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Abstract—The hash function is one of the primitive cryptog-
raphy techniques that is still widely used today, owing to its
importance in preserving the integrity of digital data. Various
hash functions, such as SHA-1, SHA-2, and SHA-3, have
been standardized in the digital world to solve data integrity
challenges. However, vulnerabilities have been discovered in
some hash function standards through cryptanalysis, making
it necessary to develop alternative hash function designs. The
proposed hash algorithm, which was named Hortex, is an alter-
native hash function based on a chaotic sponge that generates
an output length of 128 bits. The Hortex algorithm was tested
using Cryptographic Randomness Testing (CRT) to evaluate
its randomness properties, statistical analysis to examine its
confusion and diffusion characteristics, and attacked using
Yuval’s birthday attack and brute-force attacks theoretically to
evaluate its security. The results of the test show that the Hortex
algorithm passes the CRT test, indicating that it has good
randomness properties. The results of the statistical analysis
indicate that Hortex exhibits good confusion and diffusion
properties.The results of the theoretical attack on Hortex show
that Hortex is resistant to Yuval’s birthday attack and has
a complexity of 2128 for the preimage and second preimage
resistance and 264 for collision resistance.

Index Terms—chaos function, chaotic sponge, collision at-
tack, cryptographic randomness testing, hash function, sponge
construction.

I. INTRODUCTION

INFORMATION SECURITY has become crucial in the
era of Industry 4.0, particularly due to the increasing

threats of various cyber attacks [1]. At its core, information
security revolves around three fundamental principles, that is,
Confidentiality, Integrity, and Availability (CIA) [2]. These
principles are essential for protecting sensitive data and
ensuring that it remains secure from unauthorized access
and tampering. An effective way to achieve these services
is through the use of cryptographic techniques, particularly
hash functions. Hash functions play a key role in providing
data integrity and authentication, both of which are vital to
safeguarding information in the digital landscape today [3].

Hash functions are commonly constructed in various ways,
and one popular method is based on Merkle-Damgard (MD)
construction. Some MD-constructed hash functions include
MD4, MD5, SHA-1, SHA-2, and RIPEMD [4]. In 2004 and
2005, X. Wang successfully executed collision attacks on
the MD5 and SHA-1 hash function standards, leading to
the establishment of new hash function standards [5], [6]. In
2008, SHA-2, which replaced SHA-1 as the standard hash
function, was also subjected to a collision attack by [7].
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Since the discovery of collisions in the MD-based hash
function standard, numerous researchers have endeavored
to find and develop new construction models to replace
MD. Some of these models include tree-based constructions,
wide-pipe designs, the hash iterative framework (HAIFA),
and the sponge function [8]. Among these construction
models, sponge-based construction has garnered the primary
attention due to the latest hash function standards, SHA-3
or KECCAK, which employ the sponge function as their
foundational structure [9]. Since its introduction, SHA-3 has
been the subject of various cryptanalysis attacks [10], [11],
[12]. Although SHA-3 has not been completely compro-
mised, research on the design of alternative, more secure
hash functions remains crucial [13].

Several researchers have designed hash functions using
sponge construction, such as Titanium and RM70 [14], [15].
Furthermore, research on sponge-based hash function designs
has become more diverse, including the incorporation of
chaotic functions. The involvement of chaotic functions is
due to the fact that they produce random output while
simultaneously being deterministic and highly sensitive to
input changes. This property is well suited for building
hash functions [16]. [17] designed a chaotic sponge-based
hash function using chaos functions based on DNA code
sequences. On the other hand, [18] designed a chaotic
sponge-based hash function using neural network structures.
[19] also designed a chaotic sponge-based hash function with
a two-dimensional structured chaos function.

The selection of a chaotic function for designing a hash
function is typically based on the chaotic region of the
chaotic function, as determined by bifurcation diagrams and
Lyapunov exponents [20]. The chaotic region is defined using
bifurcation diagrams and Lyapunov exponents. This chaotic
region is used as a tool to manipulate the randomness in the
structure of the designed hash function. Chaotic functions are
generally categorized based on their dimensionality, ranging
from 1D, 2D, 3D, to nD chaotic maps. Among various
types of chaotic functions, 1D chaotic maps are the simplest
to implement and are therefore popular for cryptographic
applications. One of the simplest examples is the utilization
of the logistic map as an encryption function in images
[21]. Higher-dimensional chaotic functions, such as 2D and
3D chaotic maps, offer higher security levels but involve a
more complex implementation. The same principle applies
in general to nD chaotic maps. Nonetheless, some research
has explored the use of chaotic functions in cryptography,
including variants of 2D chaotic maps and even higher-
dimensional variants [22], [23], [24].

The aim of this study is to design a chaotic sponge-based
hash function called Hortex. The sponge function is chosen
as the basis for the construction to mitigate length extension
attacks, which are susceptible in MD-based constructions,
as observed in previous standard hash functions [8]. The
selection of the chaos function as one of the building blocks
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of the hash function is based on the favorable properties of
the chaos functions to construct the hash functions [16]. The
specific chaos function used is the 1D chaotic map known
as the Enhanced Logistic Map, introduced by [25], chosen
for its superior chaotic properties compared to several other
1D chaotic maps. The proposed hash function, Hortex, will
be subjected to testing and evaluation to assess its random-
ness and security properties. Randomness will be assessed
using Cryptographic Randomness Testing (CRT) [26]. The
security will be evaluated by applying cryptographic tests to
the collision resistance property of the hash function. This
is done because collision resistance has a lower security
level compared to the other two properties (preimage and
second preimage resistance) [27]. Therefore, if the collision
resistance property is not satisfactory, it can be inferred that
the other two properties will also exhibit poor performance.

The structure of this paper is organized as follows. Sec-
tion II discusses several studies that design hash functions
based on chaotic functions and sponge functions. Section
III addresses the prerequisite materials used in the design
of hash functions. Section IV covers the description of the
proposed hash function design named Hortex. Section V
conducts randomness testing on Hortex using CRT. Section
VI performs theoretical security testing on the collision
resistance property of the Hortex algorithm. Section VII
presents the conclusions drawn from the research conducted
in this paper. Additionally, Appendix A provides a more
detailed explanation of performing randomness tests using
CRT on the Hortex algorithm.

II. RELATED WORK

Several researchers have explored various methods and
approaches for designing hash functions. One such approach
involves using chaotic functions with the purpose of influenc-
ing randomness, and the key to implementing chaos functions
in a design lies in how to preserve their chaotic charac-
teristics. An example of designing a hash function using
chaotic functions was done by [28], where they constructed
a keyed hash function. In their hash function design, they
utilized a chaotic iteration function, the domain of which
is confined to integers. The advantage of this lies in the
fact that, due to its limited domain within integers, there
is no necessity for further transformation of the chaotic
function’s outcomes to preserve the chaotic characteristics
upon implementation. This stands in contrast to conventional
implementations of chaotic functions, wherein the results
typically remain within the realm of real numbers, neces-
sitating additional transformations for similar preservation
of chaotic attributes. In a similar vein, in 2019, [29] also
pursued the design of keyed hash functions based on chaotic
functions. In their implementation of chaotic functions, they
utilized fixed-point representations to maintain the chaotic
characteristics of the chosen chaotic function. This approach
differs from the one employed by Lin et al. primarily because
Teh et al. chosen chaotic function operates within the real
number domain, requiring special considerations to preserve
its chaotic characteristics effectively. On a different note, in
2022, [25] engaged in the design of a chaotic function called
the ELM function, which exhibited superior performance
compared to several other chaotic functions.

Recently, alternative designs of hash functions have fo-
cused on employing the construction of a sponge function,
as demonstrated by [14], which integrates a Substitution
Permutation Network (SPN) with a sponge function. Further-
more, other researchers have undertaken the design of hash
functions based on the sponge function, coupled with the im-
plementation of chaos functions to enhance the randomness
properties in the design, as exemplified by [17]. Alawida
et al. employ coding techniques in the implementation of
their chaos function to retain its chaotic characteristics in the
hash function design. [19] also devised hash function designs
based on the sponge and chaos function, with the distinction
lies in the type of chaos function employed, specifically
a 2D map. Their research aimed to expand the mapping
space, or domain, of the chaos function. Another approach to
constructing hash functions based on the sponge and chaos
function was undertaken by [18]. Abdoun and colleagues
utilized discrete chaos functions in conjunction with a neural
network structure to preserve the inherent chaotic properties
of the chaos function in its implementation.

III. PRELIMINARIES

A. Hash Function

Hash function serves as a classical cryptographic algorithm
that plays a crucial role in modern cryptography. A hash
function takes an arbitrary-sized input message and produces
a fixed-size output, typically referred to as the hash or digest,
representing the compressed form of the input message. [27]
state that a hash function should be computationally efficient
while generating the digest or hash of an input message.
Hash functions are commonly employed as a tool to ensure
data integrity in modern cryptography. In addition to com-
pression and computational efficiency, a hash function must
also exhibit three other properties for strong cryptographic
resilience, namely preimage resistance, second preimage
resistance, and collision resistance [27]. Let X represent
an input, and H(·) denotes the hash function. Preimage
resistance is a property of a hash function, signifying that,
computationally, it is difficult to derive the original input
X from its hash value H(X). Second preimage resistance
is another property of a hash function, meaning that if
both the input X and its hash value H(X) are known, it
remains computationally difficult to find any other input X ′

that results in the same hash value, i.e., H(X) = H(X ′).
Collision resistance, on the other hand, is a property of a
hash function that makes it computationally difficult to find
two distinct inputs (X ̸= X ′) that produce the same hash
value, i.e., H(X) = H(X ′).

