
 

  

Abstract—Image captioning is an interdisciplinary research 

hotspot at the intersection of computer vision and natural 

language processing, representing a multimodal task that 

integrates core technologies from both fields. This task requires 

the use of computer vision techniques to analyze and extract key 

visual features from images, followed by the application of 

natural language processing techniques to generate descriptive 

text that is syntactically and semantically aligned with human 

cognition. This process poses a significant challenge for 

computers. Existing models mostly ignore the relative positional 

information of visual objects and struggle to efficiently capture 

the complex relationships between visual and textual data. To 

address these challenges, we propose a vision-to-text 

bidirectional collaborative image captioning method. This 

approach extracts both visual features and positional 

information of objects, allowing the model to better understand 

the spatial relationships between objects. The CEW word 

embedding approach encodes textual information more 

profoundly, enhancing semantic expression and contextual 

understanding. In the decoding phase, a bidirectional 

cross-attention mechanism strengthens the interaction between 

vision and text, leading to improved accuracy in image 

understanding. The model is trained and tested on the 

MSCOCO 2014 dataset and compared with several popular 

models. Experimental results demonstrate that the proposed 

method achieves significant improvements on the CIDEr and 

BLEU-1 evaluation metrics with an increase of 1.5 and 1.1, 

respectively. In addition, we conduct ablation experiments, 

quantitative analysis, and qualitative analysis to 

comprehensively validate the effectiveness and stability of the 

proposed algorithm. 

 
Index Terms—Image Captioning, Transformer, Cross 

Attention, Spatially-aware Embedding, CEW Word 

Embedding  

 

I. INTRODUCTION 

ITH the rapid development of machine translation 

technologies in the field of natural language 

processing, the encoder-decoder framework has been widely 

applied in the image captioning task. In this framework, the 

encoder uses convolutional neural networks (CNN) or object 
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detection networks, such as VGG [1], ResNet [2], and Fast 

R-CNN [3], to extract image feature information. The 

decoder then utilizes recurrent neural networks (RNN), such 

as LSTM [4] or GRU [5], to generate descriptive text. This 

approach can handle more complex image semantics; 

however, differences in data types between the pre-trained 

visual feature extractors and the subsequent image captioning 

task limit the model's performance improvement. 

Additionally, the process of extracting visual features is 

time-consuming, making it unsuitable for real-time image 

captioning applications. To address these challenges, some 

researchers have proposed Transformer-based models for 

image captioning. The main advantages of this approach 

include: first, it ensures consistency in the architecture of the 

encoder and decoder; second, it allows for simultaneous 

optimization of parameters in both the encoder and decoder. 

Although this method demonstrates strong performance, 

effectively aligning the powerful visual features obtained 

from pre-trained models with the textual descriptions in the 

dataset remains a problem worth additional exploration. 

In recent years, researchers have proposed using Faster 

R-CNN [6] technology to extract visual features from images. 

Unlike previous global feature extraction methods, this 

approach captures fine-grained object feature information 

within images, rather than including a large amount of 

irrelevant information, thereby enabling more accurate 

descriptions. However, merely using a better visual feature 

extractor to capture surface information (image features) 

from images is not sufficient; it is also necessary to extract 

deeper information (object relationships) within the images. 

Moreover, most popular models currently use standard 

Transformer word embedding methods [7], which can meet 

certain task requirements but lack strong contextual 

awareness in the generated embeddings and do not 

effectively facilitate the interaction between visual and 

textual information. This restriction prevents existing word 

embedding methods from fully utilizing image features, 

thereby affecting the accuracy and vividness of the 

descriptions. 

To address the aforementioned issues, this paper proposes 

a vision-text bidirectional collaborative image captioning 

method, with the following three main contributions: 

1. A Spatially-aware embedding module (SAEM) is 

proposed to encode visual objects and their corresponding 

positional information, transforming absolute positional 

relationships into relative positional relationships between 

visual objects. 

