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Abstract—Low-density parity-check (LDPC) codes are widely
used in modern systems because they are highly effective
for error correction, nearing the Shannon limit performance
across diverse communication channels. However, choosing an
appropriate decoder for LDPC is crucial for accurate infor-
mation retrieval. Traditional decoders, such as the message-
passing sum-product algorithm (MP-SPA), message-passing
belief propagation (MP-BP) and its variants, often suffer from
computational complexity, error floors, and latency owing to
their probabilistic and iterative nature. This experiment utilizes
a cascaded feedforward neural network (CFNN) as a non-
iterative decoder for quasi-cyclic (QC) LDPC codes. The CFNN
completed 376 iterations within 43 minutes and 21 seconds,
achieving 41.9% performance with a 3.62−02 gradient over
six validation checks. The bit error rate (BER) of the CFNN
decoder for the QC-LDPC improved by 10−0.24 compared to
conventional decoders at a signal-to-noise ratio (SNR) of 3,
with the CFNN reaching a BER of 10−4.5 at 5 dB SNR versus
10−3.6 for conventional decoders. The results show that the
CFNN decoder excels. Overall, the CFNN proved to be an
effective non-iterative alternative, overcoming the limitations of
traditional decoders, such as suboptimal performance and error
floors. The enhanced BER performance at various SNR levels
demonstrates the efficacy of the CFNN decoder in improving
decoding accuracy and reliability in communication systems.

Index Terms—Belief Propagation, Low-Density Parity-Check
Code, LDPC Decoder, Neural Network, Quasi-Cyclic, Regular
LDPC.

I. INTRODUCTION

GALLAGER [1] introduced low-density parity-check
(LDPC) codes based on linear block codes in 1962. In

1999, Mackay rediscovered LDPC codes, highlighting their
capacity-approaching performance, as characterized by Shan-
non [2], [3]. Tanner [4] provided a graphical representation
of sparse parity check matrices (PCM), emphasizing their
role in reducing computational complexity during LDPC
decoding. Juane et al. [5] discussed the widespread appli-
cation of LDPC codes in deep-space communication, image
authentication, mobile communication, wireless sensor net-
works, and various wireless standards owing to their efficient
decoding algorithms and excellent performance. Saurabh [6]
noted that LDPC codes offer high throughput, parallelizable
hardware implementation, low decoding latency, and near
Shannon capacity performance, making them essential for
channel coding.
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TABLE I
ABBREVIATIONS USED

Abbreviation Full form
LDPC Low-Density Parity-Check
PCM Parity-Check Matrix

URLLC Ultra Reliable Low Latency Communications
AWGN Additive White Gaussian Noise
CFNN Cascaded Feedforward Neural Network
MSNN Multilayer Shallow Neural Network

MN Mackay-Neal
QC Quasi-Cyclic
GF Galois Field

LSTM Long Short-Term Memory
MP-SPA Message Passing Sum-Product Algorithm
MP-BP Message Passing Belief Propagation

LBP Linear Belief Propagation
OMSBP Offset Min-Sum Belief Propagation

SNR Signal-to-Noise Ratio
LLR Log Likelihood Ratio
SCG Scaled Conjugate Gradient
MSE Mean Square Error

Zhou [7] found that the quasi-cyclic (QC) method for
constructing PCM reduces the memory requirements and
computational complexity. Khodaiemehr [8] found that the
circulant permutation of the identity matrix enhances the
decoder’s bit error rate (BER) by obtaining PCM with higher
Galois field (GF) orders. Kou [9] observed that construct-
ing LDPC codes using algebraic methods based on finite
analytic geometries results in a robust error performance
near the Shannon limit, providing viable alternatives to turbo
codes. Patil [10] noted that in 5G wireless communications,
LDPC and Polar codes replace Turbo Codes and Tail Biting
Convolution Codes because of their superior error-correction
capabilities and high coding gain, which are crucial for the
mobile Internet and IoT. Jiang et al. [11] introduced a flexible
coding approach (FLCA) for QC-LDPC codes in 5G new
radio (NR), optimizing shortening patterns for various code
rates and modulation schemes and significantly improving
performance over current LDPC codes. Ro [12] enhanced
the reliability of weak variable nodes in protograph-based
raptor-like (PBRL) LDPC codes by adding edges to the
protograph, achieving low-error floors for ultra-reliable low-
latency communications (URLLC), demonstrated on 5G NR-
LDPC codes. Golmohammadi [13] proposed a novel win-
dowed decoding scheme for concatenated spatially coupled
LDPC codes in joint source-channel coding, showing im-
proved performance over existing schemes.
Kim [14] introduced a new class of irregular LDPC codes op-
timized for finite-block-length applications. These codes fea-
ture efficient encoding and a simple rate-compatible punctur-
ing structure and outperform optimized irregular LDPC and
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(extended) irregular repeat-accumulate codes, particularly at
high puncturing rates. They also enhanced the throughput in
incremental redundancy hybrid automatic repeat request (IR-
HARQ) systems over time-varying channels. Cole [15] devel-
oped a three-step procedure to efficiently determine the low-
bit-error rate performance curve for a wide range of LDPC
codes of moderate length, allowing for analysis and design
without exhaustive error event searches or Monte Carlo
simulations. Dolecek [16] created a deterministic method
to predict error floors in LDPC codes using a high signal-
to-noise ratio (SNR) asymptotically applied to absorbing
sets within structured LDPC codes, significantly reducing
computational requirements and extending error probability
predictions to 10−30.