B. Sponge Function

The sponge function is a function that takes input of a
specific length and produces an output of arbitrary length
through a repeated iteration process on a transformation or
permutation function that receives a fixed-sized state. The
term ”sponge” was introduced by [30], because this function
exhibits two phases similar to the properties of a sponge,
namely the absorbing phase and the squeezing phase. The
absorption phase absorbs input bits of any quantity into a
state using a transformation function, and subsequently, this
state enters the squeezing phase to generate output bits [30].
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Fig. 1. Sponge Function1

Figure 1 illustrates the sponge function with an input X
and a state of length s, where the state is the sum of the
capacity (c) and rate (r). In the sponge function, the input
X is divided into t blocks, denoted as x1, x2, . . . , xt, each
of length r. During the absorbing phase, the state s absorbs
xi, followed by the application of the transformation or
permutation function f onto s. In the squeezing phase, the
state s is utilized as the input for the function f again, and
for each iteration, the output of f is taken as the r most
significant bits (msb), denoted as hi. The output of the sponge
function is H(X), which is the result of concatenating hi

along a length of l. The padding function, pad, is applied to
the input X if its length is not a multiple of r. If the output
of the sponge function is of length l, and the capacity of the
sponge function is c, then the security level of the sponge
function against collisions is given by min(2c/2, 2l/2) [31].

C. Chaos Function

Chaos is the aperiodic behavior observed in dynamic
systems that exhibits significant sensitivity dependence on
initial conditions. The concept of chaos pertains to the
mapping of sequences generated under specific initial con-
ditions and chaos parameters [22]. Chaos functions exhibit
aperiodic, deterministic, and highly sensitive dependence on
initial conditions. Furthermore, sequences generated by chaos
functions display characteristics akin to random sequences
[32]. The study of the properties of chaos functions is
typically carried out by examining bifurcation diagrams and
Lyapunov exponents [20].

1) Bifurcation Diagram: A bifurcation diagram illustrates
the long-term output values resulting from the continuous
iteration of an input parameter. The bifurcation diagram
depicts the states of the long-term output within various
ranges of control parameters. When a control parameter
enters the chaotic region, the bifurcation diagram reveals its
bifurcations. As the control parameter space becomes more
chaotic, the more bifurcations are displayed in the bifurcation
diagram [33].

2) Lyapunov Exponent: The sensitivity to small changes
in initial conditions and control parameters as inputs plays a
crucial role in chaos-based cryptography. The Lyapunov Ex-
ponent (LE) is a mathematical indicator that can be computed
for different initial conditions and control parameters. A
chaotic function with a high positive LE value exhibits rapid
divergence of chaotic points in its iterations or over time

1The diagram is taken from http://sponge.noekeon.org and is available
under the Creative Commons Attribution License.

Fig. 2. Bifurcation diagram (top) and Lyapunov exponent (bottom) for the
Logistic Map and ELM function with k = 10

compared to a function with a smaller LE value. Conversely,
a negative or zero LE value indicates periodic behavior or
convergence to a value within a few iterations. In other
words, an increase in the LE value of a chaotic function
signifies an increase in uncertainty and sensitivity in the
behavior of the chaotic function [25].

3) Enhanced Logistic Map: One example of a chaotic
function, as introduced by [25] in their research, is the
Enhanced Logistic Map (ELM), which exhibits superior
chaotic properties compared to some other chaotic functions.
ELM is an extension of the chaotic Logistic Map (LM)
function defined as γn+1 = fLM (η, γn) = ηγn(1 − γn)
[34]. This is proven by the bifurcation diagram results and
LE of the ELM, which show a substantial difference in chaos
compared to the logistic map. The ELM is defined as follows:

γn+1 = fELM (η, γn, k) =

(
2k

2fLM (η,γn)

)
(1)

where γn represents the state variable in the system with
γn ∈ (0, 1),∀n ≥ 0, k and η are system parameters. Figure
2 depicts the bifurcation diagram and Lyapunov exponent
of LM and ELM with k = 10. It is evident from Figure
2 that the bifurcation diagram of the ELM exhibits more
chaotic behavior compared to the LM, attributed to a greater
number of bifurcations in the bifurcation diagram of the
ELM in comparison to the LM. Furthermore, in the LM, the
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maximum LE value is 0.212, and the range of the chaotic
region is η ∈[3.57, 4]. In contrast, the maximum LE value
in the ELM is 4.121, and the range of the chaotic region is
η ∈[0, 4]. This indicates that the chaotic nature of the ELM
is superior to that of the LM, both in terms of the range
of its chaotic behavior and the characteristics of chaos, as
observed through the LE values.

D. Linear Regression and Simple Exponential Regression

Regression is the study of dependency [35]. Linear regres-
sion in statistics is the process of determining the best line
that can represent the general trend of a set of data. The
simplest form of linear regression involves two variables: ŷ
as the dependent variable and x as the independent variable.
The equation for a dataset portraying linear progression is
expressed as ŷ = ax + b. The values of a and b can be
obtained as follows:

a =
n
∑n

i=1 xiyi − (
∑n

i=1 xi) (
∑n

i=i yi)

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

b =

∑n
i=1 yi − a (

∑n
i=1 xi)

n

where xi and yi denote dependent and independent data
correspondingly, and n represents the number of data points.

Conversely, in the context of exponential growth evident
within a dataset, the corresponding formulation takes the
form of ŷ = abx. The equation can be rewritten as

ŷ = abx

ln ŷ = ln (abx)

ln ŷ = ln a+ x ln b

Let Ŷ = ln ŷ, â = ln b, and b̂ = ln a, then the previous
equation can be expressed as

Ŷ = âx+ b̂

Thus, we obtain

â =
nΣn

i=1xiYi − (Σn
i=1xi) (Σ

n
i=1Yi)

nΣn
i=1x

2
i − (Σn

i=1xi)
2

ln b =
n
∑n

i=1 xi ln yi − (
∑n

i=1 xi) (
∑n

i=1 ln yi)

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

b = exp


n

n∑
i=1

xi ln yi −
(

n∑
i=1

xi

)(
n∑

i=1

ln yi

)
n

n∑
i=1

x2
i −

(
n∑

i=1

xi

)2

 (2)

and

b̂ =
Σn

i=1Yi − â (Σn
i=1xi)

n

ln a =

∑n
i=1 ln yi − ln b (

∑n
i=1 xi)

n

a = exp

(∑n
i=1 ln yi − ln b (

∑n
i=1 xi)

n

)
(3)

Consequently, if given data exhibits exponential growth,
the relationship describing this growth can be formulated
as y = abx where a can be obtained using the formula in
Equation (3), and b can be obtained using the formula in
Equation (2).

Fig. 3. Sponge Function Scheme in Hortex

Algorithm 1 Hortex
Input: Message X with an arbitrary length.
Output: H(X), the 128-bit hash value of message X .

1: Let r = 64 and c = 192 represent the parameters used
in the sponge function.

2: if r ∤ len(X) then ▷ Initialization phase
3: X = X ∥ pad(X)

4: Divide X into t blocks of 64-bit denoted as x1, x2, ..., xt.
5: s0 = 0r ∥ 0c

6: for i = 1 to t do ▷ Absorbing phase
7: si = f(si−1 ⊕ (xi||0c))
8: for j = 1 to 2 do ▷ Squeezing phase
9: st+j = f(st+j−1)

10: hj = r msb of st+j

11: H(X) = h1 ∥ h2.

IV. THE DESIGN OF HORTEX

Hortex is a hash function algorithm based on chaos func-
tions and the sponge function proposed in this paper. Hortex
utilizes the sponge function as its fundamental construction.
It takes an input message X of arbitrary size and produces an
output H(X) with a size of 128 bits. The algorithm maintains
a 256-bit state s, which is composed of a 64-bit rate (r) and a
192-bit capacity (c). Figure 3 depicts the Hortex algorithm’s
sponge function scheme.

A. Hortex Algorithm Description

As depicted in Figure 3, there are three phases in the gener-
ation of the hash value of the Hortex algorithm, commencing
with the initialization phase, followed by the absorbing
phase, and concluding with the squeezing phase. The Hortex
algorithm is described in Algorithm 1. In the initialization
phase, the initial state value (s0) is an empty string, or
s0 = 0r ∥ 0c, where r and c represent the rate and capacity.
The input message X , which can be of an arbitrary size, may
have a length that is not a multiple of the rate. Therefore,
padding is required for the initial message. Padding is
performed by appending a ’1’ bit followed by ’0’ bits to fill
the deficiency needed to obtain a message with a multiple
of r. The input message, after padding (if necessary), is
then divided into blocks xi of size r, comprising t blocks
that will be processed within the transformation function f
during the absorbing phase. The padded message is denoted
as X ∥ pad(X).