2. A CEW word embedding encoding module is 

introduced, which combines the subword-level embedding 

method, WordPiece [8], and applies special encoding to word 

embeddings. This approach enhances the contextual 
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awareness of word embeddings and improves their 

generalization ability when handling new and unseen words. 

3. A dual-layer cross-attention mechanism for vision-text 

collaboration is incorporated into the decoder. First, the 

masked attention mechanism is improved by introducing 

visual information to guide the attention distribution between 

generated words. Second, the mechanism effectively aligns 

image and text information during the decoding process, 

allowing the model to consider the most relevant visual 

information for each word at every step of generation. 

II. RELATES JOBS 

A. Image captioning 

Image captioning plays a crucial role in fields such as 

assisting visually impaired individuals and human-computer 

interaction. In recent years, with the continuous development 

of deep learning and the in-depth research by scholars in the 

field of image captioning, numerous different methods have 

emerged. Currently, existing image captioning models can be 

categorized into three types: template-based methods, 

retrieval-based methods, and generation-based methods. 

Template-based methods [9], [10], [11] were widely used 

in early image captioning tasks. These methods first create a 

predefined language template, then use object detectors and 

attribute detectors to extract features from the image, 

identifying entities and their associated attributes. Finally, the 

identified entities and attribute information are populated into 

the language template to form a textual description of the 

image. While this method can effectively identify and 

describe entities and their attributes in an image, it tends to 

generate monotonous descriptions due to the use of fixed 

templates and may introduce grammatical errors. 

Retrieval-based image captioning methods [12], [13], [14] 

primarily focus on constructing and maintaining a large 

corpus containing a variety of image descriptions. This 

approach filters a set of candidate descriptions by comparing 

the similarity between the input image and the descriptions in 

the corpus. Ultimately, the description with the highest 

similarity to the image is selected as the final description. 

Although this method can enrich the textual description of an 

image and provide relatively diverse options, one of its main 

limitations is its inability to create new descriptions, thus 

failing to fundamentally address the issue of diversity in 

descriptions. 

With the rise of deep learning, Vinyals et al. [15] proposed 

a generation-based method using a deep recurrent 

architecture that combines Convolutional Neural Networks 

(CNNs) from computer vision with Long Short-Term 

Memory (LSTM) Networks from machine translation. This 

method generates diverse image descriptions in an 

end-to-end manner, fundamentally solving the issue of 

generating fixed-pattern descriptive sentences inherent in 

template-based methods. The deep neural network-based 

architecture does not rely on predefined textual rules, 

allowing for the generation of grammatically flexible image 

descriptions. 

B. Transformer 

The Transformer model based on the encoder-decoder 

architecture was first introd uced by Google in 2017 [7], 

quickly becoming one of the core technologies in the field of 

natural language processing (NLP). The key innovation of 

the Transformer lies in its self-attention mechanism, which 

enables the model to process input data in parallel and 

capture the relationships between different parts of the data, 

without relying on traditional convolutional neural networks 

(CNNs) or recurrent neural networks (RNNs). This parallel 

processing approach significantly improves the model's 

training efficiency and performance, allowing the 

Transformer to achieve remarkable results in tasks such as 

machine translation, text generation, and sentiment analysis. 

However, despite its remarkable success in NLP, the 

application of Transformer models in computer vision did not 

make breakthrough progress. It was not until the introduction 

of the Vision Transformer (ViT) [16] that Transformer-based 

models for visual tasks gained renewed attention and 

demonstrated superior performance in certain tasks compared 

to traditional CNNs. 

To make the encoder and decoder structure of the 

Transformer more suitable for image captioning tasks, 

researchers have proposed various optimization methods. In 

2022, Yang et al. [17] enhanced the model's ability to 

describe image semantics by jointly modeling intra-modal 

and inter-modal attention, allowing attention layers to stack 

more profoundly. In 2023, Song et al. [18] proposed a 

bidirectional synergistic Transformer model that effectively 

aligns regional features with grid features to obtain more 

representative visual-semantic features. In the same year, 

Heng et al. [19] designed two types of encoders to separately 

encode object features and relational features in images. By 

concatenating these two encoded features, the model 

achieves a fusion of relational features and local object 

features within the image. 

