
a new model, U-Net++ [9], which introduced additional skip
connections to enhance feature transfer. Zhang et al. pro-
posed ResUNet [10], which combined residual connections
with the U-Net structure, effectively addressing gradient van-
ishing and model degradation issues in deep neural networks.
That same year, Ozan Oktay et al. proposed Attention U-Net
[11], a hybrid structure that incorporated attention gates into

the skip paths. These attention gates selectively passed sig-
nificant features to the decoder while suppressing redundant
information, allowing for precise reconstruction of segmen-
tation maps. In 2019, Nabil Ibtehaz and M. Sohel Rahman
et al. proposed the MultiResUNet [12], which introduced
multi-scale residual modules. Despite the significant achieve-
ments of Convolutional Neural Networks in medical image
segmentation, they still face limitations in handling complex
global contextual information and multi-scale features. The
Transformer [13] model, due to its outstanding performance
in natural language processing tasks, was gradually intro-
duced into the field of computer vision. The Transformer
captured long-range dependencies between elements in a
sequence through self-attention mechanisms, addressing the
shortcomings of Convolutional Neural Networks in global
information modeling. It enhanced the model’s ability to cap-
ture global contextual information, achieving groundbreaking
results in medical image segmentation tasks and significantly
improving accuracy [14]. In 2021, Chen et al. proposed
TransUNet [15]. This model introduced the Transformer into
the encoder part of U-Net, enhancing the capture of global
contextual information through self-attention mechanisms,
and significantly improved performance in medical image
segmentation. In 2022, Wang et al. proposed UCTransNet
[16], which considered attention mechanisms from a channel
perspective. The channel-level fusion Transformer replaced
the traditional skip connections in U-Net, achieving better
integration of semantic information between the encoder and
decoder. These methods collectively advanced the field of
medical image segmentation, not only enhancing segmen-
tation accuracy but also providing diverse and innovative
solutions to tackle various challenging scenarios.

III. RESEARCH METHOD
A. Overall Architecture

The network structure of the ACMS-TransNet is shown
in Fig. 1. It consists of an encoder, a decoder, and skip
connections. Specifically, the ACB module is introduced
in both the encoder and decoder of the network. Utilizing
multiple convolution filter branches that operate at different
spatial scales, effectively enhances the contextual informa-
tion surrounding each spatial location, enabling dynamic
calibration of the input features. This approach expands
the receptive field of the convolutional layers, improving
the accuracy of feature representation and capturing more
diverse and rich feature information. To further enhance
the model’s ability to effectively extract multi-scale global
contextual information, better fuse the semantic information
between the encoder and decoder, and improve the fine-
grained details of the segmentation targets, the (MSCF-
SETrans) network is designed in the skip connection section.
This network includes the MHCIA module and SEMS-FFN
module, which effectively integrates features from different
scales. Specifically, the input feature map Img € RC>*HxW
first passes through the ACB module for adaptive adjustment,
expanding the receptive field and strengthening important
information. Then, it undergoes a series of convolutions
and max pooling operations to extract the encoding layer
informationE; € Rcixﬂi—lx%(i = 1,2,3,4,5) . Before
the final downsampling, the ACB module prevents key in-
formation from being lost during the downsampling process.
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Fig. 1. ACMS-TransNet Network Architecture.

Similarly, before the first upsampling, the ACB module
enhances the processing capability of high-level semantic
information, effectively recovering details and reducing in-
formation loss. Meanwhile, the outputs of the first four
encoding layers F;(i = 1,2,3,4) are processed through
patch-embedding and position-embedding to generate 2D
patch sequences 7; € R™Ci(i = 1,2,3,4), which are
then mapped to the multi-head attention mechanism as
Qi € R4 The sequences T; € R¥*Ci(i = 1,2,3,4)
are concatenated to form TZ;t = (T1,T»,T3,Ty), which is
uesd as the keys (K) and values (V) for the attention mecha-
nism. After passing through L layers of MSCF-SETrans, the
feature tensors O; € RE*H*W(j = 1,2, 3 4) are obtained.
To effectively connect to the decoder and eliminate feature
ambiguity, the feature tensor O; of the i-th layer and the
feature map D; € REHXW(j = 1,2,3,4) of the i-th
decoder layer are reconstructed using the Channel Fusion
Attention (CFA) module to obtain O;. These reconstructed
features are concatenated with the corresponding upsampled
features of the decoder layers and passed through convolution
to output the decoded layer information. Finally, at the end
of the decoder, the ACB module significantly enhances the
detail recovery features, and the final segmentation result

SegMap € R"*W is obtained through a 1x1 convolution
followed by a Sigmoid function.