In the absorbing phase, the process involves the extraction
of message blocks xi, each of size r bits or 64 bits, to
update the value of a 256-bit state (s0). This is achieved
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Fig. 4. The scheme of the transformation function f in the Hortex algorithm

by performing an XOR operation between the 64 msb of
the state and the message block xi. The updated state is
then inputted into the transformation function f to obtain
the updated state value (si). The transformation function f
comprises two components: the chaos ELM algorithm and
the ARX function (addition rotation XOR).

The value of the state after the absorbent phase is denoted
as st. The state st is then processed in the squeezing phase
twice to obtain the output of the hash function Hortex.
In the squeezing phase, the state st is fed back into the
transformation function f , yielding st+1, and the r msb of
st+1 is stored as h1. Subsequently, st+1 is also fed back into
f to generate st+2, and the r msb of st+2 is stored as h2.
The final hash value of the Hortex algorithm is expressed as
H(X) = h1 ∥ h2.

In the absorbing and squeezing phases, there exists a trans-
formation function f , whose schematic is illustrated in Figure
4. The transformation function f takes an input of 256-bit
size and produces an output of 256-bit size. Algorithm 2
specifies the steps for the transformation function f in the
Hortex algorithm. A 256-bit block is divided into 8 × 32-
bit blocks in the function f , and each of them is processed
in the ELM algorithm. The output of the ELM algorithm
is stored in the adjacent block, which is also utilized to
provide feedback to the preceding ELM block. Subsequently,
the output of the ELM algorithm undergoes an ARX function
within each block, and the outcomes of these ARX functions
are then concatenated to form the updated state value.

The ELM algorithm processes 32-bit inputs and produces a
32-bit output. The ELM algorithm utilizes the chaos function
ELM introduced by [25] to impart a randomness effect on the
Hortex algorithm, as illustrated in Figure 5. The steps of the
ELM algorithm are described in Algorithm 3. Parameters γ0,
η, and k are obtained by dividing a 32-bit input into 12 msb,
followed by the next 16 bits after 12 msb, and the remaining
4 lsb denoted as xl, xm, and xr, respectively. The variables
xl, xm, and xr sequentially determine the values of γ0, η,
and k. Due to the constraint γ0 ∈ [0, 1] and the size of xl

Algorithm 2 f function
Input: 256-bit string x.
Output: 256-bit string y.

1: Divide x into 8 blocks of 32-bit denoted as
x1, x2, . . . , x8.

2: Let v1, v2, . . . , v8 denote binary strings consisting of
zeros.

3: for i = 1 to 8 do ▷ Chaos ELM algorithm
4: if i = 8 then
5: v1 = ELM(xi ⊕ vi)
6: else
7: vi+1 = ELM(xi ⊕ vi)

8: Do the following in sequence: ▷ ARX function
v1 = (v1 ≪ 19)⊞ (v3 ≪ 9)
v5 = (v5 ⊕ (v3 ≪ 9)) ≪ 7
v6 = (v6 ⊕ (v4 ≪ 17)) ≪ 13
v7 = v7 ⊞ v5
v8 = (v8 ≪ 11)⊕ v6
v2 = v2 ⊞ v6
v3 = (v3 ≪ 9)⊕ v7
v4 = (v4 ≪ 17)⊞ v2

9: y = v1 ∥ v2 ∥ . . . ∥ v8

being 12 bits, a numerical range partition is created with
equal intervals of 212 within the range [0,1]. The decimal
representation of xl determines the partition position chosen
as γ0 within the range [0,1]. For example, if the equal interval
partition in the range [0,1] yields a sequence of numbers
(a0, a1, ..., ad, ..., a212−1), and the decimal representation of
xl is d, then γ0 = ad. The same process is applied to η and
k, with the chosen range for η being [2,4], divided into 216

partitions (xm having a length of 16 bits), and the range for
k being [10.01,11.01], divided into 24 partitions (xr having a
length of 4 bits). The decimal values of xm and xr determine
the partition positions chosen as the values for η and k,
respectively.

Using Equation 1, the chaos function ELM will undergo
n iterations, where n = ⌊6γ0⌋. The real numbers resulting
from the chaos ELM function will be converted into a binary
string using a single precision floating point in the IEEE 754
standard, denoted as binary32(·) [36]. The output of the
ELM algorithm is the XOR result of the iteration at step (n+
1) multiplied by 1010, processed through the binary32(·)
function, then left-rotated by 17 bits, and the iteration at
step (n+ 2) processed through the binary32(·) function.

B. Design Rationale

Algorithm 3 contains the utilization or implementation of
the chaos function in the Hortex algorithm. This algorithm is
an adoption and modification of research that generalizes the
implementation of the chaos function in primitive cryptog-
raphy, including hash functions, by [37]. The adoption and
modification are aimed at meeting the design requirements
of the hash function, namely having good randomness and
collision resistance properties.

The ELM algorithm, as depicted in Algorithm 3, is
designed in such a way as to have dependencies on the
received input, which is a 32-bit string. This dependency
is not only about determining the initial conditions of the
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Fig. 5. The ELM Scheme in the Hortex Algorithm

variable parameters of ELM (γ0) but also determining the
system parameters of ELM (η) each time the ELM algorithm
is called. This is done because the system parameters of ELM
have a sufficiently large chaotic characteristic range, that is,
in the range [0, 4]. Therefore, it is better to utilize the entire
range to obtain more diverse chaotic values. Furthermore, the
range selected for the system parameter is η ∈ [2, 4] from the
overall range [0, 4]. This is done to achieve a high chaotic
property because, in this range, the LE value is greater than 4,
which is considered significant. Then, instead of the integer
value k = 10, as suggested by [25], the control parameter of
the system k is chosen to be in the range [10.01, 11.01]. This
is done to ensure that the output of the chaos function ELM
is nonzero even when the received input is an empty string,
and it establishes a dependency on the value of k with the
input.

Equation (1) utilized in the ELM algorithm is executed
for a total of (n + 2) iterations, where n = ⌊6γ0⌋. Due
to the highly chaotic characteristics of the employed chaos
ELM function, the number of iterations performed need not
be excessively large. Opting for a relatively small number
of iterations is chosen to expedite the algorithm execution
process. The conversion of real numbers to binary strings
using IEEE 754 single-precision in the ELM algorithm is ne-
cessitated by the computer system’s storage of real numbers
in the IEEE 754 standard, eliminating the need for additional
conversion overhead and concurrently saving execution time.
The selection of the IEEE 754 standard is also motivated by
its ability to preserve the chaotic characteristics of real values
generated by the chaos function during conversion to binary
strings.

The transformation function f employed in the Hortex
algorithm comprises two main components: the chaos ELM
algorithm, as illustrated in Algorithm 3, and the ARX func-
tion. The incorporation of the chaos function is evident due
to its chaotic nature, making it suitable for constructing a
hash function. Additionally, the chaos ELM function that is

Algorithm 3 ELM

Input: 32-bit string x
Output: 32-bit string y

1: Partition x sequentially into blocks of sizes 12 bits, 16
bits, and 4 bits, denoted as xl, xm and xr, respectively.

2: Calculate γ0 = xl · 1
212 , η =

(
xm · 2

216

)
+ 2, k =(

xr · 1
24

)
+ 10.01, and n = ⌊6γ0⌋

3: for i = 0 to n+ 1 do
4: γi+1 = fELM (η, γi, k) ▷ Refer to Equation (1)
5: if i = n then
6: w1 = binary32(γn+1 · 1010)
7: else if i = n+ 1 then
8: w2 = binary32(γn+2)

9: y = (w1 ≪ 17)⊕ w2

used in the ELM algorithm is chosen for its superior chaotic
performance compared to other chaos functions [16], [22],
[25]. In addition to its simple and fast structure, as men-
tioned in [38], the ARX function is utilized to disseminate
the chaotic characteristics emitted by each ELM algorithm
throughout the state. Furthermore, a feedback mechanism
is applied in the ELM algorithm within the transformation
function f . This is done to ensure that the outputs of each
ELM algorithm block differ even when all input values to
the ELM algorithm blocks are identical.

The selection of the sponge construction for the function
is motivated by its advantages over other hash function
constructions, such as simplicity, flexibility, and variable-
length output [39]. The simplicity of the general scheme of
the sponge function is straightforward, comprising only two
phases: absorbing and squeezing, which involve a transfor-
mation function f . The flexibility of the sponge function is
a trade-off related to the security level and computational
speed. The sponge function can achieve high-security levels
by sacrificing computational speed, or vice versa. This can be
easily controlled through parameters such as state, rate, and
capacity defined in the sponge function. The advantage of
variable-length output in the sponge function lies in its ability
to produce output as needed without altering the predefined
parameters of state, rate, and capacity. In other words, a
single sponge function can be configured to generate different
output lengths.

Furthermore, observe in Figure 3, there is a gap at the
beginning of the squeezing phase, one state before producing
h1, which differs from Figure 1. This is done to ensure that
the transformation function f is executed twice (i.e., f is
applied for two rounds) in a single execution. Thus, it is
ensured that each time the Hortex algorithm is executed,
the function f two-round is executed exactly once. This is
done to minimize the execution of the function f as much as
possible to save execution time, so that not every execution
of the function f will be run twice in each block, but only
in the transition from the absorbing phase to the squeezing
phase. The reason for performing the function f two-round is
because the function f one-round does not have sufficiently
good randomness characteristics, so there is concern that
it may perform poorly on the overall Hortex algorithm.
However, the function f two-round has good randomness
characteristics, so by running the function f two-round in
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the Hortex algorithm, it will have a positive impact on the
overall Hortex algorithm (refer to Section V-A2 for a more
detailed explanation).