Long-term practice and research have demonstrated that 

Transformer models perform exceptionally well in handling 

visual tasks, significantly outperforming traditional 

Convolutional Neural Network (CNN) models. Moreover, 

the scalability and flexibility of the Transformer model allow 

it to perform better on large-scale image datasets, adapting to 

diverse and complex visual task requirements. As a result, 

Transformers are gradually becoming the mainstream models 

in the field of computer vision. 

III. MODEL DESIGN 

The proposed model consists of four modules: (1) 

Spatially-aware Embedding Module (SAEM); (2) CEW 

Word Embedding Module; (3) Standard Transformer 

Encoder Module; (4) Bidirectional Collaborative Cross 

Visual-Text Decoder Module. The overall structure of the 

model is shown in Figure 1. The input image first undergoes 

visual and positional feature extraction using Faster R-CNN. 

Subsequently, the extracted features are processed by the 

SAEM to obtain spatially-enhanced embedding features, 

which are then fed into the Transformer encoder for encoding. 

The CEW word embedding module processes the textual 

information, and the text cross-masking attention layer 

applies masking operations to it. The decoder then uses the 

embedding features output by the encoder and the word 

generated at the previous time step to interactively attend to 

both textual and visual information at each time step to 

predict the next word. 
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Fig. 1. Text-visual bidirectional collaboration image description model 

 

A. Spatially-aware Embedding Module 

Previous approaches used Faster R-CNN for object 

detection in images, directly feeding the extracted visual 

features into the encoding layer of the Transformer. However, 

this approach is not effective in helping the model recognize 

spatial relationships between objects. Therefore, ResNet-101 

is used as the backbone network of Faster R-CNN to extract 

the visual features of the target objects and a region proposal 

network is used to extract the positional features of these 

objects. These two types of features are then fused to generate 

spatially aware embedding features, as illustrated in Figure 2. 

This fusion transforms absolute positional information into 

relative positional relationships between objects, enhancing 

the model's understanding of spatial relationships between 

objects. 

 

 
Fig. 2. Spatially-aware embedding encoding architecture 

 

Specifically, for an input image I , Faster R-CNN detects 

m  objects, denoted by  1 2, , ,i mo o o o= . Each object 

is characterized by its region of interest feature iR  and its 

positional feature iP  (i.e., the bounding box coordinates). 

The width and height of the image are W  and H , 

respectively, and the bounding box coordinates are given by 

( )min min max max, , ,x y x y  (representing the x and y 

coordinates of the top-left corner and the x and y coordinates 

of the bottom-right corner of the bounding box, respectively). 

The coordinates are transformed into normalized position 

eigenvectors using an absolute coordinate normalization 

function. The formula for this calculation is: 

 
min min max max

max maxmin min

( , , , )

( , , , )

iP PositionEncode x y x y

x yx y

W H W H

=

=
 (1) 

Before fusing the visual feature vector iR  and the 

positional feature vector iP , a fully connected operation is 

first applied to each of the two features to map them to the 

same dimension, followed by normalization. The formula for 

the calculation is as follows: 

 ( )i iR FC R =  (2) 

 ( )i iP FC P =  (3) 

 ˆ ( )i iR LayerNorm R=  (4) 

 ˆ ( )i iP LayerNorm P=  (5) 

Subsequently, the processed region features ˆ
iR  and 

positional features ˆ
iP  are concatenated using a concat  

operation to obtain the spatially-aware embedding features 
spe

iX . The formula is as follows: 

 ˆ ˆ( ( , ))
spe

i iiX Encoder concat R P=  (6) 
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B. CEW Word Embedding Module 

 The difference between the CEW word embedding 

encoder and traditional word embedding methods lies in its 

ability to generate a context-based feature embedding matrix 

by considering contextual information, rather than just 

encoding individual words. The CEW word embedding 

module is shown in Figure 3.  

