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Abstract—To address the challenge of evaluating critical
nodes in transportation networks, we propose a parallel en-
coding method for accurately encoding nodes. This method
involves parallel processing of transportation network graph
data, utilizing a Dynamic Adaptive Attention Network (DAAN)
and a Static Feature Embedding method (SFE) to generate
dynamic and static feature embeddings for each node. The
DAAN module focuses on encoding dynamic features such as
traffic flow and average speed, while the SFE module primarily
handles static features of road segments, including length,
lane count, and speed limits. These two embeddings are then
concatenated and input into a Multilayer Perceptron (MLP) to
generate the final encoding for each road segment node. Using
these embeddings, the system performs node classification in the
classification module to determine whether a node is a critical
node. Experiments were conducted based on a simulation
dataset, which was divided into training and validation sets,
with multiple control experiments carried out according to the
ratio of critical nodes in the training set. The experimental
results show that our method significantly outperforms other
methods in various metrics, highlighting its practicality and
effectiveness in complex transportation network structures.

Index Terms—Transportation Network, Critical Node Identi-
fication, Parallel Encoding, DAAN, Static Feature Embedding,
MLP

I. INTRODUCTION

AS urbanization accelerates, the complexity of urban
transportation systems has been increasing, posing sig-

nificant challenges for transportation decision-making bodies
in effectively managing and optimizing city road networks.
Advances in science and technology have provided strong
support in addressing these challenges, particularly in the
fields of traffic simulation and traffic flow prediction, where
these technologies have become critical auxiliary tools [1]. In
this context, the ranking of the criticality of the nodes of the
road network plays a crucial role in ensuring smooth traffic
flow and effective emergency response. This technology not
only impacts the rational distribution of traffic flow but also
directly relates to urban emergency management and the
optimal allocation of resources [2].
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The concept of road segment criticality originates from
research on network vulnerability. Taylor et al. [3] proposed
that critical road segments should possess two characteristics:
first, a vulnerability indicating a higher likelihood of failure,
and second, the degree to which their failure would signifi-
cantly impact the entire network. Currently, the vulnerability
of critical road segments is typically determined by assessing
the probability of their failure, while the determination of a
segment’s importance is more complex and is usually based
on the impact of the segment on the network’s traffic before
and after its failure. Finally, by combining the results of
vulnerability and importance assessments, the criticality of
the road segment is determined [4].

However, traditional network analysis methods, while ca-
pable of initially identifying critical nodes, often overlook
the impact of dynamic changes in the road network and
the complex relationships between nodes, thereby limiting
their effectiveness in practical applications. With the ad-
vancement of technology, researchers have gradually intro-
duced graph embedding representations and Graph Neural
Networks (GNNs) [5] into tasks related to transportation
networks to enhance the accuracy and practicality of the
analysis.

Khoshrafta et al. [6] pointed out that although traditional
graph embedding techniques effectively map graph data into
low-dimensional spaces and reveal their global structural
characteristics, these methods often face challenges when
generalizing to unseen nodes. Since they rely on the global
information of the graph, the addition of new nodes typically
requires recalculating the mappings, which is particularly
inconvenient in dynamically changing networks. In contrast,
Graph Neural Networks (GNNs) exhibit significant advan-
tages in generalizing to new nodes [7]. GNNs learn to aggre-
gate information from the neighborhoods of nodes, allowing
for direct feature inference of newly added nodes without the
need to retrain the entire model [8]. Consequently, GNNs
demonstrate high flexibility and adaptability in dynamic
network scenarios, such as real-time traffic flow prediction
and network expansion [9].

To achieve an understanding of the dynamic evolution
characteristics of road network nodes, this paper proposes
a novel network model named Dynamic Adaptive Attention
Network (DAAN) to capture the semantic information of the
dynamic features of road network nodes. DAAN leverages
the advantages of the attention mechanism [10], enabling
dynamic adjustment of node representations over the time
dimension to better reflect their states and roles at different
time steps. Additionally, to fully utilize the static features of
road segments in the network, we propose a Road Segment
Static Feature Embedding (RSE) method, which encodes the
static features of nodes into embedding representations to
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Fig. 1: Network Structure

capture the intrinsic structural information of the network.
Finally, the two sets of features are aggregated through a
feature fusion module and then fed into a ranking learning
module to learn the importance ranking among road seg-
ments.