The security level of the hash function constructed using
the sponge function against collision resistance is given by
min(2c/2, 2n/2), where n is the output length and c is the
capacity length [31]. The choice of parameters r = 64,
c = 192, and n = 128 in the sponge function used in the
Hortex algorithm ensures that the security against collision
resistance is not dependent on internal collisions (2c/2), but
rather on full collisions (2n/2), such as n < c, resulting
in min(2c/2, 2n/2) = 2n/2. Thus, the maximum security
level achievable by the Hortex algorithm against collision
resistance is 264, and against preimage and second-preimage
resistance is 2128.

C. Test Vector

A test vector was executed for each intermediate step
in the Hortex hashing process. A 96-bit message (X =
abcd1234bcd4517aabc2efd2) underwent hashing to
produce an 128-bit hash value. Table I presents the test vector
for the Hortex algorithm. The first string highlighted in red
corresponds to h1 generated during the squeezing phase,
while the second string highlighted in red represents h2.
It can be seen that the hash value of the message X is a
concatenation of h1 and h2, denoted as h1 ∥ h2, according
to the description of the Hortex algorithm.

V. RANDOMNESS EVALUATION

Randomness testing of the Hortex algorithm is carried out
on both the general algorithm and its constituent components.
The randomness assessment of the Hortex algorithm employs
the CRT proposed by [26] in their four tests: Strict Avalanche
Criterion (SAC) Test, Linear Span Test, Collision Test, and
Coverage Test. The test is conducted using the chi-squared
goodness-of-fit test with 220 independent input samples,
each consisting of a 32-bit string, with a significance level
of α = 0.01. Each test is repeated five times to ensure
statistically independent insights, minimizing the influence
of any single outlier or anomaly on the overall results. By
conducting multiple iterations, the reliability and consistency
of the findings are enhanced, allowing for a more robust eval-
uation of the algorithm’s performance. This approach also
reduces the risk of bias and provides a clearer understanding
of the underlying trends and patterns. The evaluation of the
constituent components of the Hortex algorithm includes
the SAC test on the transformation function f and the
ELM algorithm. For a more detailed description of the steps
undertaken in conducting CRT on the Hortex algorithm,
please refer to Appendix A.

A. SAC Test

The objective of the SAC test is to assess whether an
algorithm satisfies the SAC property. The SAC property is
defined so that a change in one input bit results in a change
in the output bit with a probability of 0.5. In other words,
SAC evaluates whether an algorithm exhibits a correlation
between input and output bits.

There are two conditions that must be met to determine
whether an algorithm passes the SAC test. The first condi-
tion is that pvalue ≥ α = 0.01 in the approach using the χ2

goodness of fit test with degrees of freedom df = 4, and the
second condition is that the entry of the SAC matrix should
not fall outside the interval2 [521783.48 , 526792.52]. The
second condition is used to determine whether the results of
the first condition are coincidental or not, assuming that the
correct procedures are followed.

1) SAC Test on Hortex Algorithm: The results of the SAC
test on the Hortex algorithm are presented in Table II. It can
be seen that the pvalue of Hortex exceeds its significance
level and that there are no entries in the SAC matrix that
fall outside the interval. This satisfies the two conditions
required to declare that the SAC test is passed. The five
successful tests in Hortex indicate that the SAC test results
are not coincidental, demonstrating that Hortex possesses
the random mapping property in terms of the cryptographic
nature of SAC.

2) SAC Test on f function: The results of the SAC test
on the one-round f function and the two-round f function
are presented in Table III. It can be seen that the pvalue
for the one-round function f is significantly lower than
its significance level, and there are no entries in the SAC
matrix outside the interval. Thus, it does not satisfy the first
condition required to pass the SAC test. The results of the five
tests for the one-round f function consistently demonstrate
similar results, indicating that the one-round f function does
not pass the SAC test.

However, the results of the SAC test for the two-round
function f show the opposite. The pvalue for the two-round
f function is greater than its significance level, and there
are no entries in the SAC matrix outside the interval. This
satisfies both conditions required to be considered as passing
the SAC test. Due to the consistent results of the five tests
conducted on the two-round f function, it can be concluded
that the two-round f function passes the SAC test.

Based on the results obtained on the randomness of the f
function for both the one-round f function and the two-round
f function, it is evident that the two-round f function exhibits
superior randomness characteristics. This observation forms
the basis for the design choice in the Hortex algorithm,
where there is a gap in the transition between the absorption
and squeezing phases. As a consequence of this gap, the
Hortex algorithm executes the f function twice, equivalent
to running the two-round f function, ensuring the execution
of a function with superior randomness properties.

3) SAC Test on ELM algorithm: The results of the SAC
test on the ELM algorithm are presented in Table IV. It is
observed that the pvalue of the ELM algorithm exceeds the
significance level and that there are no entries in the SAC
matrix outside the interval. This satisfies the two conditions
required to declare that the SAC test is passed. The results
of the five tests on the ELM algorithm also demonstrate
similar results, indicating that the ELM algorithm passes
the SAC test. Consequently, the ELM algorithm exhibits
favorable random mapping properties, as evidenced by its

2The actual interval stated by [26] is [219−5009 , 219+5009], but based
on unpublished observations by Riyanti in her thesis at the National Crypto
and Cyber Polytechnic in 2016, the more accurate interval is [521783.48 ,
526792.52]
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TABLE I
TEST VECTOR FOR HORTEX

Initialization Phase
X = abcd1234bcd4517aabc2efd2

X ∥ pad(X) = abcd1234bcd4517aabc2efd280000000

x1 = abcd1234bcd4517a

x2 = abc2efd280000000
Absorbing Phase

abcd1234bcd4517a0000000000000000
00000000000000000000000000000000

f
28bec327f35f3fb20b79a72bf9fe3f98
96e278d6e44dd7bae3a3ad9e6fa8939f

837c2cf5735f3fb20b79a72bf9fe3f98
96e278d6e44dd7bae3a3ad9e6fa8939f

f
1145ec5e14a2821f6f8f46ea91fc8bfa
07b6ad379379cc0ceb2476fd11281c28

Squeezing Phase
1145ec5e14a2821f6f8f46ea91fc8bfa
07b6ad379379cc0ceb2476fd11281c28

f
8ac693947ff82936bf3facc68b69d5ce
f4e870c81b8bdabd0a82dbd49c3f058f

8ac693947ff82936bf3facc68b69d5ce
f4e870c81b8bdabd0a82dbd49c3f058f

f
e1d54a1b837b31984bdd6779974d63d9
f9fbdcf5e02907d001d3d7d65381e70a

Hash Value
Hortex(X) = 8ac693947ff82936e1d54a1b837b3198

TABLE II
THE OUTPUT OF FIVE SAC TESTS ON HORTEX ALGORITHM

SAC test First condition Second condition

χ2 pvalue inside interval outside interval

I 6.2234 0.1830 4096 0
II 10.0770 0.0391 4096 0
III 7.1764 0.1268 4096 0
IV 9.8815 0.0424 4096 0
V 7.0501 0.1332 4096 0

cryptographic SAC characteristics.

B. Linear Span Test

Nonlinearity is a fundamental design aspect of primitive
cryptography, including hash functions. To assess the ran-
domness of the hash function based on non-linearity, a linear
span test is employed. An algorithm is deemed to pass the
linear span test when it satisfies condition pvalue ≥ α = 0.01
in the approach using the χ2 goodness of fit test with
degrees of freedom df = 2. The results of the linear span
test for the Hortex algorithm are presented in Table V.
It can be seen that all five tests conducted have a pvalue
greater than the specified significance level, indicating that
the Hortex algorithm passes the linear span test. Therefore,
it can be concluded that the Hortex algorithm exhibits a
random mapping concerning the non-linearity properties of
cryptographic nature.

C. Collision Test

The objective of the collision test is to evaluate the
randomness of an algorithm by considering its collision
resistance properties. The conducted collision test focuses
on collisions occurring in a subset of output bits (near
collisions). In other words, this test aims to assess the
resistance of an algorithm to near collisions. The collision
test involves modifying all possible 12-bit combinations in
the input message and observing 16 msb of the output to
detect collisions. An algorithm is deemed to pass the collision
test when it satisfies the condition pvalue ≥ α = 0.01 in the
approach using the χ2 goodness-of-fit test with degrees of
freedom df = 4.

The results of this collision test are presented in Table VI.
It can be observed that all five tests conducted have pvalue
greater than the specified significance level, indicating that
the Hortex algorithm passes the collision test. Therefore, it
can be concluded that the Hortex algorithm exhibits random
mapping characteristics concerning the cryptographic prop-
erties of near collisions.

D. Coverage Test

The objective of test coverage is to evaluate the random-
ness of an algorithm by considering the distribution of the
output set relative to the input set (coverage). In order for
a hash function to be deemed random, it must have an
expected coverage of 63% of the input set. Coverage testing
is performed by modifying all possible 12 msb of the input to
observe the corresponding 12 msb in the resulting output.An
algorithm is deemed to pass the coverage test when it satisfies
the condition pvalue ≥ α = 0.01 in the approach using the
χ2 goodness-of-fit test with degrees of freedom df = 4.