Before decoding, the descriptive sentences are first 

processed by adding a start token <s> and an end token <e> 

to each sentence. Following the approach of Tan et al. [20], 

the WordPiece tokenizer is used to tokenize the sentences, 

assigning an index to each word based on its order in the 

sentence. The tokenized words are represented as 

1 2{ , , , }j nw w w w= . Finally, each word jw  and its 

positional index j  are converted into embedding vectors 

through an embedding sublayer and normalized using 

LayerNorm  normalization to obtain the word embedding 

features 
word

jX . The specific formula is as follows: 

 ˆ ( )j jw WordEmbed w=  (7) 

 ˆ ( )j IndexEmbed j=  (8) 

 ˆˆ( )word
j jX LayerNorm w j= +  (9) 

 

 
Fig. 3. CEW word embedding architecture 

C. Visual-Text Bidirectional Collaborative Decoder 

1) Text Cross-Attention Layer: During the training process, 

the generated word embedding features undergo masking. 

The masked multi-head attention mechanism ensures that the 

model does not rely on future information, thereby 

maintaining consistency during description generation. In 

previous studies, the Masked Self-Attention module 

primarily focused on the interaction of information between 

words and did not fully leverage the influence of visual 

information on the calculation of intra-modal attention 

weights. To allow visual features to more effectively guide 

the generation of descriptive sentences, this paper introduces 

a cross-attention sublayer from vision to text. This sublayer 

integrates visual information to optimize the attention 

distribution between words within the sequence, enabling the 

visual features to have a significant impact on the decoding 

process and improving the overall quality and semantic 

relevance of the generated descriptions. A diagram of the text 

cross-attention layer structure is shown in Figure 4. 

 

 
Fig. 4. Text cross-attention layer 

 

The word embedding sequence 

1 2{ , , , }word word word word

nX X X X=  is used as the query 

vector Q  and the value vector V  in the text cross-attention 

layer, while the encoded spatially-aware embedding 

sequence 1 2{ , , , }spe spe spe spe

mX X X X=  is used as the 

key vector K . First, a dot product is computed between Q  

and K  to obtain the attention weights 2v lA . Next, a mask is 

applied to 2v lA  so that it only relies on the word sequence 

information generated before time step t . Finally, the output 

of the softmax  layer is applied to V  to obtain the visually 

sensitive word embedding feature sequence 
wordX 

. The 

specific calculation process is as follows: 

  , , , ,Q word K spe V wordQ K V W X W X W X =
 

 (10) 

 2

T

v l
QK

A
d

=   (11) 

 2 2
ˆ ( )v l v lA Mask A=  (12) 

 2
ˆ( )word
v lX softmax A V =  (13) 

Where 
QW , 

KW  and 
VW  are the weight matrices of the 

linear transformations, and Mask  represents the masking 

operation. 

2) Visual Cross-Attention Layer: Word prediction relies on 

the fusion of multimodal information. In a standard 

Transformer decoder, a multi-head attention module is used 

to unify information from different modalities, achieving 

inter-modal interaction and fusion through the attention 

mechanism, aligning textual information with image features. 

However, cross-attention allows the decoder to access the 
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entire output of the encoder while generating each word, 

enabling the generated descriptions to more accurately reflect 

the details and spatial layout in the image. Therefore, a visual 

cross-attention layer is introduced in the Transformer 

decoder to facilitate the interaction between visual and 

textual information. 

The word embedding sequence output from the text 

cross-attention layer 
wordX 

 is used as the query Q , while 

the spatially-aware embedding sequence output from the 

encoder 
speX  is used as the key K  and value V . This 

setup enables attention weighting between the visual and 

textual modalities, resulting in an attention-weighted matrix 

for text descriptions guided by image information. The 

calculation formula is as follows: 

  , , , ,Q word K spe V speQ K V W X W X W X =
 

 (14) 

 , , ) ( )
TQK

CrossAttention Q K V softmax
d

=（  (15) 

Where 
QW , 

KW  and 
VW  are the weight matrices of the 

linear transformations. To address the problem of vanishing 

gradients as the network depth increases, residual 

connections and normalization operations are added between 

the visual cross-attention sub-layer and the Feed Forward 

Network (FFN). Finally, the output of the decoder is passed 

through a softmax  layer to compute the word generated at 

the current time step. 