B. Adaptive Convolution Block

In order to effectively enhance the contextual awareness at
each spatial location, expand the receptive field, and reduce
information loss, the ACB [17] module is introduced in
both the encoder and decoder. The network structure of this
module is shown in Fig.2. It uses three convolution filter
branches k;(i = 1,2,3) to realize feature transformation in
two different scale Spaces of input features, in which each
convolution filter has different effects.

Firstly, the input feature X € RE*H*W is subsampled
by k; branch averagm% poohng, which shrinks it to smaller
scale space S; € RC*+ > enlarges the receptive field and
generates low-resolution embedded features.The calculation
of S is as follows:

S1 = AvgPool,.(X) (1

These embedded features undergo feature transformation
through convolution operations to generate reference signals,
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Fig. 2.  ACB network structure diagram.

which are then normalized and upsampled back to the origi-
nal scale space Sy € RE*H*W ysing bilinear interpolation.
After residual connection with the original input image and
passing through a Sigmoid function, adaptive calibration
weights are generated:

Sy =Up(BN(S1 * K1)) )

In the k5 branch, Convolution operations are performed
on the original features to capture fine-grained information,
which is then multiplied by the weights output from the &
branch to achieve dynamic calibration of the input features.
Finally, the calibrated and fused feature map is passed
through the k3 branch for another convolution operation
to integrate the previously extracted features, producing the
final output feature map Y. The related computation formulas
are as follows:

X1:O'(SQ+X) (3)
XQZBN(X*K2> XX]_ (4)
Y = BN (X * K3) (5)

In the formulas above: r represents the step size, Up rep-
resents the bilinear interpolation operation, K;(i = 1,2, 3)
represents the convolution kernels of each branch, “x” rep-
resents the convolution operation, ¢ indicates the Sigmoid

function, and “x” signifies element-wise multiplication.

C. MSCF-SETrans Network

This paper designs the MSCF-SETrans network in the
skip connections of the model. This network combines the
strengths of Transformer and convolutional neural networks
(CNNSs) by calculating the correlations between information
from different encoding layers to capture target-specific in-
formation. By exploring multi-scale global contextual infor-
mation, it establishes a connection between the encoder and
decoder, replacing the simple skip connections. This reduces
the semantic gap between the encoder and decoder, enabling
more effective fusion of features from different scales. Com-
pared to traditional Transformers, the MSCF-SETrans net-
work retains local detail information while enhancing global
contextual information extraction, resulting in richer feature
representations. The structure of the MSCF-SETrans network

k] Gla ——
rxDown rxUp
k

ﬁ Conv K, (i=1,2,3)
m Batch Normal

@ Sigmoid :

P

XRX—>

[ LN

SEMS-FFN LA

—| LN [ MHCIA '

Fig. 3.

MSCF-SETrans network structure diagram.

is shown in Fig.3 and primarily consists of the MHCIA
module, SEMS-FFN module, and layer normalization (LN).

Input feature X passes through MHCIA and SEMS-FFN
modules successively, before which LN layer normalization
operation is used to maintain the consistency of feature
distribution in different layers, and then the output results
of these two modules are respectively residual with the
feature maps before normalization operation to obtain the
final output feature Y.

1) Multi-Head Channel Interaction Attention: The Multi-
Head Self-Attention mechanism is one of the core compo-
nents of the Transformer model. It captures the dependencies
between different positions when processing sequence data
[13]. Its computational complexity increases with the growth
of spatial or channel dimensions. Moreover, directly applying
simple dot-product operations to the flattened query vector
@ and key vector K may reduce the correlation between
feature channels. To solve the above problems, we propose an
MHCIA module, Its structure is shown in Fig.4. The outputs
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Fig. 4. MHCIA network structure diagram
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of the first four encoder layers are each mapped to four
distinct query matrices Q; € R <4 (fori = 1,2, 3,4). These
matrices are then concatenated to form K € R¢c*? and
V € R:*4, Before multiplying @; and K, both are passed
through 1 x 1 convolution and batch normalization, which ef-
fectively reduces computational complexity, enhances feature
interaction between different channels, and captures local
contextual information. After the dot-product operation, a
fully connected layer extends the channel dimensions to
better align with the feature information in the value vectors
V. The input feature vectors carry out the cross-attention
mechanism along the channel axis, and the similarity matrix
is generated through @Q;, K, V, and the value vector V is
weighted. The formula for calculating the improved attention
mechanism is as follows:

BN (c(Qi) x BN(c(K™)))
Vi,

Z; = (©6)

Attention(Q;, K, V) = Softmax(BN(FC(Z;)))V (7)

Where dj is the dimension of the key vector, c¢ is the
1x1 convolution.This module aggregates multi-level features
by interacting K and V with @);, capturing the dependen-
cies between different channels, weighting important feature
channels, and suppressing less important ones.
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Fig. 5. SEMS-FFN network structure diagram.
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2) SE-Multiscale Feedforward Neural Network: The
SEMS-FFN module is another important component of
the MSCF-SETrans. This module builds upon the standard
feedforward neural network by incorporating a Squeeze-
and-Excitation block(SE-Block) [18] and multi-scale depth-
wise convolution operations(MS-DWConv) [19]. Its structure
shown in Fig.5, begins with the first fully connected layer
FCy, which maps the input features to a higher-dimensional
space. The GeLU activation function and the multi-scale
depthwise convolution module further enhance the nonlinear
feature representation. The second fully connected layer
FC5 maps the features back to their original dimensions.
Subsequently, the Squeeze-and-Excitation (SE) block further
models the relationships between different channels and
adaptively recalibrates the feature responses across chan-
nels. Finally, residual connections with depthwise separable
convolutions [20] and a fully connected layer F'C3 capture
local information, enabling the model to extract local features
more effectively.

After the first fully connected layer, multi-scale depthwise
convolutions [19] are introduced, as shown in Fig.6. Four par-
allel depthwise convolutions of different scales are applied,
each processing one-quarter of the channels with kernel sizes
of {1, 3,5, 7}, to perform multi-scale token aggregation. This
design leverages receptive fields of varying scales to capture
multi-scale information from the input feature map, thereby
enhancing the understanding and fusion of features.

After the second fully connected layer, SE-Block is in-
troduced to calculate adaptive weights for each channel,
automatically selecting the feature channels most relevant
to the current task. This highlights useful information and
reduces redundancy. The Squeeze operation generates a
global feature descriptor through global average pooling,
compressing the spatial dimensions of each channel and
calculating the global average value for each channel to
obtain the channel descriptor vector. Let ¢ and j represent
the height and width of the pixel spatial coordinates of the
feature map X, respectively:

1 H W
te= g7 2 2 Keign (€ =1,2,-C) ()

i=1 j=1

The Excitation operation processes the channel descriptor
vector through two fully connected layers to generate channel
weights, adaptively recalibrating the feature responses of
each channel. Finally, the channel weights are applied back to
the input feature map. Let s represent the generated channel
weights, W and W5 represent the weight matrice of the fully

(77 DWComv}0)

(c)

1x1 Conv
1x1 Conv

(a) The FFN focuses solely on processing channel information of the feature map. (b) The FEN further aggregates token information within the

region. (c) Our MS-DWConv performs multi-scale token aggregation through four parallel depthwise convolutions.
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connected layers, and o represent the Sigmoid function.

Se = 0(Wa - (ReLU (Wi - 2 + by) + b)) ©)

T =s.x X, (10)

To sum up, the calculation formula of the EMS-FFN network
is as follows:

X, = SE(FCy(D(M(G(FC,(X))))) (1)
X, = FC3(DW (X)) (12)
Y =X, + X, (13)

Here,SE stands for the Squeeze-and-Excitation Block,
FC stands for Fully Connected, D stands for Dropout, M
stands for Multi-scale Depthwise Convolution, G stands for
the GeLU activation function, and DW stands for 3 x 3
Depthwise Separable Convolution.

IV. EXPERIMENTS AND RESULTS

A. Dataset Description

To validate the performance of the proposed network,
we used two colonoscopy polyp image datasets, namely the
Kvasir-SEG dataset and the CVC-ClinicDB dataset.

1)Kvasir-SEG is a dataset for the MediaEval2020 compe-
tition [21]. The dataset contains 1000 colonoscopy images
with polyps and their corresponding segmentation masks,
including polyps of different sizes, shapes and positions, the
image resolution of the dataset ranges from 332 x 487 to
1920 x 1072 pixels, providing a diverse resource of high-
quality images.