Fig. 1. Decoding scheme of LDPC code using MPBP, Variants and CFNN

Vatta [17] conducted a detailed mathematical analysis of
belief-propagation decoding for LDPC codes on memory-
less binary-input Additive White Gaussian Noise (AWGN)
channels, establishing stricter bounds for the function ϕ(x)
defined by Chung et al. [18]. This approach enabled a
more precise assessment of the long-term performance of
sum-product decoding for LDPC codes using the Gaussian
approximation. Milenkovic [19] employed the large devia-
tion theory and statistical techniques to assess asymptotic
normalized average distributions of trapping and stopping
sets in various LDPC code ensembles, including random,
regular, and irregular binary types. These distributions are
vital for determining the error floor performance curve and
extending it to broader structural elements such as sub-codes
and minimal codewords. Chen [20] introduced a method for
generating irregular LDPC codes through quasi-cyclic exten-
sion. This approach produced codes with a low error floor in
high SNR regions, minimized undetected errors, and retained
efficient encodability. Lee [21] introduced a design technique
using a trellis search to create effective LDPC codes with
low code rates, improve the cycle distribution within PCM
entries and outperform traditional greedy design algorithms,
as demonstrated by simulations. Smith [22] developed a
numerical method to minimize the decoding complexity
in long-block-length irregular LDPC codes and found that
complexity-optimized codes outperform threshold-optimized
codes for long block lengths when the decoding complexity
is constrained.
Zhang et al. [23] investigated LSTM networks in a neural

network-based decoder to mitigate significant decoding de-
lays and performance declines under non-Gaussian noise in
turbo decoding algorithms. Their methodology demonstrated
improved performance and reduced computational complex-
ity compared with conventional approaches. Condo [24]
demonstrated that an NoC-based strategy for multi-standard
decoders in wireless receivers leads to higher throughput
and similar or reduced area occupancy compared to previous
implementations, achieving over 70 Mb/s throughput with
a 3.17 mm2 area on 90 nm CMOS technology. Chu [25]
proposed a NOLD algorithm for LDPC codes, enhancing
decoding parameters via a combined approach using a NOLD
decoder and a neural network, resulting in superior per-
formance compared to traditional decoders across various
channel conditions. Guangwen [26] introduced a method for
determining weights in belief propagation decoding variants
of LDPC codes as trainable parameters within a deep learn-
ing framework, focusing on high-quality training data, the
relationship between training loss and decoding metrics, and
reducing decoding complexity by minimizing the trainable
parameters. Extensive simulations validated the efficacy of
this method. Ma [27] presented a Quasi-Resnet architecture
for BP decoding of LDPC codes, enhancing performance
by transmitting reliable messages between iterations and
adjusting shortcut connection weights via the error backprop-
agation algorithm, as corroborated by the simulation results.

Fig. 2. Construction of a Perceptron with activation functions

Aggerwal [28] explained that multilayer shallow neural
networks (MSNN) mimic biological neural networks and
function as nonlinear statistical data models. MSNNs are
effective and efficient for pattern recognition applications.
Das et al. [29] described a pattern as a set of images,
elements, articles, facts, bearings, or sequences of 0 and 1.
Chang [30] provided a methodology to determine when the
hidden layers of multilayer neural networks (MNN) share
topological similarity, established criteria and examined the
feasibility of replacing an MNN with fewer layers. In the
cascaded feedforward neural network (CFNN) architecture,
the internal component is the perceptron. For a perceptron
with n inputs xi and weights wi, the output y is given by
y =

∑n
i=1 xi × wi + BIAS. The BIAS is a learnable

parameter for decision boundaries and model flexibility. Han
[31] stated that the perceptron output is typically passed
through an activation function, often a sigmoid function.
Guo [32] noted that activation functions such as tansig
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and logsig, followed by a threshold to determine the hard
decision value of each bit. Supervised learning divides the
decoding process into two distinct parts. The scaled conju-
gate gradient (SCG) learning algorithm, known for its speed,
was used for the training. The inputs to the CFNN match the
number of bits in the transmitted message with tansig as the
activation function. The contribution of the CFNN decoder
to the existing decoding system is as follows.

1) One-Shot Design: The CFNN decoder provides output
once the input is applied.

2) Low Latency: Because the process is non-iterative,
less time required.

3) Less Complex: The decoding process becomes simple
owing to the one-shot design. The only complexity is
during the training.

4) No Need to Transmit PCM: After tuning the weights
wn and BIAS during training, recreating the original
message is unnecessary.

Fig. 3. Organization of Paper

The remainder of this study is structured as follows. A
literature survey of encoding and decoding methods Quasi-
Cyclic and Mackay-Neal is anticipated with the MP decoder
using the SPA (MP-SPA) described in Section II. The pro-
posed methodology for decoding LDPC codes using a CFNN
in addition to CFNN training for decoding is discussed in
Section III, and the experimental setup is discussed in Section
IV. The testing procedure and arising empirical results are
presented in Section V. Finally, concluding remarks are
accorded in Section VI. The paper layout is shown in Fig. 3
and Table I list of the abbreviations used in this manuscript.

II. LITERATURE SURVEY FOR LDPC ENCODING AND
DECODING

To ensure error-free transmission of a binary message stream,
an LDPC is employed as a channel encoder to incorporate
redundant bits. The resulting encoded bit stream undergoes
binary phase-shift keying (BPSK) modulation before trans-
mitting through an AWGN channel. At the receiver, the
decoder scheme calculates the log-likelihood ratio (LLR) for
the demodulated signal, indicating that the probability of a
specific bit is one. The LLR values were utilized to decode
the LDPC code through various methods, including MPBP,

its variants, and the CFNN decoder scheme. Ultimately, the
original binary message stream was reconstructed at the
receiver.