The results of the coverage test on the Hortex algorithm
are presented in Table VII. It can be seen that all five tests
conducted have pvalue greater than the specified significance
level, indicating that the Hortex algorithm passes the cov-
erage test. Therefore, it can be concluded that the Hortex
algorithm has a coverage of at least 63%, demonstrating its
random mapping property.

VI. SECURITY EVALUATION

Three security evaluations will be performed on the Hortex
algorithm. The first involves a theoretical security assessment
to determine the overall security level of the Hortex. This as-
sessment will provide insight into the fundamental strengths
and potential vulnerabilities of the algorithm.

The second evaluation focuses on assessing the quality
of the confusion and diffusion properties of the Hortex
algorithm. This is carried out because, as highlighted in [40],
confusion and diffusion are essential properties of a secure
cipher in cryptography. Hence, it is crucial to evaluate how
well the Hortex algorithm exhibits these characteristics. The-
oretically, a good hash function must demonstrate sensitivity
to minor changes in the input message. Specifically, any
small alteration in the input should result in a 50% difference
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TABLE III
THE OUTPUT OF FIVE SAC TESTS ON THE ONE-ROUND AND TWO-ROUND f FUNCTION

SAC
test

One-round f function Two-round f function

First condition Second condition First condition Second condition

χ2 pvalue
inside

interval
outside
interval χ2 pvalue

inside
interval

outside
interval

I 65.4 2.0× 10−13 65535 0 1.35 0.851 65535 0
II 207 7.2× 10−44 65535 0 1.21 0.874 65535 0
III 64.0 4.1× 10−13 65535 0 3.43 0.488 65535 0
IV 240 5.7× 10−51 65535 0 1.39 0.845 65535 0
V 29.9 5.0× 10−6 65535 0 2.41 0.660 65535 0

TABLE IV
THE OUTPUT OF FIVE SAC TESTS ON THE ELM ALGORITHM

SAC test First condition Second condition

χ2 pvalue inside interval outside interval

I 2.9125 0.5725 1024 0
II 4.6550 0.3245 1024 0
III 0.2088 0.9949 1024 0
IV 2.8164 0.5889 1024 0
V 5.3129 0.2566 1024 0

TABLE V
THE OUTPUT OF FIVE LINEAR SPAN TESTS ON HORTEX ALGORITHM

Linear span test χ2 pvalue

I 0.6865 0.7094
II 2.1382 0.3433
III 0.0741 0.9636
IV 3.8334 0.1470
V 1.4493 0.4844

in the output. Ensuring this behavior is vital for the security
and reliability of the hashing process.

The third evaluation focuses on analyzing the collision
resistance through an attack algorithm. To achieve this,
Yuval’s birthday attack will be theoretically employed due to
limitations in the available hardware, which prevent a prac-
tical implementation. The emphasis on attacking collision
resistance stems from the fact that this property generally
exhibits a lower security threshold compared to preimage and
second preimage resistance in hash functions. If an adversary
can breach the collision resistance of a hash function, it
indicates a significant compromise of the function’s security,
even if the preimage and second preimage resistance remain
intact. By targeting the collision resistance properties, we aim
to highlight the potential weaknesses and overall reliability of
the Hortex algorithm under theoretical attack scenarios. This
comprehensive evaluation will enhance our understanding of
Hortex’s resilience against cryptographic attacks.

A. Theoretical Security

The theoretical security analysis of the Hortex algorithm
aims to evaluate the algorithm’s resilience against brute-
force attacks by focusing on three fundamental security
properties: preimage resistance, second preimage resistance,
and collision resistance. The Hortex algorithm generates a
128-bit hash output and is built using a sponge function,
which operates with the following parameters: a state (s) of

TABLE VI
THE OUTPUT OF FIVE COLLISION TESTS ON HORTEX ALGORITHM

Collision test χ2 pvalue

I 3.2305 0.5200
II 9.5165 0.0494
III 5.9227 0.2049
IV 2.5306 0.6391
V 4.5009 0.3424

TABLE VII
THE OUTPUT OF FIVE COVERAGE TESTS ON HORTEX ALGORITHM

Coverage test χ2 pvalue

I 3.2310 0.5199
II 3.6043 0.4621
III 9.5184 0.0493
IV 13.1197 0.0107
V 6.4254 0.1695

256 bits, a rate (r) of 64 bits, and a capacity (c) of 192 bits.
Given that the Hortex algorithm is based on sponge

construction, its security against brute-force attacks can be
assessed through these properties. For collision resistance,
the security is determined by min(2c/2, 2n/2) [31], where n
is the output length of the algorithm (128 bits). For preimage
and second preimage resistance, the security level is 2n.
Since n = 128 and c = 192, the result of min(2c/2, 2n/2)
is 2n/2, resulting in a security level of 264 for collision
resistance. Meanwhile, the security levels for the preimage
and second preimage resistance are both 2128.

Thus, the maximum security level the Hortex algorithm
achieves is 264 against collision attacks and 2128 against
preimage and second preimage attacks, reflecting its robust-
ness across these critical cryptographic properties.

B. Statistical Analysis of Confusion and Diffusion
To evaluate the confusion and diffusion properties, the

following experiment was conducted: First, a random input
value was selected, and its corresponding output value was
computed. Then, one bit of the initial input value was
randomly altered, and the output value was recalculated. The
two resulting output values were compared, and the number
of differing bits was counted and recorded as Bi [41]. For this
experiment, a 32-bit input length was used, and the process
was repeated N times. This experiment was applied to the
Hortex algorithm and its components, specifically the f -
function and the ELM algorithm. Notably, for the f -function
a 256-bit input was utilized.
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TABLE VIII
STATISTICAL ANALYSIS OF CONFUSION AND DIFFUSION ON HORTEX

ALGORITHM

Parameter N = 103 N = 104 N = 105 N = 106 Mean

Bmin 53 53 53 53 53
Bmax 75 75 75 75 75
B 63.26 63.35 63.38 63.38 63.34

P (%) 49.42 49.49 49.52 49.51 49.48
∆B 4.86 4.96 4.95 4.96 4.93

∆P (%) 3.80 3.87 3.87 3.87 3.85

TABLE IX
STATISTICAL ANALYSIS OF CONFUSION AND DIFFUSION ON

f -FUNCTION

Parameter N = 103 N = 104 N = 105 N = 106 Mean

Bmin 107 107 107 107 107
Bmax 149 149 149 149 149
B 127.35 127.41 127.50 127.48 127.44

P (%) 49.75 49.77 49.81 49.80 49.78
∆B 9.03 9.13 9.29 9.28 9.18

∆P (%) 3.53 3.57 3.63 3.63 3.59

The evaluation of confusion and diffusion properties in
cryptography is typically assessed using six statistical mea-
sures:

• Minimum number of bits changed:

Bmin = min{B1, B2, . . . , BN}

• Maximum number of bits changed:

Bmax = max{B1, B2, . . . , BN}

• Mean number of bits changed:

B =
1

N

N∑
i=1

Bi

• Mean changed probability:

P =
B

l
× 100%

• Standard deviation of the changed bit number:

∆B =

√√√√ 1

N − 1

N∑
i=i

(
Bi −B

)2
• Standard deviation of the changed probability:

∆P =

√√√√ 1

N − 1

N∑
i=i

(
Bi

l
− P

)2

× 100%

where Bi denotes the number of bits changed in the ith test,
N represents the number of experiments carried out and l
corresponds to the length of the output value.

Tables VIII, IX, and X present the results of experiments
conducted on the Hortex algorithm, the f -function, and the
ELM algorithm, respectively, across various N (number of
tries). Based on the data obtained, the Hortex algorithm,
the f function and the ELM algorithm demonstrated good
performance, with output changes consistently around 50%.
Furthermore, the standard deviation of the changed bit num-
ber (∆B) and the standard deviation of the changed proba-
bility (∆P ) for each result were relatively small, indicating

TABLE X
STATISTICAL ANALYSIS OF CONFUSION AND DIFFUSION ON ELM

ALGORITHM

Parameter N = 103 N = 104 N = 105 N = 106 Mean

Bmin 11 11 11 11 11
Bmax 23 23 23 23 23
B 16.18 16.31 16.34 16.35 16.30

P (%) 50.57 50.97 51.07 51.09 50.92
∆B 2.81 2.72 2.75 2.76 2.76

∆P (%) 8.77 8.50 8.59 8.61 8.62

Algorithm 4 Yuval’s birthday attack
Input: Original message X1, fake message X2, and n-bit

hash function H(·).
Output: X ′

1, X
′
2, which are the results of minor modifica-

tions to X1 and X2 with H(X ′
1) = H(X ′

2).
1: Generate k = 2n/2 minor modifications X ′

1 of X1.
2: for all X ′

1 do
3: Compute and store H(X ′

1) (grouped with corre-
sponding message i.e. X ′

1)
4: Collision=False
5: repeat
6: Generate minor modifications X ′

2 of X2 and compute
H(X ′

2)
7: if H(X ′

2) is equal to any H(X ′
1) then

8: Collision=True
9: until Collision

minimal deviation from the expected value (a 50% change).
These low standard deviation values further suggest that the
algorithms exhibit good confusion and diffusion properties.
Hence, it can be concluded that the Hortex algorithm, the
f -function, and the ELM algorithm possess well-defined
confusion and diffusion characteristics, meeting the criteria
for secure cryptographic functions.