2)CVC-ClinicDB is the official data set for the training
phase of the MICCAI2015 Colonoscopy Video Automated
Polyp Detection Subchallenge [22]. The dataset consisted
of 612 static polyp images extracted from colonoscopy
videos and corresponding hand-labeled polyp masks from 29
different sequences with an image resolution of 384 x 288.

Dice Comparison on Kvasir-SEG

1.0
0.8
v 0.6
=
©
> 04
0.2 —— ACMS-TransNet
UCTransNet
0 20 40 60 80 100 120 140
Epoch
Fig. 7. Train the Dice coefficient curve

B. Evaluation Metrics

To quantitatively evaluate the segmentation results, this
paper adopts five evaluation metrics: Dice [23], IoU, Recall,
Precision, and Accuracy. The closer these values are to 1,
the better the performance. Where TP, TN, FP, and FN
represent true positives, true negatives, false positives, and
false negatives, respectively. The corresponding formulas are
as follows:

1) Dice: The Dice coefficient is a statistical measure used
to evaluate the similarity between two sample sets:

2TP
2TP+ FP+ FN
2) IoU: The IoU used to measure the overlap between the
predicted result and the ground truth:
B TP
TP+ FP+FN

3) Recall: Recall measures the proportion of actual pos-
itive samples that the model correctly identifies as positive:

Dice =

(14)

IoU

15)

TP
TP+ FN
4) Precision: Precision refers to the proportion of positive

data that a model can correctly predict among all predicted
positive samples:

Recall = (16)

TP
TP+ FP
5) Accuracy: Accuracy refers to the proportion of positive
data samples predicted by the model in the total sample:
TP+ TN
TP+TN+FP+FN

Precision = (17

Accuracy =

(18)

C. Experimental Environment and Parameters

The ACMS-TransNet proposed in this study is imple-
mented using the PyTorchl.8 framework. The operating
system is Ubuntul8.04, and the GPU used is an NVIDIA
GeForce RTX 3060 with 12GB of VRAM. The programming
environment includes Python3.8 and CUDA 11.8. The Adam
optimizer is used with an initial learning rate of 10~4, the
model is trained using a combination of cross-entropy loss
and Dice loss functions. The input image resolution is set to
224 x 224, with a patch size of 16 and a batch size of 4.

Dice Comparison on CVC-ClinicDB
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D. Experimental Results and Analysis

The Dice coefficient is a widely used metric for evaluating
the performance of segmentation models. During training,
early stopping is applied by monitoring the changes in the
Dice coefficient on the validation set to prevent overfitting
and save computational resources. If the Dice coefficient does
not improve for 50 consecutive epochs, the training is termi-
nated early. Fig.7 presents the training curves of the baseline
model UCTransNet and the proposed ACMS-TransNet on
the Kvasir-SEG and CVC-ClinicDB datasets. These curves
provide an intuitive visualization of the models’ convergence
rates and trends in final segmentation performance. Notably,
ACMS-TransNet demonstrates significant advantages in both
convergence speed and segmentation accuracy during the
training process.

To further validate the segmentation performance of
ACMS-TransNet on colorectal polyp images, a series of com-
parative experiments were conducted with state-of-the-art
medical image segmentation models. These models include
U-Net, U-Net++, Attention U-Net, ResUNet++, DoubleU-
Net [24], TransUNet, UCTransNet, and DA-TransUNet [25].
The comparison results for the Kvasir-SEG dataset are shown
in Table I, and the comparison results for the CVC-ClinicDB
dataset are shown in Table II.

From the results in the table, it is evident that the proposed
model achieves significant improvements across all evalua-
tion metrics on both datasets, the segmentation performance
is obviously better than the classical method. For the Kvasir-
SEG dataset, the proposed model achieves the following
results for the five evaluation metrics: 90.46%, 83.69%,
92.48%, 90.35%, and 96.66%. These results exceed those
of the comparison models across all metrics. Specifically,
compared to the baseline model UCTransNet, the proposed

five evaluation metrics: 94.45%, 89.68%, 95.74%, 93.43%,
and 98.97%. These results show improvements over the
baseline model UCTransNet by 0.93%, 1.54%, 1.1%, 0.42%,
and 0.21%, respectively. Compared to the classic U-Net
model, the proposed model demonstrates enhancements of
7.16%, 8.75%, 6.38%, 5.18%, and 0.48%. This verifies the
excellence of the proposed ACMS-TransNet.