A. Encoding Techniques for LDPC

MacKay [33] presented empirical evidence demonstrating
that Gallager LDPC codes surpass conventional convolu-
tional and concatenated codes in terms of performance on
Gaussian channels, achieving near-turbo code efficiency that
approaches the Shannon limit. The investigation revealed that
reducing the column weight, particularly during construc-
tion, significantly enhanced performance, nearly attaining
the Shannon limit comparable to turbo codes. The increased
block lengths yielded superior results, and codes with rates
between 1

2 and 1
3 yielded optimal Eb

N0 values. Tanner [34] in-
troduced algebraically structured QC-LDPC codes and their
convolutional variants, demonstrating practical graph-based
iterative decoding and the superior performance of LDPC
convolutional codes over QC codes while also providing
theoretical limits on girth and minimum distance based on
their algebraic structure.

1) Mackay-Neal LDPC Encoder: Although the Mackay
Neal (MN) method generates sparse code, it lacks a struc-
tured approach to code construction. The PCM construction
technique determines the parity check bits by selecting the
transmitted and source block lengths, where M = N − K.
A minimum column weight of three is set to construct an
M×N matrix. Random ones are inserted into each column to
achieve balanced row weights. This ensures that the number
of ones per row falls within the ratio range of N

M to N
M . This

method generates regular MN codes. Gaussian elimination
was applied to modify the columns, creating a Systematic
PC matrix pattern H = (P |IM ). For odd t values, the
LU decomposition technique was employed to address the
potential matrix independence issues in obtaining the PCM.
The LDPC codeword was constructed using the Generator
Matrix (GM) G = (IM |PT ).

2) Quasi-Cyclic LDPC Encoder: Authentic LDPC code
characteristics are obtained by fulfilling the generalized con-
struction requirements, resulting in a diverse range of regular
QC-LDPC codes. This flexibility applies to Convolutional
and QC codes, with QC block codes possessing convolutional
representation. The PCM derived from the convolutional
depiction maintains the graph structure of genuine QC-
LDPC codes, enabling efficient decoding through the MP
algorithm. Convolutional codes offer several advantages in
various applications. For short to moderate block lengths,
irregular LDPC codes under perform algebraically structured
QC-LDPC codes; however, they excel with longer blocks. An
irregular LDPC code with list weight wc ≥ 3 is asymptot-
ically good [2]. In structured QC-LDPC codes, large block
dimensions and high code rates are achieved using circulant
matrices in GF(m), where (m) is a prime number. The
recurring symbol associations are generated using GF(m)
nonzero elements, with elements x and y having argument
positions o(x) = p and o(y) = q, respectively. The GF(m)
circulant matrix A is constructed by employing size p × q
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with the (c, d)th element Ap,q = xdyc as follows:

A =


1 x x2 · · · xq−1

y xy x2y · · · xq−1y

...
...

...
. . .

...
yp−1 xy xyp−1 · · · xq−1yp−1

 (1)

Here, 0 ≤ c ≤ p − 1 and 0 ≤ d ≤ q − 1 as demonstrated
in (2) PCM is derived from p× q cyclically shifted versions
of the identity matrix in the act of a sub matrix. The Parity-
Check Matrix was adopted for the architecture of the LDPC
code.

H =


I1 Ix Ix2 · · · Ixq−1

Iy Ixy Ix2y · · · Ixq−1y

...
...

...
. . .

...
Iyp−1 Ixyp−1 Ix2yp−1 · · · Ixq−1yp−1

 (2)

The PCM is seized by cyclically shifting the left rows of the
identity matrix corresponding to the elements of the circulant
sub-matrix at positions (c, d). The size of the resulting dual
PCM is (p · e× q · e). Additionally, the associated code rate
is given by (R = 1 − p

q ). The estimates of those in the
individual columns designated via p along with individual
rows will estimate q 1’s and so forth, illustrating that the
binding estimate for H is (p, q). Furthermore, the encoded
binary sequence of the message is converted to non-return to
zero (NRZ) according to (3). BPSK then modulates it. The
BPSK signal was transmitted over an AWGN Channel with
varying SNR.

NRZ(x) =

{
1, E(x) = 0

−1, E(x) = 1
(3)

LLR(x) = log
Px=0

Px=1
(4)

The transmitted signal was received at the receiving end.
LLR values were acquired, followed by BPSK demodulation
using (4), which was fed to the MPBP decoders and CFNN
(proposed algorithm) for decoding.

Algorithm 1: PCM using QC Construction
Result: Structured PCM for QC-LDPC for encoding
Prime numbers x and y from set GF(2m − 1);
multiplicative order p = o(x) and q = o(y);
construct an Identity matrix Ie with size e = 2m − 1;
for c= 0; c = p; c++ do

for d =0; d = q; d++ do
A(p, q) = xdyc;

end
end
for c = 0; c = p; c++ do

for d = 0; d = p; d++ do
P(c× e+ 1 to p× e, d× e+ 1 to q × e) =
Cyclically sifted Ie;

end
end
Construct PCM H = (PIM ) and GM G = (IM |PT );

3) Decoding with MPBP: In probabilistic graphical mod-
els, MPBP serves as a robust algorithm for inference and
optimization. This technique operates on factor graphs that
illustrate the factorization of a joint probability distribu-
tion. The fundamental process of MPBP involves iterative
exchange of messages (m) between nodes. The message
(mvi→cj ) sent from the variable node Vi to check node Cj

is updated using (5).

mvi→cj = LLRxi
+

∑
cj∈N(vi)→ci

mck→vi
(5)

where, N(vi) is the set of check nodes connected to (vi).
Each check node (cj) sends a message (mcj→vi

) to each
connected variable node (vi) by using (6)

mcj→vi = 2 tanh−1

 ∏
vk∈N(cj)→vi

tanh
(
mvk → cj

2

) (6)

where (N(cj)) denotes the set of variable nodes connected
to (cj).
After a predefined number of iterations or upon convergence,
the belief (updated LLR) for each variable node (vi) was
computed as mentioned in (7).