C. Collision Attack

Collision resistance is a property of a hash function that
makes it extremely difficult to find two distinct messages that
produce the same hash output [42]. A collision attack known
as the Yuval’s birthday attack will be employed to assess the
collision resistance property of the Hortex algorithm. The
Yuval’s birthday attack utilizes the fourth birthday problem
approach with the probability (P ) of finding a collision given
by

P ≈ 1− e−k2/N (4)

where k represents the number of generated elements and
N represents the population size [43]. In general, Yuval’s
birthday attack is illustrated in Algorithm 4 [44], [27]. In
essence, Yuval’s birthday attack attempts to identify the
identical value (collision) between two sets. The first set is
the set of minor modifications of the original message, and
the second set is the set of minor modifications of the fake
message.

Yuval’s birthday attack has a complexity of O(2n/2),
where n is the length of the output of the hash function,
in this case, the Hortex algorithm. Yuval’s birthday attack
introduces minor modifications totaling 2n/2 or, in the case of
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TABLE XI
OBSERVATION OF EXECUTION TIME FOR t-BIT MODIFICATIONS

The number of
bits modified (ti)

Execution time
in ms (yi)

The number of
bits modified (ti)

Execution time
in ms (yi)

15 3726 21 240253
16 7491 22 488274
17 15075 23 1040332
18 30183 24 1918816
19 60682 25 661832420 128465

the Hortex algorithm, equivalent to 2128/2 = 264. The device
employed for Yuval’s birthday attack is an Intel Core i7-
10700 CPU @ 2.90GHz with 16 GB of RAM. A theoretical
approach will be used to determine the feasibility of this
collision attack on the basis of computational requirements.

The primary consideration in carrying out this attack is
the utilization of the required memory. Software running
on a computer system during execution requires temporary
storage space. The temporary storage used is Random Access
Memory (RAM). The software implementing the source code
for Yuval’s birthday attack will require memory allocation in
the RAM of a computer system. Since the Hortex algorithm
has an output size of 128 bits, or equivalently, 16 bytes
of memory, each output of the Hortex algorithm during
execution requires a memory allocation of 16 bytes in the
RAM of a computer system.

In its implementation, Yuval’s birthday attack can be
approached in two ways: (a) storing both sets of hash values
for original and fake messages, or (b) storing only one of
the sets. If approach (a) is adopted, the total memory used
in 2t modifications is 2(2t · 16 bytes) = 2t+5 bytes, or
equivalently, 2−30 · 2t+5 = 2t−25 GB, with t being the
number of bits modified. Then, if approach (b) is chosen,
the total required memory is 2t−26 GB. Thus, the amount of
RAM required for a computer system under approach (a) is
2t−25 GB RAM, whereas under approach (b), it is 2t−26 GB
RAM. In the computation of Yuval’s birthday attack on the
Hortex algorithm, the worst-case scenario will be considered
for the algorithm designer or the best-case scenario for the
attacker. Therefore, it will be assumed that the attacker adopts
approach (a), requiring a total memory of 2t−25 GB RAM
for the t bits of modification performed.

In addition to memory usage, the next consideration is
the execution time required to complete the execution of
Yuval’s birthday attack algorithm. An empirical approach
will be taken on a smaller number of bit modifications in
Yuval’s birthday attack to estimate the execution time for
other numbers of bit modifications. The empirical approach
will be applied to a number of bits, denoted as ti, where
15 ≤ ti ≤ 25, and the recorded execution time is measured
in milliseconds (ms). The results of the empirical approach
are presented in Table XI.

Based on the data in Table XI, simple exponential regres-
sion will be employed to obtain the exponential equation
relating the modified bits (t) to the execution time (ŷ),
expressed as follows: ŷ = a · bt. With a data set comprising
11 data points, the values of a and b, calculated using Equa-
tions (3) and (2), are found to be 2.055187 and 0.070922,
respectively. Thus, the relationship between the number of

TABLE XII
PREDICTION OF MEMORY, TIME, AND PROBABILITY IN YUVAL’S

BIRTHDAY ATTACK ON THE HORTEX ALGORITHM.

t-bit Memory Time Probability

25 1 GB 1.3 hours 3.30 · 10−24

26 2 GB 2.6 hours 1.32 · 10−23

27 4 GB 5.5 hours 5.29 · 10−23

28 8 GB 11.3 hours 2.11 · 10−23

29 16 GB 23.2 hours 8.47 · 10−22

30 32 GB 47.8 hours 3.38 · 10−21

...
...

...
...

55 1073 PB 362704 years 3.81 · 10−6

56 2147 PB 744131 years 1.52 · 10−5

57 4294 PB 1.5 million years 6.10 · 10−5

58 8589 PB 3.1 million years 2.44 · 10−4

59 17179 PB 6.4 million years 9.76 · 10−4

60 34359 PB 13.2 million years 3.89 · 10−3

61 68719 PB 27.2 million years 0.0155
62 1 · 106 PB 56 million years 0.0605
63 2 · 106 PB 115 million years 0.221
64 5 · 106 PB 236 million years 0.632

modified bits and the execution time is given by:

ŷ = 0.070922 · 2.055187t (5)

where t is the number of modified bits and ŷ is the execution
time in ms. The correlation coefficient of equation ŷ is
0.94, indicating that equation ŷ can effectively predict the
execution time required for the given number of modified
bits in Yuval’s birthday attack.

Next, we will examine the probability of collision in
Yuval’s birthday attack for t-bit modifications. Due to the use
of the fourth birthday problem approach in Yuval’s birthday
attack, the probability of collision can be calculated using
Equation (4). In Equation (4) for the Hortex Algorithm
N = 2128 and k = 2t, the probability of collision in Yuval’s
birthday attack for t-bit modifications is given by

P ≈ 1− e−22t−128

(6)

where t is the number of modified bits and P is the probabil-
ity of collision. Given the derived formulations for memory
and execution time as per Equation (5) and the requisite
probability in the context of Yuval’s birthday attack for t-bit
modifications, as expressed in Equation (6), predictions can
be made regarding the memory, time, and probability for the
scenario where t = 64 bits or for the actual Yuval’s birthday
attack on the Hortex Algorithm. The predicted values for
memory, time, and probability are presented in Table XII.

Based on results obtained from theoretical testing of Yu-
val’s attack, the most feasible configuration for an executable
attack within reasonable time and memory limits is the 29-
bit modification of Yuval’s birthday attack. While the exe-
cution time and memory requirements are within achievable
bounds, the probability of a successful collision is extremely
low, quantified as 8.47 · 10−22. Consequently, to achieve a
collision, approximately 1021 iterations of collision attacks
would be required, necessitating a high volume of repetitive
attempts specifically under the 29-bit modification constraint.

In contrast, executing a full-scale Yuval’s birthday attack
on the Hortex Algorithm (t = 64) would demand an
immense amount of resources. A device with at least 5 · 106
petabytes (PB) of RAM would be required, yet no such
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device currently exists. Additionally, the estimated execution
time for this attack is approximately 236 million years.
Given these practical limitations, it is effectively impossible
to execute this collision attack on the Hortex Algorithm,
ensuring its security against Yuval’s birthday attack under
current resource constraints.

VII. CONCLUSION

A new algorithm, named Hortex, has been proposed as
a hash function that processes inputs of arbitrary length
and generates a 128-bit hash value. Hortex is built using a
sponge construction with a transformation function f , which
integrates the chaotic ELM algorithm and an ARX function.
In this design, the sponge function operates in a 256-bit state
with a 64-bit rate (r) and a 192-bit capacity (c), ensuring an
efficient balance between throughput and security.

Hortex stands out due to its strong cryptographic prop-
erties, such as the Strict Avalanche Criterion (SAC), linear
span, collision resistance, and coverage. These properties
are reinforced by the fact that Hortex successfully passes
the Cryptographic Randomness Test (CRT). Furthermore,
the two-round transformation function of the algorithm, f ,
combined with the ELM algorithm, also passes the SAC test,
further validating the randomness and unpredictability of its
output.

From a theoretical perspective, the Hortex algorithm is
secure against attacks such as Yuval’s birthday attack due
to the infeasibly high computational and time resources re-
quired to execute such attacks. Additionally, Hortex demon-
strates strong confusion and diffusion properties, which are
fundamental criteria for secure cryptographic functions. Fur-
thermore, the main components of the Hortex algorithm,
namely the f -function and the ELM algorithm, also exhibit
robust confusion and diffusion properties. This reinforces the
conclusion that Hortex inherently possesses these essential
cryptographic characteristics. In terms of collision resistance,
Hortex achieves security up to 2164 operations, while its
preimage and second-preimage resistance provide security
levels of 2128. These features make Hortex a strong candidate
for sponge-based hash functions, delivering both efficiency
and robust security for a wide range of cryptographic appli-
cations.