To more intuitively compare different segmentation meth-
ods, three groups of data samples were randomly selected
from the Kvasir-SEG and CVC-ClinicDB datasets. The seg-
mentation effect of the Kvasir-SEG dataset is shown in Fig.8,
and the segmentation effect of the CVC-ClinicDB dataset is
shown in Fig.9. The comparison images demonstrate that
ACMS-TransNet achieves higher accuracy in medical image
segmentation.

E. Ablation Experiment

To comprehensively validate the effectiveness of the pro-
posed modules and design strategies, as well as their impact
on overall segmentation performance, we perform ablation
studies focusing on different kernel sizes of MS-DWConv,
the number of layers in the skip connection MSCF-SETrans,
and the contribution of various innovative module combi-
nations.Using UCTransNet as the baseline model, we first
conduct experiments on Kvasir-SEG with dynamic convo-
Iution kernels of different scales. The experimental results,
shown in Table III, indicate that the four-channel parallel
multi-scale depthwise convolutions {1,3,5,7} achieve the
best performance.

TABLE III
ABLATION ON CONVOLUTION KERNEL SCALES IN MS-DWCONV

model shows improvements of 2.4%, 2.64%, 1.06%, 1.71%, Scales Dice(%) IoU(%) Params(M) Flops(G)
and 0.5%, respectively. Compared to the classic U-Net 13} 88.03 80.97 65.87 32.68
. {1,3} 88.05 81.02 65.95 32.76
model, it demonstrates enhancements of 7.27%, 11.78%, {1,3,5) 88.09 31.04 66.15 32.85
10.47%, 7.52%, and 1.85%.For the CVC-ClinicDB dataset, {1,3,5,7} 88.14 81.07 66.24 32.98
the proposed model achieves the following results for the {1,3,5,7,9y 8811 81.05 66.92 3324
TABLE 1
COMPARISON RESULTS OF DIFFERENT METHODS ON KVASIR-SEG

Method Dice(%) ToU(%) Recall(%) Precision(%) Accuracy(%)

U-Net 83.19 7191 82.01 85.83 94.81

U-Net++ 83.59 72.43 81.86 86.75 94.94

Attn-UNet 84.01 73.17 81.37 88.18 95.11

ResUNet++ 82.26 79.30 80.55 84.64 92.97

DoubleU-Net 81.30 73.30 84.40 86.10 -

TransUNet 86.78 79.91 87.31 87.69 96.29

UCTransNet 88.06 81.05 91.42 88.64 96.16

DA-TransUNet 88.47 81.02 - - -

ACMS-TransNet(ours) 90.46 83.69 92.48 90.35 96.66

TABLE II
COMPARISON RESULTS OF DIFFERENT METHODS ON CVC-CLINICDB

Method Dice(%) ToU(%) Recall(%) Precision(%) Accuracy(%)

U-Net 87.29 80.93 89.36 88.25 98.49

U-Net++ 87.64 81.16 85.97 91.99 98.42

Attn-UNet 89.58 83.59 90.15 90.40 98.66

ResUNet++ 85.46 78.13 85.33 87.19 98.21

DoubleU-Net 92.39 86.11 84.57 93.32 -

TransUNet 89.63 83.66 91.27 89.29 98.67

UCTransNet 93.52 88.14 94.64 93.01 98.76

DA-TransUNet 89.47 82.51 - - -

ACMS-TransNet(ours) 94.45 89.68 95.74 93.43 98.97
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Compared to a single scale, adding 1 x 1 and 5 X 5
convolution kernels improves the handling of details and
local features, while the 7 x 7 kernel effectively captures
broader contextual information, enhancing the multi-scale
representation of the feature map. However, introducing a
9 x 9 convolution kernel results in feature redundancy and
increased computational complexity, leading to a decline in
model performance.

Subsequently, experiments are conducted on the Kvasir-
SEG dataset to evaluate the effect of the number of MSCF-
SETrans layers in the skip connections. The number of layers
L is set to 2, 4, 8, 12, as shown in Table IV. The results
indicate that the model performs best when L is set to 4.
Further increasing the number of layers, however, leads to
performance degradation.