IV. EXPERIMENTS AND RESULTS ANALYSIS 

A. Datasets and Experimental Environment 

The MSCOCO 2014 dataset [21] is used for experiments 

in this paper. This dataset is a commonly used large-scale 

English-annotated dataset for image captioning tasks, 

containing 123,287 images, each with five manually 

annotated sentences. 

Before training, the dataset is preprocessed using a random 

partitioning method to handle the training and validation sets 

of the MSCOCO 2014 dataset. The dataset is shuffled, and 

5,000 images are randomly selected as the validation set, 

another 5,000 images are randomly selected as the test set, 

and the remaining 113,287 images are used for training the 

model. This ensures the diversity and randomness of the 

dataset. The commonly used evaluation metrics BLEU (1-4) 

[22], METEOR [23], ROUGE-L [24], and CIDEr [25] are 

employed to assess the effectiveness and advancement of the 

model. 

The experimental environment for this research is built on 

the Linux operating system, Ubuntu version 20.04, using 

PyTorch as the main deep learning framework for conducting 

experiments. The hardware configuration includes an Intel(R) 

Core(TM) i9-13900KF CPU and a Geforce RTX 4060ti GPU 

(16GB VRAM, 32GB RAM). 

B. Experimental Parameters 

 The features extracted by ResNet-101 are used as inputs to 

Faster R-CNN, and the Region Proposal Network (RPN) 

generates bounding boxes. The anchor sizes are set to {128, 

256, 512}, and the aspect ratios are set to {0.5, 1.0, 2.0}. 

Overlapping bounding boxes with an Intersection over Union 

(IoU) threshold greater than 0.7 are discarded. The word 

vector dimension and the hidden layer dimension are both set 

to 1024. The number of heads in the multi-head attention 

mechanism is 8, with each head having a feature dimension 

of 128. Both the encoder and decoder consist of 6 layers to 

balance model complexity and performance. 

The training process runs for 40 epochs. In the first 20 

epochs, the cross-entropy loss function is used for training 

with a batch size of 20. In the latter 20 epochs, the CIDEr-D 

optimized reinforcement learning method is employed, with 

a batch size of 10. The learning rate follows a scheduling 

strategy with a warm-up phase, starting at an initial value of 

1e-4, and the Adam optimizer is used (β1 = 0.9, β2 = 0.999, ε 

= 1e-8). To further improve the model's generalization ability, 

Dropout is applied to the attention layers and fully connected 

layers, with the Dropout rate set to 0.1. Beam search is used 

during model training, with the beam size set to 5, and the 

hyperparameter 𝑘 in relative position encoding is set to 8. 

C. Experimental Results and Analysis 

1) Ablation Experiment: This paper conducts ablation 

experiments to validate the rationality and effectiveness of 

the model, using a control variable method to demonstrate the 

impact of each module on the overall model. The 

experimental results are shown in Table I. The experiment 

uses the standard Transformer structure as the baseline model, 

where SAE represents the introduction of the Spatially-aware 

Embedding Module, CEW represents the introduction of the 

CEW Word Embedding Module, V2TC represents the 

introduction of the Visual-Text Bidirectional Collaborative 

Decoder, and SCV2TC represents the complete model 

proposed in this paper. By comparing the performance of 

each model, it is clear that each module contributes to the 

improvement of the model, and the combination of all three 

modules in the SCV2TC model achieves the best 

performance, demonstrating that these modules work 

synergistically to achieve the maximum performance 

improvement. 