´LLR(vi) = LLR(xi) +
∑

cj∈N(vi)

mcj → vi (7)

The final decision for each bit is made based on the sign of
( ´LLR(vi)) according to (8).

x̂i =

{
0, if ´LLR(vi) ≥ 0

1, if ´LLR(vi) < 0
(8)

The MPBP demonstrates efficacy in large-scale applications,
approaching the Shannon limit for substantial block lengths.
Although MPBP decoding exhibits superior performance for
LDPC code, it has certain limitations. The BP algorithm
presupposes a tree-like Tanner graph structure. However,
LDPC codes frequently contain cycles, which may result in
erroneous solutions or failure to converge within a reasonable
number of iterations, particularly for high-density or sub-
optimally designed codes. MPBP decoding may manifest as
an error floor phenomenon, wherein the error rate ceases to
decrease exponentially as the SNR increases, which is often
attributable to trapping sets or small cycles in the graph.
In high-speed applications, the computational complexity of
tanh and tanh inverse operations in check-node update can
become a computational bottleneck, even with approxima-
tions. The BP decoding performance may deteriorate if the
channel conditions deviate significantly from the assumed
model, especially in non-Gaussian-noise environments. Im-
plementing efficient BP decoders in hardware (such as FPGA
or ASIC) presents challenges owing to the requirements for
parallel processing and intricate memory access patterns.
The storage and updating of messages for large LDPC
codes necessitate substantial memory, creating constraints in
resource-limited settings. BP decoding is less effective for
short block lengths, where the performance gap compared to
maximum-likelihood decoding is more pronounced. Errors
in the initial LLR or during message passing can propagate
through the network, leading to incorrect decoding.
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Algorithm 2: Decoding of Received LDPC using
MPBP Decoder

Result: Decoded Message using MPBP Decoding
Demodulated Signal received xi;
PCM H, number of iterations itr SNR in dB;
Calculate LLR using LLR(xi) = 4× xi × SNR;
for i = 1; OR(i = itr, syndrome = 0); i++) do

Calculate mcj→vi using (5);
Calculate mcj→vi using (6);
Calculate ´LLR(vi) using (7);
Calculate x̂i hard decision using (8);
Calculate syndrome using syndromei = xi ×H;
if OR(i = itr, syndrome = 0) then

Decoded Message = x̂i;
Stop the Process;

end
else

LLRi = x̂i;
end

end

4) Min-Sum BP: Liang [35] investigated a modified algo-
rithm, the min-sum algorithm, to decrease the computational
complexity while maintaining the essence of the more com-
plex MP-SPA algorithm. The initialization process followed
the same procedure, initializing messages similar to MP-
SPA. Unlike the MP-SPA, which computes the exact product,
the min-sum algorithm employs a minimum operation to
approximate the product.

• Variable nodes update their messages based on the
minimum values they receive.

• Ensure that nodes communicate efficiently by mini-
mizing the number of incoming messages required,
considering both positive and negative signals.

The decision was contingent on the final values following a
predetermined number of iterations.

5) Normalized Min-Sum BP: The study conducted by
Wang [36] revealed that the optimization approach elevated
the efficiency of the min-sum BP algorithm. The initialization
and message-passing processes are similar to the min-sum
process, with the added step of applying a normalization
factor to the messages. After calculating the minimum values,
the normalization factor (usually less than one) scales the
messages to better approximate the original SPA messages.
The final values determine the decisions in the same manner
as the min sum.

6) Offset Min-Sum BP: Lugosch [37] explored the min-
sum BP algorithm which has several advantages over its
forerunners. One of these benefits is the similarity of its
initialization and message-passing procedures with those of
the min-sum algorithm. However, a critical distinction is
that the offset is subtracted from the minimum value before
the message is passed. This adjustment effectively reduced
the bias inherent in the min-sum approximation. Therefore,
decisions were made using the adjusted final values.

7) Layered BP: Maammar [38] developed an enhanced
variant of the BP algorithm to achieve faster convergence.
The initialization procedure for this variant adhered to
the standard MPBP guidelines. In contrast to updating all

variable nodes and then all check nodes simultaneously,
this method updates subsets of nodes sequentially, in a
layered manner. Consequently, the information propagates
more swiftly, leading to a faster algorithm convergence. In
fewer iterations, the variable node values were determined.

III. PROPOSED CFNN DECODER

Decoding the LDPC code by adopting the CFNN as a
decoder is a novel idea. Several researchers have proposed
using machine learning (ML) or deep learning (DL) algo-
rithms to decode coding techniques other than LDPC codes.
The major problems faced by existing LDPC decoders are
latency and computational complexity, which make them
difficult to implement or non-implementable.
Jason [39] utilized an artificial neural network (ANN) based
on an information processing model inspired by the biolog-
ical nervous system. The ANN feed-forward (FF) method,
which links the input layer to the output layer via multiple
intermediate neuron layers, is widely applied across vari-
ous neuron compositions. Researchers have concentrated on
ANN-related issues such as the extension, characterization,
and development of mathematical expressions in neural net-
work methods.
A CFNN Decoder was proposed for LDPC codes, providing
good performance, less decoding time, and lower compu-
tational complexity once the CFNN was trained. The only
constraint in the CFNN decoder is the message length, which
can be increased by cascading the CFNN decoders. The
decoding scheme to decode the LDPC using the CFNN
decoder in Fig. 1. The decoder design involves two steps:
training the CFNN and validating the network. Subsequently,
the CFNN used for the analysis using a trained CFNN for
decoding.
The LDPC code decoding process employs a CFNN to
optimize the network performance. The input set comprising
the LLR values from the LDPC code was used to train the
CFNN. These LLR values, derived from the demodulated
received signals, are converted into a binary set of symbols
as the target set. Boutillon et al. [40] explored the λ-
min decoding technique and achieved a BER of 0.9 dB.
Maximilian [41] demonstrated a BER of 0.15 dB for LDPC
decoders, whereas Dinesh [42] showed a BER of 1.5 dB,
achieving 1.3 dB BER with a non-Iterative LDPC code.