In summary, this study combines traditional graph embed-
ding techniques with the feature vector encoding methods of
Graph Neural Networks (GNNs) to propose a novel model
for ranking the criticality of road network nodes. The model’s
high accuracy and adaptability in practical applications have
been validated through supervised training on a simulation
dataset [11] generated by the SUMO software [12].

II. METHODOLOGY

Our method encodes road network graph data in parallel
by first feeding the graph data into two independent modules.
As Fig. 1 shows. One module utilizes a Dynamic Adaptive
Attention Network (DAAN) to generate node encodings
based on neural networks, with DAAN primarily encoding
the dynamic features of nodes, such as traffic flow and
average speed. The other module employs a traditional
embedding method-based static feature embedding (SFE) to
generate graph structure-based embeddings, with RSE pri-
marily encoding static features, such as road segment length,
lane count, and speed limits. These two encodings are then

concatenated and fed into a Multilayer Perceptron (MLP)
to produce the final encoding for each road segment node.
Using these encodings, we perform pairwise comparisons of
all road segment nodes in the ranking module to generate a
ranking list of node importance, which can be used to assess
critical nodes within the road network.

A. Dynamic Adaptive Attention Network (DAAN)

This paper proposes a novel network embedding model
named DAAN, specifically designed to capture the dynamic
features of road network nodes. The model effectively gen-
erates the final representation for each road segment through
an adaptive attention mechanism and a recursive aggregation
strategy.

Given a sequence of dynamic road network graphs
{G1, G2, . . . , GT }, where Gt = (V,Et) represents the road
network graph at time step t, V is the set of nodes, and Et is
the set of edges present at time t. The initial representation
of each node v ∈ V at time step t is denoted as xt

v , which
includes all the dynamic features of the node.

1) Structural Adaptive Layer: At each time step t, the
objective of the Structural Adaptive Layer is to compute the
representation of node v in the current graph Gt by aggregat-
ing information from its neighboring nodes. The computation
in this layer is defined by the following equation:
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2) Temporal Adaptive Layer: The Temporal Adaptive
Layer is designed to capture the dynamic evolution features
of nodes across different time steps. The input to this layer is
the sequence of structural representations of nodes at various
time steps. The computation in the Temporal Adaptive Layer
is defined by the following equation:

ztv =
t∑

k=1

βt
vkWth

k
v (4)

where ztv is the temporal representation of node v at time
step t, and Wt is the weight matrix of the Temporal Adaptive
Layer. The attention weight βt

vk of node v at time step t
towards its historical time step k is calculated as follows:

etvk = exp

(
Wqhvt ·Wkhvk√

d

)
(5)

βt
vk =

etvk
t∑

j=1

etvj

(6)

3) Recurrent Aggregation: To generate the final repre-
sentation of the road segments, we employ a recurrent
aggregation strategy. By using a Recurrent Neural Network
(RNN), the temporal representations {z1v, z2v, . . . , zTv } are
processed sequentially to obtain the final representation of
the node zv:

zv = RNN(z1v, z
2
v, . . . , z

T
v ) (7)

During the recurrent aggregation process, the RNN cap-
tures dependencies between time steps through its inherent
memory mechanism, thereby generating a final representa-
tion that integrates information from all time steps.

The final output of the DAAN module is the embedding
representation zv of node v, which integrates both the local
structural information and the temporal evolution features of
the node.

B. Static Feature Embedding (SFE)

Given a road network graph G = (V,E), where V is the
set of nodes representing road segments, and E is the set
of edges representing intersections. The node static feature
matrix is denoted as T ∈ Rn×s, where n is the number of
nodes, and s is the dimension of the static features for each
node.

1) Node Similarity: To measure the similarity between
node pairs in the embedding space, this paper defines a
similarity metric function F (i, j) based on the Sigmoid
function, which is expressed as follows:

F (i, j) = 2σ(eie
T
j )− 1 = 2×

(
1

1 + e−eieT
j

)
− 1 (8)

where ei and ej are the static feature embedding vectors
of nodes i and j, respectively.