 
TABLE I 

COMPARISON OF ABLATION EXPERIMENT RESULTS 

Methods B1 B2 B3 B4 M R C 

Baseline 76.0 60.0 46.5 35.4 27.8 56.8 119.6 

SAE 78.2 62.3 48.8 38.6 27.8 56.9 124.9 

CEW 76.5 62.8 47.6 37.2 28.6 58.0 122.3 

V2T 78.7 64.2 51.6 38.7 29.0 58.5 126.4 

SCV2TC 82.8 67.1 52.9 40.9 30.8 59.9 136.8 

 

As shown in Table I, both the SAE model and the CEW 

model are compared with the baseline model, with multiple 

metrics (such as BLEU, METEOR, ROUGE-L, etc.) showing 

varying degrees of improvement. In particular, the CIDEr (C) 

score shows a significant increase, highlighting the key role 

of the Spatially-aware Embedding Module (SAE) in helping 

the model better understand the spatial structure of the image 

and the relative positioning of objects. The CEW Word 

Embedding Module (CEW) enhances the semantic 

representation of words, making the generated text more 

contextually relevant and coherent. The V2TC model, which 

introduces a bidirectional cross-attention mechanism, further 

enhances the complementarity between image and text, 

allowing the model to more precisely capture the subtle 
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relationships between visual information and language. This 

improvement is reflected in the performance of all metrics, 

with the CIDEr (C) score improving by as much as 6.8%. 

This result shows that the bidirectional cross-attention 

mechanism effectively combines visual and textual 

information, enhancing the accuracy and contextual 

consistency of the generated text. Further comparison 

between the SCV2TC model and the baseline model reveals 

that the introduction of SCV2TC significantly improves the 

model's ability to understand and describe complex scenes. 

Specifically, SCV2TC combines the Spatially-aware 

Embedding, CEW Word Embedding, and Visual-Text 

Bidirectional Collaborative Decoder in a well-integrated 

manner, improving performance across various metrics while 

significantly enhancing the richness and accuracy of the 

generated descriptions. This demonstrates that the 

combination of SAE, CEW, and V2TC modules can mutually 

reinforce each other, leveraging their individual advantages 

to help the model better understand relationships between 

visual objects and more delicately and precisely capture 

relationships between different regions of the image. This 

results in feature enhancement, which improves the quality 

and accuracy of the generated descriptions. The experimental 

results validate the superiority and effectiveness of the 

proposed SCV2TC model in image captioning tasks. 

2) Quantitative Analysis: This paper validates the 

effectiveness of the model through quantitative analysis, 

comparing it with representative mainstream algorithms such 

as Soft-Attention [26], Hard-Attention [26], MSM [27], 

ELMo-MCT [18], Up-Down [6], ORT [28], AOA [29], 

DLCT [30], and X-Transformer [31] on the MS COCO 2014 

dataset. As shown in Table II, the proposed SCV2TC model 

achieves favorable results across various evaluation metrics, 

with BLUE-1 (B1), BLUE-2 (B2), BLUE-3 (B3), and 

BLUE-4 (B4) reaching 82.8%, 67.1%, 52.9%, and 40.9%, 

respectively. Additionally, METEOR (M), ROUGE-L (R), 

and CIDEr (C) reach 30.8%, 59.9%, and 136.8%, 

respectively. 

Models like Soft-Attention and Hard-Attention are based 

on attention mechanisms, generating descriptions by 

calculating the attention of each word to image regions. In 

contrast, SCV2TC not only relies on a single attention 

mechanism but also introduces a Bidirectional Visual-Text 

Collaborative Decoder (V2TC), enabling bidirectional 

information flow between the image and text, thereby more 

accurately capturing multimodal relationships in complex 

scenes. The MSM model uses multi-scale learning to capture 

features at different levels in the image, while SCV2TC 

further enhances spatial understanding through 

Spatially-aware Embedding (SAE), improving the precision 

of description generation. ELMo-MCT focuses on text 

processing by incorporating context-aware word embeddings 

and multimodal contrastive learning to understand linguistic 

context, while SCV2TC strengthens the complementarity 

between vision and text through the V2TC model, improving 

performance in image captioning tasks. The Up-Down model 

uses a hierarchical structure to jointly model image and text 

features, while SCV2TC further refines visual-text 

collaboration, especially in complex scenes, to precisely 

handle spatial relationships between objects. The ORT model 

focuses on object and action recognition, while SCV2TC 

enhances spatial relationship modeling through a 

bidirectional cross-attention mechanism, capturing more 

detailed image features and generating more natural, fluent 

descriptions. The X-Transformer model incorporates the 

Transformer architecture for image captioning, and SCV2TC 

further optimizes this by introducing bidirectional visual-text 

interactions, generating more accurate text descriptions that 

align with visual information, particularly in complex scenes 

with multiple objects. 