APPENDIX A
CRT STEPS ON HORTEX

To better understand how the results of the randomness
evaluation in Section V were obtained, the steps involved
in conducting the CRT on Hortex will be elucidated. The
presentation of these steps will cover a subset of the tests
performed, providing sufficient information to understand the
execution of the randomness evaluation. However, prior to
that, it is pertinent to briefly discuss the χ2 goodness-of-fit
test used in the CRT process.

A. χ2 Goodness of Fit Test

The χ2 Goodness of Fit Test is a tool used to determine
whether the data from a population conforms to the hypoth-
esized population distribution of a specific set of data [45].
This test evaluates a population based on the degree to which

the observed frequency (oi) of events aligns with the ex-
pected frequency (ei) of events predicted by a hypothesized
population distribution. The observed frequency of events in
the data is referred to as the observed frequency, while the
expected frequency is the anticipated frequency of events in
a population based on the hypothesized distribution.

The steps in conducting the χ2 Goodness of Fit Test are
as follows: 1.

1) Establish the initial hypotheses H0 and H1.
H0 : The observed frequencies are equal to the
expected frequencies (oi = ei).
H1 : The observed frequencies are not equal to
the expected frequencies (oi ̸= ei).

2) Determine the significance level α. The significance
level α represents the probability of committing an
error by rejecting the null hypothesis H0 when it is
true. A significance level of α = 0.5 indicates a 5%
probability of making a decision to reject H0 even
when it is true. The predetermined significance level
α becomes a critical value for drawing conclusions
related to observations.

3) Determine the degrees of freedom (df ), where the
degrees of freedom are the number of classes minus
one.

4) Calculate the χ2 values as follows:

ei = v · pi (7)

χ2 =
∑l

i=1

(oi − ei)
2

ei
(8)

where v represents the number of experiments con-
ducted, pi denotes the probability in the i-th class, and
l represents the number of classes.

5) Make decisions based on the adequacy or inadequacy
of the fit between the oi and ei. Decisions are made
by comparing the pvalue from the calculated χ2 with
the significance level α. The null hypothesis H0 is
accepted if pvalue ≥ α. Conversely, if pvalue < α,
the null hypothesis H0 is rejected, and the alternative
hypothesis H1 is accepted. The pvalue can be calcu-
lated as follows:

pvalue =
γ
(

df
2 ,

χ2

2

)
Γ
(

df
2

) (9)

where γ and Γ represent the lower incomplete gamma
function and the gamma function, respectively. pvalue
is often referred to as the Cumulative Distribution
Function (CDF) of χ2 with degree of freedom df .

B. Steps of SAC Test on Hortex
The probabilities of the desired expected frequency to

assess randomness, using the SAC test for test subjects, are
illustrated in Table XIII as computed by [26]. The SAC test
requires an SAC matrix of dimensions m×n, where m and n
represent the input and output of the test subjects. Given that
the test subject is Hortex, an SAC matrix of size 32 × 128
will be generated (with a 32-bit input size). The significance
level used in the SAC test is α = 0.01.

The steps for conducting the SAC test on Hortex, specif-
ically for the first SAC test as shown in Table II, are as
follows: 1.
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TABLE XIII
RANGES AND PROBABILITIES OF SAC TEST FOR 220 TRIALS

Class Range Probability

1 0 - 523857 0.200224
2 523858 - 524158 0.199937
3 524159 - 524417 0.199677
4 524418 - 524718 0.199937
5 524719 - 1048576 0.200224

1) Initialize the SAC matrix M = {mij} with mij = 0
for i = 1, 2, . . . , 32 and j = 1, 2, . . . , 128.

2) Generate independent random input values Xa for a
total of 220 with 1 ≤ a ≤ 220, displayed below:

a 1 2 · · · 220

Xa c2b6b723 b9c6ee82 · · · ab974c45

3) Select one message sample from the 220 independent
random input samples Xa. Let X1 be chosen, then
calculate its hash value, Y1 = H(X1).
Y1 = H(X1) = H(c2b6b723) =
ea81e48754e252403c00d90a76c7b308.

4) Subsequently, for each bit position i of X1, perform a
bit flip and store it as Xi

1, then calculate its hash value
and store it as Y i

1 . The values of the modified message
Xi

1 and the hash of the modified message bits Y i
1 are

presented in Table XIV.
5) Perform an XOR operation between Y1 and Y i

1 , result-
ing in Zi

1 = Y1⊕Y i
1 . The value of Zi

1 can be expressed
as a 128-bit bitstream, or Zi

1 = (Zi1
1 , Zi2

1 , . . . , Zi128
1 ).

After the entire XOR operation is completed, the
matrix Z1 = {Zij

1 } is obtained with 1 ≤ i ≤ 32, 1 ≤
j ≤ 128. The set of rows of matrix Z1, namely Zi

1,
can be observed in Table XIV.

6) Update the SAC matrix M , using the formula Mold =
Mnew + Z1.

7) Repeat steps 3 to 6 for the remaining 220 − 1 samples
of other input messages.

8) Group each entry of the final SAC matrix M into
class i based on its range and calculate the observed
frequency denoted as oi, where i = 1, 2, . . . , 5.

9) Calculate the expected frequency ei using Equation (7)
with the number of experiments conducted, v = n ·
m = 32 · 128 = 4096, and pi as the probability of
expected frequency in class i according to Table XIII.
The observed frequency oi and the expected frequency
ei resulting from the SAC test in the first test of the
Hortex algorithm are presented in Table XV.

10) Obtain the χ2 value using Equation (8) based on the
values of oi and ei in Table XV and the pvalue using
Equation (9) with df = 4. The obtained χ2 value is
6.2234, and the pvalue is 0.1830, as shown in Table II.

11) Conduct testing with the expected interval approach on
the results of the SAC matrix obtained. Verify whether
there are entries in the SAC matrix M that fall outside
the interval [521783.48, 526792.52]2. The outcome of
the verification of entries in the SAC matrix, whether
they fall within the specified interval in the first SAC
test, can be observed in Table II.

12) Determine whether the null hypothesis H0 is accepted

TABLE XIV
THE RESULTS OF Xi , Y i

1 , AND Zi
i FROM THE FIRST SAC TEST ON

HORTEX.

i Xi
1 Y i

1 Zi
1

1 c2b6b722
4fa38ebbc22b829f
e58eb1e8d21ee404

a5226a3c96c9d0df
d98e68e2a4d9570c

2 c2b6b721
06f4045f22e057fe
27d347ac5302e208

ec75e0d8760205be
1bd39ea625c55100

...
...

...
...

32 42b6b723
a2450324438a71ba
ed21871e723fae2c

48c4e7a3176823fa
d1215e1404f81d24

TABLE XV
THE RESULTS OF oi AND ei FROM THE FIRST SAC TEST ON HORTEX.

Class Range oi ei

1 0 - 523857 825 820.117504
2 523858 - 524158 843 818.941952
3 524159 - 524417 777 817.876992
4 524418 - 524718 862 818.941952
5 524719 - 1048576 789 820.117504

or rejected based on pvalue and α. It is known from the
previously obtained pvalue that pvalue ≥ α, indicating
the acceptance of the null hypothesis H0. Furthermore,
it is also known that there are no entries in the
SAC matrix outside the specified interval. Due to the
acceptance of the null hypothesis and the absence
of SAC matrix entries beyond the specified interval,
Hortex passes the SAC test (for the first trial).

Perform the aforementioned steps an additional four times,
resulting in a total of five SAC tests. This is done to ensure
that the outcomes of the SAC tests are unbiased and not
mere chance occurrences. The results of the five SAC tests
conducted on Hortex all passed, as indicated in Table II.
The same procedure is applied to the components of Hortex,
namely the f function and the ELM algorithm.

C. Steps of Linear Span Test on Hortex

The probabilities of the expected frequency to assess the
randomness, using the linear span test for the test subjects,
are illustrated in Table XVI as computed by [26]. The testing
method for the linear span test is executed by evaluating
the rank of an m × m matrix formed from the output
of a hash function. In a single trial, the linear span test
requires t linearly independent messages. The size of the
input messages is 32-bit, and t = 5 linearly independent
messages are employed to generate m = 25 = 32 linearly
independent messages. The significance level employed in
the linear span test is α = 0.01.

The steps for conducting the linear span test on Hortex,
specifically for the first linear span test as shown in Table V,
are as follows: 1.

1) Conduct experiments on the set of messages Xa for
1 ≤ a ≤ 220. Let X1 be chosen from the members of
the set shown in Table XVII, second column.

2) Generate m = 2t = 32 messages resulting from linear
combinations of five linearly independent messages in
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TABLE XVI
PROBABILITIES USED IN LINEAR SPAN TEST (m > 19)

Class Rank Probability

1 ≤ m− 2 0.133636
2 m− 1 0.577576
3 m 0.288788

TABLE XVII
THE RESULTS OF Xi , Xi

1 , AND Hi
i FROM THE FIRST LINEAR SPAN TEST

ON HORTEX.

i X1 Xi
1 Hi

1

1
(14cf6e47,
5f3093e9,
6a80ba9b,
32b11dd8,
21c98dfd)

00000000
dafc7531c75c25dd
2cf756025a98fdf6

2 14cf6e47
4393b66e410d2c47
1c70c62675ae1316

...
...

...