2) Static Feature Embedding Matrix: To maximize the
similarity between nodes with similar static features, the
embedding matrix U is generated using the Skip-gram with
Negative Sampling (SGNS) technique [13], and can be
expressed as follows:

Ui = f (T, G) (9)

where Ui is the embedding representation vector of node
i. The goal is to obtain the embedding matrix U by opti-
mizing the following equation, which reflects the intrinsic
relationships between nodes:

minU≥0L(U) = ∥M − UUT ∥2F (10)

where M is the node structural embedding matrix, which
captures the latent relationships between nodes, and U is the
desired node embedding matrix.

The final output of the module is the embedding rep-
resentation matrix U ∈ Rn×d, where d is the embedding
dimension, and each row represents the final embedding of
a node in the embedding space.

C. Vector Fusion Module

This paper employs a MLP for the fusion of embedding
vectors and neural network encoded vectors. In the MLP
fusion strategy, the embedding vectors and neural network
encoded vectors are concatenated and then fed into a MLP
to generate the fused representation vector h. The formula
is as follows:

hi = MLP([ui∥zi]) (11)

where is a neural network composed of multiple fully
connected layers, used to non-linearly combine the input
embedding vectors and encoded vectors.

D. Discriminator and Loss Function

In this method, the discriminator is used to identify im-
portant categories. After processing node features through a
MLP, a Sigmoid activation function is applied to determine
the probability that a node belongs to a specific category.

Specifically, let the input features be hi, which is passed
through the Sigmoid activation function to determine whether
the node belongs to an important category. The Sigmoid
function is defined as:

σ(hi) =
1

1 + e−hi
(12)

The output σ(hi) ranges between (0, 1), representing the
probability that the node belongs to an important category.
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The discriminator’s output is compared with the node
labels in the data, using binary cross-entropy loss as the
evaluation metric. By minimizing the loss, the model’s
predictive capability is optimized. The binary cross-entropy
loss is defined as follows:

BCE(x, y) = − 1

N

N∑
i=1

(
yi log(σ(xi))

+ (1− yi) log(1− σ(xi))

)
(13)

where N represents the number of samples, xi is the model
output, σ is the Sigmoid function, and yi is the true label.

III. VALIDATION AND RESULTS ANALYSIS

A. Datasets

The dataset used in this study [11] is based on the real
road network of Tiexi District, Shenyang, China, and was
constructed using the traffic simulator SUMO. This road
network includes 1,004 road segments and 377 intersections.
To simulate traffic distribution, the dataset integrates origin-
destination (OD) information and points of interest (POI),
and models traffic flow during peak hours. Road segments
near POIs, such as subway stations, schools, and shopping
centers, were selected as origins or destinations. A total
of 7,200 vehicles were introduced into the simulated road
network, modeling traffic flow over a one-hour period. Road
segments without trajectory data were excluded from the
dataset.

To evaluate the importance of road segment nodes, the
dataset simulates road segment failures by reducing the
traffic capacity of each segment to 10% and measuring
the impact of these failures on the overall traffic efficiency
of the road network. The method for obtaining the node
importance ranking is as follows: first, the impact of a failure
is determined by monitoring changes in the average speed
within the network after a segment failure. If the average
speed on a segment falls below 10% of its speed limit, the
segment is considered to have failed. Next, the congestion
level of each segment and its propagation capability within
the network are calculated across different time periods.
These are then weighted and summed using a decay factor γ
to account for the importance across different time periods.
Finally, the importance scores of the segments are obtained,
and the nodes are ranked accordingly.

B. Experimental Environment and Evaluation Metrics

To quantitatively evaluate our model framework, this study
utilizes the following four metrics:

• Accuracy (Acc): Accuracy represents the percentage of
correctly classified samples out of the total samples. It
is calculated by dividing the sum of true positives and
true negatives by the total number of samples.

• Precision (Pre): Precision refers to the proportion of
samples predicted as positive that are actually positive.
It is computed as the number of true positives divided
by the total number of samples predicted as positive.

• Recall (Re): Recall indicates the percentage of actual
positive samples that are correctly identified as positive.
It is calculated by dividing the number of true positives
by the total number of actual positive samples.

• F1 Score (F1): The F1 score is the weighted harmonic
mean of precision and recall, providing a balanced
evaluation of these two metrics.