As can be seen, the proposed Spatially-aware Embedding 

module, CEW Word Embedding module, and Visual-Text 

Bidirectional Collaborative Decoder demonstrate significant 

advantages over traditional image captioning methods. First, 

the Spatially-aware Embedding module captures spatial 

information in the image accurately, allowing the model to 

better understand the spatial relationships between objects 

when processing complex scenes, providing a solid 

foundation for generating more natural and realistic text 

descriptions. Second, the CEW Word Embedding module 

optimizes the representation of words by incorporating 

contextual information, further enhancing the model's 

understanding of word meanings in different contexts, 

resulting in more semantically and syntactically accurate and 

fluent generated text. Finally, the Visual-Text Bidirectional 

Collaborative Decoder effectively integrates bidirectional 

information flow between vision and language, not only 

enhancing the complementarity between the image and the 

text but also ensuring more contextually consistent text 

generation. The organic combination of these three modules 

fully leverages the synergistic effect of visual and textual 

information, significantly improving the quality and 

effectiveness of image caption generation. 

3) Qualitative Analysis: To qualitatively analyze the visual 

features extracted by the model, this study employs 

visualization techniques, such as heatmaps, to illustrate the 

importance of visual features in generating output words. 

This visualization reveals how different visual inputs 

influence the text generation process, providing deeper 

insights into the model's decision-making mechanism. 

Specifically, we visualize the visual features by utilizing the 

cross-attention weights in the final layer of the Transformer 

decoder, which helps clarify the relationship between each 

generated word and the key regions of the image. This 

method not only highlights the role of different parts of the 

image during the generation process but also significantly 

contributes to the transparency and interpretability of the 

model. 

The detailed visualization results are presented in Figure 5, 

which includes the original image for each test sample, the 

words generated by the Baseline model, and those generated 

by the proposed SCV2TC model at various time steps, along 

with their corresponding attention heatmaps. As shown in 

Figure 5, both the SCV2TC and Baseline models are able to 

focus on image regions relevant to the generated words. 

However, compared to the Baseline model, the SCV2TC 

model is better at precisely focusing on the relevant visual 

regions when generating descriptions, especially in complex 

or detail-rich scenes. Specifically, the SCV2TC model 

demonstrates significant advantages in terms of attention to 

object content, detailed descriptions, and overall contextual 

coherence. It is better equipped to handle the spatial 

IAENG International Journal of Computer Science

Volume 52, Issue 2, February 2025, Pages 515-523

 
______________________________________________________________________________________ 



 

relationships between different objects in the image and 

capture finer details, resulting in more accurate and natural 

text descriptions. This indicates that the SCV2TC model has 

higher efficacy and stronger contextual awareness when 

understanding and describing complex scenes. 

To provide a more intuitive comparison of the 

experimental results, this study selects several results 

generated by both the SCV2TC model and the Baseline 

model, comparing them with five human-annotated reference 

sentences from the dataset, as shown in Figure 6. In these 

comparison results, the SCV2TC model more accurately 

captures key details in the image and the relationships 

between objects in the generated text descriptions. For 

example, in some complex scenes, the SCV2TC model not 

only correctly identifies the objects but also accurately 

describes details such as the relative position, color, and 

actions of the objects. In contrast, the Baseline model may 

omit or misidentify certain aspects. Comparing the generated 

text with the human-annotated sentences, the SCV2TC 

model significantly outperforms the Baseline model in terms 

of accuracy, naturalness, and contextual consistency, further 

validating the effectiveness and advantages of the SCV2TC 

model in multimodal understanding and text generation 

tasks. 