A. Training of CFNN
The Training data set consists of a binary equivalent of length
m, where m is the length of the message. These non-binary
‘numbers were converted into a binary message stream of
size m. This binary message stream is encoded into an
LDPC code word using the QC-LDPC generator matrix. The
code word was then modulated using the BPSK modulation
technique. The BPSK-NRZ signal was transmitted over the
AWGN channel. During the transmission, the SNR varied.
The received signal was demodulated on the receiving side
and the LLR values were calculated using (4). An input data
set and target data set were formed.
These input and target data set were used to train the CFNN.
This forms an input, making the CFNN adjust the weights
and biases after training for the target defined by the binary
values. The construction of the CFNN is illustrated in Fig.
2, which also shows the activation functions used.
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Algorithm 3: Training CFNN
Result: CFNN with updated weights and biases
Construct a Training data set consisting of LLR and
Corresponding binary data values;

Decide the number of Hidden Layer Neurons and
Learning Rate;

Initial values of weight = 1 and bias = 0;
Construct the cascaded feedforward neural network
with input value;

Initialize the parameters of the cascaded feedforward
neural network;

Feed the Training set to CFNN;
while Error is Greater than Mean Square Error
(MSE) do

Train the CFNN for the Training set and Target
Set;

Get the error between the Target set and the
obtained output;

end
Test the output for known data from the Training Set
and Target Set;

Validate for random data not from the Training Set;
Save the network;

B. Performance Evaluation for CFNN Decoder

In this experiment, the pattern was set to 0 and 1, arranged in
a specific pattern. For Pattern Recognition, computation from
MPBP, its variants, and the CFNN was used. Considering
the facts related to MPBP, it is clear that the hyperbolic
tan is used to calculate the LLR for extrinsic probability
[43]. The log of all values was calculated to obtain the new
LLR for the extrinsic probability. The syndrome is calculated
after making a hard decision regarding extrinsic LLR. If the
syndrome is zero, then decoding is performed properly and
decoding is stopped; otherwise, the process is repeated.
The architecture of the CFNN used in this experiment is
illustrated in Fig. 2. For empirical aspiration, three hidden
layers are utilized to indicate along with one input and one
output layer. The size of the input layer depends on the
code word length and the number of outputs depends on
the number of rows in the PCM. After decoding, the error
in the individual bit and separate block is calculated, which
provides the BER for the individual SNR. The BER was
calculated for all SNR values and plotted against the SNR
values.
The performance of the CFNN decoder for decoding the
LDPC code was checked. A binary message stream of
random 0 and 1 of length equal to m bits is encoded to the
QC-LDPC. Subsequently, it was transmitted over the AWGN
channel using BPSK modulation techniques. The noise level
was determined using the SNR values in decibels. The LLR
was calculated for each bit using the received code after
demodulation, and these LLR values were fed to the CFNN
for decoding.

C. Decoding of LDPC codes Using CFNN

The soft signal is defined from the AWGN channel and
received signal. The LDPC code was encoded using QC-
LDPC utilizing a random value from a certain symbol set.

Fig. 4. Construction of cascaded feedforward neural network

The variation in the code rate considered in this study, that
is, the channel SNR, varied for the AWGN channel. In
the decoding process, random inputs were considered with
the SNR value variable. For these SNR values, the BER
variable with the AWGN channel is evaluated and used in
this study. One layer of the CFNN is illustrated in Fig. 4,
which also shows the activation functions used. The CFNN is
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Algorithm 4: Performance of CFNN Decoder
Result: Decoded Message and BER for SNR
The number of frames;
Load the trained CFNN network;
Calculate the Upper Bound for each SNR;
for i = 1; i = Numbers of SNR; i++ do

for j = 1; j = Number of Frames; j++ do
Create a random binary stream;
Encode LDPC codeword using Algorithm 1;
Construct BPSK modulated signal and
Transmit over AWGN Channel;

Decode the received LLR using trained
CFNN, MPBP and its variants;

Calculate BER;
end

end
Plot the SNR Vs. BER plot for the Upper Bound,
CFNN, MPBP and its variants;

constructed with seven hidden layers inspired by the Tanner
graph; the hidden layer 2, 4, 6, and output have nodes equal
to the number of check nodes, that is, similar to the number
of message bits with the logsig activation function. Hidden
node 1,3,5,7, and the input consists of nodes equal to the
number of variable nodes with the activation function tansig,
which is, equivalent to the code word length. The last hidden
layer carried nodes equal to the number of check nodes with
a tansig activation function. The output state has a max-
pooling activation, giving the probability of the bit to be 1.
The inputs are added to hidden layers 1, 3, 5, 7 as update
rules for the MPBP from (7).

IV. EXPERIMENTAL SETUP FOR PERFORMANCE
EVOLUTION OF CFNN DECODER

For this experiment, a computer system with an Intel© i5
processor with 8GB RAM and a Windows− 10© operating
system. For simulation purposes, MATLAB−R− 2021b©

is used.