All methods were developed using Python 3.8 and exe-
cuted on a server equipped with an Intel Xeon(R) Platinum
8370 CPU and an RTX 3090 24G GPU. The server runs
the Ubuntu 20.04 operating system, with the deep learning
framework PyTorch 1.8.1, and relies on CUDA 11.2 for
acceleration.

C. Experimental Design

First, to demonstrate the effectiveness of the proposed
strategy, we compare the algorithm introduced in this paper
with various existing algorithms for identifying critical nodes
within a road network. In the experiments, the training and
testing sets are set at a 6:4 ratio, with different proportions
of critical nodes included in the training set. The comparison
algorithms are as follows:

• Random Selection (RD): This method does not con-
sider the connection patterns or attribute information of
nodes; instead, it relies solely on random sampling to
select nodes.

• Degree Centrality (DG) [14]: This approach assumes
that a node’s importance is proportional to the number
of its connections, meaning nodes with more connec-
tions are deemed more important.

• Betweenness Centrality (BT) [15]: This method mea-
sures a node’s importance by calculating the frequency
with which it acts as an intermediary in the shortest
paths throughout the network. Nodes with higher fre-
quencies are considered more critical.

• Closeness Centrality (CS) [16]: This method evaluates
a node’s importance based on its distance to other nodes
in the network, assuming that nodes closer to others are
more significant.

• PageRank (PR) [17]: This algorithm assesses the im-
portance of a node by considering both its connectivity
structure and the influence of its neighbors. Nodes
connected to more important nodes are themselves
considered more important.

Second, we designed ablation experiments, where we
evaluated the performance by using only DAAN, only SFE,
and both DAAN and SFE without processing through MLP.

D. Comparative Experimental Results

In the comparative experiment of this paper, we compared
the performance of algorithms under different training set
key node ratios. The experimental results demonstrate the
superiority of the proposed model across various ratios. The
detailed comparison results are shown in the table I, and the
trend of F1 values is shown in the Fig. 2.

Specifically, when the key node ratio of the training set is
10%, the proposed method still maintains a leading position
in all metrics. Although the indicators of all algorithms have
increased, the proposed method shows a particularly signif-
icant improvement, especially in recall rate and F1 value,
which are increased by 17.50, 19.80, and 19.73 compared to
RD, DG, BT, CS, and PR, respectively.

At the 15% key node ratio in the training set, the pro-
posed method again demonstrates its advantage in F1 value,
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TABLE I: Comprehensive Comparison of Algorithms with Different Critical Node Ratios

Training Set Critical Node Ratio Method Acc Pre Re F1

10%

RD 87.20 3.00 8.00 4.48
DG 87.43 3.30 8.90 4.94
BT 87.28 4.00 10.00 5.56
CS 86.50 4.50 12.80 6.00
PR 87.62 3.50 9.50 4.98

OUR 88.15 6.00 22.50 8.74

15%

RD 87.40 3.50 9.50 5.00
DG 87.58 4.00 10.50 5.82
BT 87.45 4.50 11.50 6.22
CS 86.70 5.00 13.50 6.67
PR 87.81 4.20 10.80 5.73

OUR 88.25 6.50 23.00 8.95

20%

RD 87.35 4.00 10.00 5.71
DG 87.55 4.50 11.00 6.39
BT 87.42 5.00 12.50 7.14
CS 86.62 5.50 14.00 7.90
PR 87.74 4.80 11.50 6.77

OUR 88.47 7.00 25.00 10.94

25%

RD 87.56 4.50 11.50 6.47
DG 87.71 5.00 12.50 7.14
BT 87.60 5.50 14.00 7.90
CS 86.85 6.00 15.00 8.57
PR 87.95 5.20 12.00 7.26

OUR 88.65 7.50 27.00 11.74

reaching 8.95, compared to RD’s 5.00. Precision and recall
rate have also significantly improved, further verifying the
effectiveness of the proposed method.

As the training set key node ratio gradually increases to
20% and 25%, the performance of the proposed method
continues to improve, especially in recall rate and F1 value.
Even at higher ratios, the proposed method still maintains
strong robustness, outperforming all baseline algorithms,
which validates the stability and superiority of the proposed
method across different key node ratios.