It can be seen that the descriptions generated by the 

baseline model are logically correct and have some 

association with the image content. However, the results 

produced by the proposed SCV2TC model can better capture 

the spatial relationships between visual objects and provide 

more accurate and vivid descriptions of image details. For 

example, in the first example, the baseline model generates 

"running on the road," which does not align well with the 

visual information in the image. In contrast, the description 

generated by the proposed model, "lying on the side of the 

road with a bicycle parked next to it," more accurately 

reflects the visual information in the image, vividly 

describing the relationships between objects within the image. 

Through comparative analysis, it is evident that the SCV2TC 

model is better at handling complex image scenes, especially 

those involving multiple objects and complex backgrounds. 

It can better understand and express the interactions and 

spatial layouts between objects, thereby generating 

descriptive texts that are more consistent with the actual 

situation. 

TABLE II 
COMPARISON OF EXPERIMENTAL RESULTS OF DIFFERENT MODELS 

Methods B1 B2 B3 B4 M R C 

Soft-Atten 70.7 49.2 34.4 24.3 23.9 — — 

Hard-Atten 71.8 50.4 35,7 25.0 23.0 — — 

MSM 73.0 56.5 42.9 32.5 25.1 53.8 98.6 

ELMo-MCT 76.2 59.6 45.6 34.2 — 56.0 111.5 

Up-Down 79.8 — — 36.3 27.7 56.9 120.4 

ORT 80.5 — — 38.6 28.7 58.4 128.3 

AOA 81.0 65.8 51.4 39.4 29.1 58.9 126.9 

DLCT 81.4 — — 39.8 29.5 58.9 133.8 

X-Trans 81.7 66.8 52.6 40.7 29.9 59.7 135.3 

SCV2TC 82.8 67.1 52.9 40.9 30.8 59.9 136.8 

 

 
Fig. 5. Visualization of visual attention
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Fig. 6. Comparison of image description results 

 

V. CONCLUSION  

This paper proposes a Transformer-based visual-text 

bidirectional collaborative image captioning model, aimed at 

improving the quality and diversity of generated image 

captions. The model innovatively integrates spatial 

perception feature embeddings and CEW word embedding, 

which play a crucial role in image captioning. Specifically, 

the spatial perception feature embeddings are used to extract 

deep spatial relationships between different objects in the 

image, while CEW word embeddings enhance the contextual 

understanding of words, enabling the generation of more 

accurate and rich descriptions. By introducing a bidirectional 

cross-attention mechanism, the model significantly 

strengthens the interaction and collaboration between visual 

and textual information, allowing image and text features to 

complement each other more effectively, ultimately 

generating higher-quality descriptive sentences. 

In terms of experiments, extensive evaluations were 

conducted on the MS COCO 2014 dataset to validate the 

effectiveness of the proposed method. Through a series of 

ablation experiments, the paper further demonstrates the 

contribution of each module and its role in improving overall 

performance. Compared to current state-of-the-art image 

captioning models, the proposed model achieves significant 

improvements across all evaluation metrics, with the CIDEr 

score reaching 1.368, indicating superior caption quality. 

Moreover, the model is able to better capture details and 

semantic relationships in the image, and the generated 

captions are more natural, fluent, and accurate than those 

produced by traditional methods. 

For future work, we plan to further optimize the model's 

encoder by exploring the introduction of a Gated Attention  

 

Unit in the encoding process. This innovative design will 

allow for more flexible adjustment and control of the 

interaction between the multi-head attention layers and 

feed-forward neural network layers in the encoder, enabling 

the model to more accurately allocate attention based on task 

requirements. Additionally, the introduction of the gating 

mechanism will help reduce computational complexity and 

improve training efficiency. To further reduce model 

complexity and enhance training speed, we will also consider 

parameter sharing across multiple modules to minimize 

redundant calculations, thus accelerating both the model's 

training process and inference speed. 
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