Fig. 5. PC matrix for QC-LDPC

The console generates the PCM based on the input number of
rows and code rate. Fig. 5 show the PCM for the QC-LDPC.
A random binary stream of 1 s and 0 s is generated to analyze
the performance of the CFNN decoder. Using the PCM
shown in Fig. 5, QC-LDPC code word were constructed
for subsequent transmission via BPSK modulation over the
AWGN channel. After reception, the LLR were calculated.

The message is then decoded using MPBP decoder, its
variants, and CFNN decoder. Finally, the BER was calculated
for all decoders across 10,000 blocks within the SNR range
of 0 - 5 dB.

V. RESULTS AND DISCUSSION OVER PERFORMANCE OF
CFNN DECODER

The SNR is pivotal in LDPC code performance analysis.
A high SNR prompts the use of high-rate LDPC codes
to enhance the transmission efficiency. Conversely, low-
rate LDPC codes are preferred under low-SNR conditions
to ensure reliable transmissions. Accurate SNR estimation
is crucial for achieving high-speed, low-power decoding.
Estimating the SNR aids in balancing the performance and
complexity when decoding large blocks, which demands
significant computation and memory. At low SNR levels,
the error probability decreases rapidly, resembling a wa-
terfall curve. However, as the SNR increases, the decrease
slows, eventually reaching an error floor at a very high
SNR. Understanding the SNR enables system engineers to
select appropriate LDPC codes and modulations based on
the power and bandwidth constraints. Different modulations
affect LDPC code performance differently, making SNR
estimation essential for efficient decoding.

Fig. 6. BER Vs SNR plot with code rate 1
2

, for QC-LDPC code

The illustrations in Fig. 6 provide a comprehensive evaluation
of various LDPC decoders, emphasizing their BER perfor-
mance across different SNR. The absence of coding results in
the highest BER at all SNR levels, serving as a baseline for
error rates without error-correction coding. Normalized BP
demonstrated an improvement over no coding but still exhib-
ited a higher BER compared to other decoding techniques,
rendering it less suitable for high-reliability applications.
Linear BP performed marginally better than Normalized
BP but still lagged behind more advanced decoders. Offset
Min-Sum exhibited a significantly lower BER at higher
SNR compared to Normalized and Linear BP, demonstrated
increased efficacy in error reduction and suitability for sce-
narios requiring enhanced reliability. The CFNN decoder
exhibited the lowest BER among all the methods, particularly
at higher SNR, rendering it the most efficient for error
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correction and optimal for high-performance communica-
tion systems. This analysis shows that advanced decoding
techniques, such as the CFNN decoder and Offset Min-
Sum BP, significantly outperform conventional methods such
as Normalized BP and Linear BP. In particular, the CFNN
decoder demonstrated superior performance, suggesting that
neural-network-based approaches can substantially enhance
LDPC code error correction. These findings are crucial for
designing robust communication systems, underscoring the
importance of selecting an appropriate decoding algorithm
to minimize errors and ensure data integrity. For applica-
tions requiring high reliability and performance, the CFNN
decoder and Offset Min-Sum BP are recommended because
of their superior BER performances at higher SNR.

Fig. 7. FER Vs SNR plot with code rate 1
2

, for QC-LDPC code

As Illustrated in Fig. 7 presents a comparative analysis
of various LDPC decoders by illustrating the Frame Error
Rate (FER) as a function of the SNR in the decibels. The
uncoded transmission exhibited the highest FER across all
SNR levels, serving as a baseline for comparison. The BP
decoder demonstrates improved performance over uncoded
transmission; however, it still exhibits a higher FER than
the other methods, rendering it less suitable for applications
requiring high reliability. The Linear BP marginally outper-
formed the BP decoder, indicating enhanced error-correction
capabilities. The normalized min-sum BP demonstrates a
more effective FER reduction at higher SNR compared to
BP and Linear BP, making it more appropriate for scenarios
demanding increased reliability. The offset min-sum BP
achieves a further reduction in the FER at elevated SNR,
rendering it suitable for applications requiring enhanced
reliability. The CFNN decoder achieved the lowest FER,
particularly at higher SNR values, demonstrating superior
efficiency in error correction for high-performance com-
munication systems. This analysis suggests that advanced
methods, such as the CFNN decoder and offset min-sum
BP, significantly outperform traditional methods such as BP
and Linear BP. The superior performance of the CFNN
decoder indicates that neural-network-based approaches can
significantly enhance error correction for LDPC codes.
Table II compares the BER performance of the various
decoding methods at an SNR of 3 dB. This analysis high-

TABLE II
COMPARISON OF EXITING METHODS ANALYSIS

Methods BER
Proposed CFNN Decoder 10−5 @ 3dB
λMin Decoding [40] 10−3 @ 3dB
Information Bottleneck Decoder [41] 10−3.8 @ 3dB
Resnet-BP-NN Decoder [44] 10−2.7 @ 3dB
ANN Decoder [42] 10−2.1 @ 3dB
RC-LDPC Neural Decoding [45] 10−3.8 @ 3dB
Neural Layered Decoding [46] 10−3 @ 3dB