In summary, the model proposed in this paper demon-
strates excellent performance under different key node ratios
in the training set and surpasses existing baseline algorithms
in the four main metrics: accuracy, precision, recall, and F1
value, fully proving the effectiveness and advantages of the
proposed method.

E. Ablation Experiment Results

In this ablation study, we evaluated the impact of different
model components on model performance, as observed from
the Table. II, with training set critical node ratios set at
10%, 15%, 20%, and 25%. We analyzed the roles of three
key components: DAAN, SFE, and MLP. The experimental
results show that with the progressive addition of each
component, the model’s performance metrics and F1 scores
improved.

Firstly, the addition of DAAN played a crucial role in
enhancing performance. Without DAAN, the model’s per-
formance was relatively low. For example, at a 10% critical
node ratio, when DAAN was added, the F1 score increased
from 8.09 to 8.74, and as other components were added,
the F1 score continued to rise, highlighting the importance

of DAAN in capturing and aggregating dynamic attention.
Specifically, at a 25% critical node ratio, DAAN improved
the F1 score from 9.26 to 11.74, showing its significant
impact on model performance, especially at higher critical
node ratios.

Secondly, the inclusion of SFE also had a positive impact
on the model’s performance. At the 10% ratio, adding SFE
improved the F1 score from 8.09 to 8.51. As the critical node
ratio increased, the effect of SFE became more pronounced.
At a 25% ratio, the F1 score increased from 9.26 to 9.50 and
then to 9.75, demonstrating SFE’s advantage in enhancing
spatial feature representation, enabling the model to better
identify key nodes in the data.

As the final component, MLP also played a crucial role
in improving model performance. At the 10% ratio, the F1
score increased from 8.72 to 8.74, though the improvement
was modest. However, at higher ratios, the addition of
MLP significantly boosted the F1 score. For example, at
the 25% ratio, the F1 score increased from 9.75 to 11.74,
indicating that MLP could further improve the model’s ability
to identify subtle patterns and enhance classification accuracy
through non-linear transformations.

Overall, as the critical node ratio in the training set in-
creased, the model’s performance gradually improved across
all metrics. Specifically, the F1 score showed significant
improvement through the combined effects of DAAN, SFE,
and MLP. Notably, at the 25% critical node ratio, the F1
score reached 11.74, demonstrating the importance of the
collaborative effect of all components in optimizing model
performance. Therefore, the combination of dynamic atten-
tion mechanisms, static feature encoding, and multi-layer
perceptrons effectively enhances the model’s performance in
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Fig. 2: F1 Values Comparison of Algorithms with Different Critical Node Ratios

TABLE II: Ablation study results.

Training Set Critical Node Ratio DAAN SFE MLP Acc Pre Re F1

10%

✓ 87.50 5.20 20.00 8.09
✓ 87.75 5.50 21.00 8.51

✓ ✓ 88.00 5.80 21.50 8.72
✓ ✓ ✓ 88.15 6.00 22.50 8.74

15%

✓ 87.50 5.50 21.00 8.53
✓ 87.75 5.80 22.00 8.76

✓ ✓ 88.00 6.00 22.50 8.90
✓ ✓ ✓ 88.25 6.50 23.00 8.95

20%

✓ 87.60 6.00 23.00 9.10
✓ 87.85 6.30 24.00 9.42

✓ ✓ 88.10 6.50 24.50 9.65
✓ ✓ ✓ 88.47 7.00 25.00 10.94

25%

✓ 87.80 6.30 24.50 9.26
✓ 88.00 6.50 25.00 9.50

✓ ✓ 88.30 6.80 26.00 9.75
✓ ✓ ✓ 88.65 7.50 27.00 11.74

key node recognition and prediction tasks.

IV. CONCLUSION

The parallel encoding method proposed in this paper
effectively integrates the dynamic and static features of nodes
in transportation networks by combining the DAAN and the
RSE. Experimental results demonstrate that the proposed
method significantly improves performance in the task of
critical node identification, particularly in terms of accuracy,
generalization ability, and stability, compared to existing
methods. Through comparative experiments and ablation
analysis, we further validate the importance and synergistic
effect of each module within the overall architecture. The
resulting node importance ranking list provides a scientific
basis for the management and optimization of transportation
networks, proving the substantial potential of the proposed
method in practical applications.
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