32 3207d710
7979043478bad1dd
d6627835f82992a9

the set X1. This yields 32 messages from X1, denoted
as Xi

1 with 1 ≤ i ≤ 32.
3) Compute the hash value of Xi

1 and obtain Hi
1 for 1 ≤

i ≤ 32.
4) Extract the 32-bit value from Hi

1, then arrange it into a
32×32 matrix. The data for Xi

1, Hi
1, and the extraction

of the 32-bit Hi
1 (highlighted in red) are displayed in

Table XVII.
5) Determine the rank of the matrix obtained and tally

the results within the classes according to the range of
rank values presented in Table XVI.

6) Repeat steps 3 to 6 for the remaining 220 − 1 samples
from the input message set Xa.

7) The observed frequency oi represents the result of the
frequency distribution of the rank values obtained in
all 220 samples in the set.

8) Calculate the expected frequency ei using Equation (7)
with the number of experiments conducted, v = 220,
and pi as the probability of expected frequency in class
i according to Table XVI. The observed frequency oi
and the expected frequency ei resulting from the linear
span test in the first trial of the Hortex algorithm are
presented in Table Tab XVIII.

9) Obtain the χ2 value using Equation (8) based on the
values of oi and ei in Table XVIII and the pvalue using
Equation (9) with df = 2. The obtained χ2 value is
6.6865, and the pvalue is 0.7094, as shown in Table V.

10) Determine whether the null hypothesis H0 is accepted
or rejected based on pvalue and α. It is known from the
previously obtained pvalue that pvalue ≥ α, indicating
the acceptance of the null hypothesis H0. Conse-
quently, due to the acceptance of the null hypothesis,
Hortex passes the linear span test (for the first trial).

Perform the aforementioned steps four more times, result-
ing in a total of five linear span tests. This is carried out to
ensure that the results of the linear span tests are unbiased.
The results of the five linear span tests conducted on Hortex
all passed, as indicated in Table V.

TABLE XVIII
THE RESULTS OF oi AND ei FROM THE FIRST LINEAR SPAN TEST ON

HORTEX.

Class Rank oi ei

1 ≤ m− 2 139892 140127.5023
2 m− 1 605574 605632.3318
3 m 303110 302816.1659

TABLE XIX
RANGES AND PROBABILITIES OF COLLISION TESTS FOR A 16 msb

OUTPUT OBSERVATION AND 12 msb INPUT MODIFICATION.

Class Range Probability

1 0 - 116 0.206246
2 117 - 122 0.194005
3 123 - 128 0.219834
4 129 - 134 0.183968
5 134 - 4096 0.195947

D. Steps of Collision Test on Hortex

The probabilities of the expected frequency to assess the
randomness, using the collision test for the test subjects,
are illustrated in Table XIX as computed by [26]. Two
parameters are used in the collision test. The parameter n
denotes the number of input alterations performed, while the
parameter m signifies the number of collision observations
performed on the msb output. The designated parameter pair
is (n,m) = (212, 216), with a message input length of
32 bits. The significance level used in the collision test is
α = 0.01.

The steps for conducting the collision test on Hortex,
specifically for the first collision test as shown in Table VI,
are as follows: 1.

1) Generate input message samples, denoted as Xa for
1 ≤ a ≤ 220. Assume a selected input message sample,
X1, to be 000f1329.

2) Modify 12 msb of the input message X1 to obtain
modified messages, Xi

1, where i ranges from 1 to 212.
3) Calculate the output message Hi

1 for each modified
message Xi

1, where Hi
1 = H(Xi

1). Modifications to
12 msb of the input message Xi

1 and the resulting
hash values Hi

1 are shown in Table XX.
4) Extract the 16 msb of the output (as indicated in Table

XX in red) and determine collisions within the set of
16-bit outputs Hi

1. After obtaining the total number
of collisions, count the occurrences within predefined
classes based on the collision count ranges, as shown
in Table XIX.

5) Repeat steps 2 through 5 for the remaining 220 − 1
input message samples, Xa.

6) The observed frequency oi represents the result of the
frequency distribution of collisions obtained across all
220 samples.

7) Calculate the expected frequency ei using Equation (7)
with the number of experiments conducted, v = 220,
and pi as the probability of the expected frequency
in class i according to Table XIX. The observed
frequency oi and the expected frequency ei resulting
from the collision test in the first trial of the Hortex
algorithm are presented in Table XXI.
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TABLE XX
THE RESULTS OF Xi

1 , AND Hi
i FROM THE FIRST COLLISION TEST ON
HORTEX.

i Xi
1 Hi

1

1 000f1329
3d73d1a18a24ab74
e3ddac073ef093af

2 001f1329
327ae9d7cee668fd
53a96c01ec816d0a

...
...

...

212 ffff1329
0d0e730ac59ea7ec
872a93f12dc8dab8

TABLE XXI
THE RESULTS OF oi AND ei FROM THE FIRST COLLISION TEST ON

HORTEX.

Class Rank oi ei

1 0 - 116 216095 216264.6057
2 117 - 122 203818 203428.9869
3 123 - 128 230944 230512.6564
4 129 - 134 192370 192904.4296
5 134 - 4096 205349 205465.3215

8) Obtain the χ2 value using Equation (8) based on the
values of oi and ei in Table XXI and the pvalue using
Equation (9) with df = 4. The obtained χ2 value is
3.2305, and the pvalue is 0.52, as shown in Table VI.

9) Determine whether the null hypothesis H0 is accepted
or rejected based on pvalue and α. It is known from the
previously obtained pvalue that pvalue ≥ α, indicating
the acceptance of the null hypothesis H0. Conse-
quently, due to the acceptance of the null hypothesis,
Hortex passes the collision test (for the first trial).

Perform the aforementioned steps four more times, result-
ing in a total of five collision tests. This is done to ensure that
the results of the collision tests are unbiased and not merely
coincidental. The results of the five collision tests conducted
on Hortex all passed, as indicated in Table VI.

E. Steps of Coverage Test on Hortex

The probabilities of the expected frequency to assess
randomness, using the coverage test for test subjects, are
illustrated in Table XXII calculated by [26]. In the coverage
test, modifications will be applied to 12 msb of the message,
and the corresponding variations in coverage will be observed
in the 12 msb of the output hash message. The length of the
message to be used is 32 bits. The significance level used in
the coverage test is α = 0.01.

The steps for conducting the coverage testing on Hortex,
specifically for the first coverage test as shown in Table VII,
are as follows: 1.

1) Generate 220 samples of input messages, denoted as
Xa, where 1 ≤ a ≤ 220. Let the selected input message
sample be X1 = 000f1329.

2) Modify 12 msb of the input message X1 to obtain the
modified message Xi

1, where 1 ≤ i ≤ 212.
3) Compute the output message Hi

1 for each modified
message Xi

1, or Hi
1 = H(Xi

1), where H(·) represents
the hash function. Modifications to the 12 msb of the
message Xi

1 and the resulting hash values Hi
1 are

presented in Table XX.

TABLE XXII
RANGES AND PROBABILITIES OF COVERAGE TESTS FOR A 12 msb

OUTPUT OBSERVATION AND 12 msb INPUT MODIFICATION.

Class Range Probability

1 1 - 2572 0.199176
2 2573 - 2584 0.204681
3 2585 - 2594 0.197862
4 2595 - 2606 0.203232
5 2607 - 4096 0.195049

TABLE XXIII
THE RESULTS OF oi AND ei FROM THE FIRST COVERAGE TEST ON

HORTEX.

Class Rank oi ei

1 1 - 2572 209310 208851.1734
2 2573 - 2584 214289 214623.5843
3 2585 - 2594 207717 207473.3445
4 2595 - 2606 212579 213104.1976
5 2607 - 4096 204681 204523.7002

4) Extract the 12 msb from each generated value of Hi
1

(the first 3 hex digits highlighted in red in the third
column of Table XX) and calculate the total number
of coverage variations observed.

5) Record the tally in classes based on the range of
coverage variations, utilizing the classes and ranges
specified in Table XXII.

6) Repeat steps 2 through 5 for the remaining 220 − 1
input message samples, Xa.

7) The observed frequency oi represents the result of
the frequency distribution of the coverage variations
obtained in all 220 samples.

8) Calculate the expected frequency ei using Equation (7)
with the number of experiments conducted, v = 220,
and pi as the probability of the expected frequency
in class i according to Table XXII. The observed
frequency oi and the expected frequency ei resulting
from the coverage test in the first trial of the Hortex
algorithm are presented in Table XXIII.

9) Obtain the χ2 value using Equation (8) based on the
values of oi and ei in Table XXIII and the pvalue
using Equation (9) with df=4. The obtained χ2 value
is 3.231, and the pvalue is 0.519, as shown in Table
VII.

10) Determine whether the null hypothesis H0 is accepted
or rejected based on pvalue and α. It is known from the
previously obtained pvalue that pvalue ≥ α, indicating
acceptance of the null hypothesis H0. Consequently,
due to the acceptance of the null hypothesis, Hortex
passes the coverage test (for the first trial).

Perform the aforementioned steps four more times, result-
ing in a total of five coverage tests. This is carried out to
ensure that the results of the coverage tests are unbiased and
not merely coincidental. The results of the five coverage tests
conducted on Hortex all pass, as indicated in Table VII.
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