lights the effectiveness of the proposed methods in lowering
the BER, which is crucial for improving the accuracy and
reliability of the communication systems. The CFNN decoder
achieved a BER of 10−5 at an SNR of 3 dB, outperforming
the other methods. In contrast, the λ-min decoding method
explored by Boutillon [40] showed a BER of 10−3, which
is two orders of magnitude higher than that of the CFNN
decoder. The Information Bottleneck Decoder, as mentioned
in Maximilian [41], attained a BER of 10−3.8 at 3 dB.
This method exhibits improved performance compared with
decoders, as mentioned earlier. Dinesh [42] experimented
that the ANN Decoder exhibits a BER of 10−2.1 at an
SNR of 3 dB, which is higher than that of other techniques.
For example, Cheng [45] found that the RC-LDPC Neural
Decoding method achieved a BER of 10−3.8 at the same
SNR, similar to the performance of the information bottle-
neck decoder. The neural layered decoding method proposed
by Shah in [46] achieved a BER of 10−3.0 at an SNR of
3 dB. This indicates that its performance is less effective
at higher SNR levels compared to the performance of the
CFNN decoder at 3 dB. The analysis shows that the CFNN
decoder achieves the lowest BER, suggesting its capability
to improve communication system performance relative to
existing decoding methods.
The training window of the CFNN is shown in Fig. 8. The
data set was randomly partitioned into training, validation,
and testing subsets utilizing the dividerand function. The
network employed the conjugate gradient with Powell/Beale
restart (traincgp) as its training algorithm, while MSE served
as the performance metric. Key training state parameters
were recorded:

1) Epoch = 376
2) Performance = 0.041019
3) Gradient = 53.7
4) Mu = 0.0001
5) Validation Checks = 6

The network processes the data set 376 times. The current
error rate, represented by the MSE performance value, was
0.041019. A gradient of 53.7 indicated substantial ongoing
learning. The mu value, a Levenberg-Marquardt algorithm
parameter governing the weight adjustments, was 0.0001.
Six validation checks were conducted to monitor potential
overfitting. The training window presented various analytical
plots, including the Performance, Training State, Error His-
togram, and Regression, providing comprehensive insights
into the network’s training progress and performance. The
displayed metrics in the training window indicated active
learning and improvement in the CFNN training process.
The training performance of the CFNN is shown in Fig. 9,
with the number of epochs represented on the horizontal axis
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Fig. 8. Training Window showing the training performance of CFNN

Fig. 9. Training performance of CFNN for Train, Test, and Validation data
sets

and the logarithmic scale of Mean Squared Error (MSE)
on the vertical axis. The training, test, and validation data
sets are denoted by blue, red, and green lines, respectively.
The most favorable validation performance, attained at epoch
370 with a MSE of 0.0420 for training and 0.087 for
testing and validation, is demarcated by a green circle. The
graph exhibits a reduction in MSE over time, signifying
the model’s learning progression. The simultaneous decline
in both training and validation losses suggests the model’s
capacity to generalize effectively without overfitting. The

green line represents the optimal validation performance,
while the black dashed line delineates the desired objective.
The proximity of the green circle to this line indicates
the model’s close approximation to the target performance.
This visualization provides a comprehensive overview of the
training process, highlighting the significant milestone of
optimal validation performance at epoch 376.

Fig. 10. Gradient variation while training of CFNN

The gradient graph of a CFNN during training is depicted
in Fig. 10. The x-axis represents the number of epochs,
while the y-axis shows the error gradient on a logarithmic
scale. The gradient initiates at a high value and rapidly
decreases as the number of epochs increases. At epoch
376, the gradient attains approximately 0.0059687. This
substantial decrease over time indicates effective learning
and parameter adjustment. The steep initial decline signifies
significant early weight updates. As training progresses,
the diminishing gradient suggests the model is approaching
convergence. The flattening of the curve in later epochs
implies minimal changes in gradient from additional weight
adjustments. The smooth decline in gradient, without notable
fluctuations, indicates stable learning and the absence of
instability or learning-rate issues. The decreasing gradient
demonstrates effective learning and convergence towards a
minimum, while consistent gradient values suggest a well-
calibrated and smoothly progressing training process.

Fig. 11. Validation while training of CFNN

The validation check graph of the CFNN during training
is presented in Fig. 11. The horizontal axis depicts epochs
ranging from approximately 0 to 400, while the vertical
axis represents successful validations from 0 to 6. The blue
dots were predominantly concentrated in the lower portion
of the graph. At approximately epoch 376, red diamond
shapes emerged, indicating an increase in successful val-
idation. Throughout the majority of the training process,
the validation checks remained low, with a notable increase
occurring around epoch 376, where six validations were
recorded. This spike at epoch 376 suggests that the model
may exhibit overfitting to the training data, demonstrating
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high performance on the training data but poor performance
on the validation data, thus potentially compromising gener-
alization. The increased validation checks indicate the neces-
sity for training adjustments such as early stopping, regular-
ization techniques, or learning rate modifications to mitigate
overfitting. The successful validations at epoch 376 signify
potential overfitting, suggesting suboptimal performance on
the unseen data. Modifications to the training process may
be required to enhance the generalization capability of the
model.

Fig. 12. Validation while training of CFNN

The Fig. 12 presents an error-distribution histogram for
a CFNN during the training phase. The horizontal axis
represents the error ranges divided into 20 bins, whereas the
vertical axis indicates the frequency of instances per bin. Two
prominent peaks were observed: one near zero error on the
leftmost extremity and another at approximately 0.0738 error
on the rightmost extremity. A ”Zero Error” label is positioned
adjacent to the leftmost bin. The leftmost peak suggests
numerous instances with errors approaching zero, indicating
high prediction accuracy for a substantial number of cases.
The rightmost peak implies several instances with errors
of approximately 0.0738, potentially highlighting outliers or
areas of reduced model accuracy. The high frequency of
near-zero error instances reflects robust overall model per-
formance. However, the presence of higher errors indicates
specific cases with less precise predictions, which neces-
sitates further investigation and model refinement. Strate-
gies such as outlier identification, data augmentation, and
hyperparameter optimization, can address these errors. The
examination of high-error instances may reveal patterns or
features that present challenges for the model. In conclusion,
the prevalence of near-zero errors demonstrated satisfactory
overall performance, whereas higher errors identified areas
for potential improvement.