TABLE IV
ABLATION ON THE NUMBER OF LAYERS IN MSCF-SETRANS( UNIT: %)

Finally, ablation experiments are conducted on both the
Kvasir-SEG and CVC-ClinicDB datasets to evaluate the im-
pact of different combinations of the ACB module, MHCIA
module, and SEMS-FFN module. These experiments are
designed to verify the contribution of each module to the
overall performance of the network model. The experimental
results are shown in TableV and TableVI, indicate that
the best performance is achieved by combining the three
modules (the full version of the ACMS-TransNet model). In
contrast, using any of these modules alone or in combination
is less effective than the combination of all three. The
individual use of ACB, MHCIA, and SEMS-FFN modules
can each improve the overall performance of the model
to some extent, with ACB showing the most significant
improvement. Although MHCIA and SEMS-FFN can bring
some improvement when used individually, the enhancement
is relatively weak, especially for SEMS-FFN, where some
metrics perform worse than the baseline model. However,
the combination of SEMS-FFN and MHCIA shows some

Layers Dice IoU Recall Precision Accuracy . L. . ..
3 78.89 6938 3711 7785 9276 improvement, indicating that their combination can better
4 88.25 81.10 91.49 89.65 96.33 leverage their strengths. It is worth noting that the com-
8 88.01 80.89 90.65 88.69 96.09 : : :
hs $797 20,08 0023 o7 85 9201 bination of MHCIA or SEMS-FFN with ACB does not
TABLE V
ABLATION EXPERIMENT OF MODULES ON KVASIR-SEG
Base ACB MHCIA SEMS-FFN Dice(%) ToU(%) Recall(%) Precision(%) Accuracy(%)

v 88.06 81.05 91.42 88.64 96.16

v v 89.73 83.03 91.86 90.04 96.50

v v 88.19 81.09 91.72 88.48 96.07

v v 88.14 81.07 91.41 88.36 96.01

v v v 88.58 82.15 91.25 88.43 95.95

v v v 88.92 82.66 90.84 89.95 96.16

v v v 88.25 81.10 90.49 89.65 96.33

v v v v 90.46 83.69 92.48 90.35 96.66

TABLE VI
ABLATION EXPERIMENT OF MODULES ON CVC-CLINICDB
Base ACB MHCIA SEMS-FFN Dice(%) ToU(%) Recall(%) Precision(%) Accuracy(%)

v 93.52 88.14 94.64 93.01 98.76

v 93.81 88.60 94.99 93.91 98.86

v 93.63 88.35 93.63 94.07 98.77

v 93.58 88.21 94.56 93.38 98.81

v 93.65 88.45 95.45 91.06 98.79

v 93.77 88.52 94.78 91.89 98.80

v 94.20 89.31 94.73 94.22 98.91

v 94.45 89.68 95.79 93.41 98.97
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Fig. 8.

Segmentation effect diagram of Kvasir-SEG. Column(a) shows the original images, column(b) shows the ground truth masks, and columns(c) to

(i) show the segmentation results from U-Net, U-Net++, ResUNet++, Attention U-Net, TransUNet, UCTransNet, and the ACMS-TransNet, respectively.
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Fig. 9. Segmentation effect diagram of CVC-ClinicDB. Column(a) shows the original images, column(b) shows the ground truth masks, and columns(c)
to (i) show the segmentation results from U-Net, U-Net++, ResUNet++, Attention U-Net, TransUNet, UCTransNet, and the ACMS-TransNet, respectively.

outperform ACB when used alone. However, the combination
of MHCIA and SEMS-FFN complements each other better,
demonstrating their synergistic effect. In summary, each
module plays an important role in improving the model’s
performance. Removing any module leads to a decline in
performance, while the joint use of all three modules effec-
tively leverages their respective advantages, maximizing the
model’s segmentation ability.

We proposed ACMS-TransNet realizes the synergistic ef-
fect of multiple modules and enhances the fusion of local and
global information by effectively combining ACB, MHCIA
and SEMS-FFN modules. In all evaluation indicators, the
model was superior to the baseline model, which fully
verified that the ACMS-TransNet significantly improved the
segmentation accuracy of polyp data sets, while maintaining
a high accuracy.

V. CONCLUSION

In this study, we propose the ACMS-TransNet for polyp
segmentation tasks. The model significantly improves the
performance of polyp segmentation by introducing several
innovative modules, including the ACB module, the MHCIA
module of the MSCF-SETrans, and the SEMS-FFN mod-
ule. Through in-depth analysis and verification, the results
show that the ACMS-TransNet is superior to these modules
alone and some mainstream traditional methods based on U-
Net in several key evaluation indicators, which verifies the
effectiveness and superiority of the model in colon polyp
segmentation task. In future research, we plan to further
optimize the model structure by incorporating more advanced
deep learning techniques to improve segmentation accuracy.
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