In Fig. 13 presents four regression plots illustrating the re-
ceiver operating characteristics (ROC) of a CFNN during its
training phase. These plots encompass the training, testing,
validation, and overall stages, with the x -axis representing
the false-positive rate and the y -axis showing the true-
positive rate. The curves in all four plots exhibit remark-
able similarity, forming a linear trajectory from the lower
left corner to the upper right corner. This diagonal pattern

Fig. 13. Validation while training of CFNN

suggests that the capacity of model to identify positives is
directly proportional to its false-positive rate across all data
sets, performing at a level equivalent to random chance. An
optimal ROC curve would demonstrate a convex arc towards
the upper left corner, indicating a higher true positive rate
coupled with a low false-positive rate. The consistency of
the ROC curves across all data splits implies uniform perfor-
mance; however, the diagonal nature of these lines reveals the
model’s inability to effectively discriminate between positive
and negative classes. This observation indicates potential
issues with the data or model structure, such as insufficient
training data, suboptimal feature selection, or inappropriate
model architecture. These graphs underscore the failure of
the model to differentiate between classes, necessitating a
thorough examination of the data preprocessing methods,
feature selection techniques, and model architecture to en-
hance its performance.

Fig. 14. PSNR plot for Reconstructed Image at SNR = [1,3,7,9]dB

The Fig. 14 depicts PSNR against SNR (dB) for various
coding and modulation schemes. As SNR increases from
0 to 10 dB, all lines exhibit an upward trend, indicating
PSNR enhancement with higher SNR, as expected due to
improved signal quality. PSNR values for QC-LDPC SPA
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and QC-LDPC CFNN start near 10 dB at 0 dB SNR, reaching
approximately 38 dB at 10 dB SNR, suggesting comparable
performance. Conversely, PSNR MN-LDPC CFNN starts
notably lower and consistently remains below others, ending
near 22 dB at 10 dB SNR, implying inferior performance.
Based solely on this graph, QC-LDPC schemes outperform
MN-LDPC schemes in terms of PSNR within the given
SNR range. The graph facilitates a clear comparison of
different schemes, indicating that QC-LDPC schemes gen-
erally outperform MN-LDPC ones. The lower performance
of MN-LDPC schemes may signify their limitations, es-
pecially at lower SNRs, prompting further research. The
superior performance of the neural network-based scheme
(QC-LDPC CFNN) underscores the potential of machine
learning techniques in signal processing tasks, encouraging
further exploration in this field.

Fig. 15. SNR Vs Entropy Plot Reconstructed Image at SNR = [1,3,7,9]dB

The Fig. 15 illustrates entropy values plotted against SNR
in decibels (dB) for various entropy calculations applied to
both original and reconstructed images. The entropy of the
original image remains relatively constant across different
SNR levels, suggesting that its inherent complexity or ran-
domness does not vary with noise levels. Conversely, for the
reconstructed images, entropy generally decreases as SNR
increases, indicating that higher signal quality corresponds
to lower complexity or randomness. This implies that as
SNR improves, reconstructed images more closely resem-
ble the original image. Specifically, the QC-LDPC MSPA
and QC-LDPC CFNN schemes exhibit similar performance,
with their entropy values closely aligned across the SNR
range, suggesting comparable entropy reduction. Similarly,
the MN-LDPC MP-SPA and MN-LDPC CFNN schemes
perform similarly but consistently yield higher entropy values
compared to QC-LDPC schemes. This suggests potential
differences in effectiveness at entropy reduction, indicating
that these schemes may be less adept at reconstructing the
original image from noisy data. The insights from this plot
shed light on the performance variation among different
image reconstruction schemes. It underscores the significant
influence of scheme selection on reconstructed image entropy
and consequently, on reconstruction quality. However, it’s
crucial to acknowledge that entropy serves as just one metric
of image quality, and other factors may also hold importance
depending on the specific application.

VI. CONCLUSION

This study demonstrates the significant potential of a
CFNN as a non-iterative decoder for QC-LDPC code. The

CFNN decoder not only addresses the limitations of tra-
ditional decoders, such as computational complexity, error
floors, and latency, but also achieves superior BER per-
formance. With a notable improvement in BER at various
SNR levels, the CFNN decoder proves to be a highly
effective alternative, enhancing decoding accuracy and relia-
bility in communication systems. The successful implemen-
tation of a CFNN as a non-iterative decoder for QC-LDPC
code demonstrates the potential of neural-network-based
approaches to address the limitations inherent in traditional
decoders. The enhanced BER performance achieved by the
CFNN decoder, particularly at lower SNR, indicates that
this approach can significantly improve the reliability and
efficiency of data transmission across various communication
systems. The non-iterative nature of the CFNN decoder may
result in reduced computational complexity and latency in
the decoding processes, potentially facilitating more rapid
and efficient communication in real-time applications. The
superior performance of the CFNN decoder in terms of
BER and other qualitative and statistical measures suggests
that this approach could be particularly advantageous in
applications requiring high accuracy and reliability, such
as satellite communication or data storage systems. The
success of this neural-network-based decoder establishes new
research directions for applying machine learning techniques
to error correction coding, potentially catalyzing further
advancements in coding theory and practice. The improved
decoding performance across various SNR levels suggests
that CFNN decoders can extend the effective range and
capacity of communication systems, potentially enabling a
more robust communication in challenging environments or
over extended distances.
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