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Abstract—Water resources are fundamental to human ex-
istence. Precise detection of surface floating objects is the
primary prerequisite for environmental protection drones to
conduct river cleaning operations. Aiming at the current target
detection algorithm’s poor adaptability to small targets on
the water surface under complex scenes and low feature
recognition ability, this paper proposes a water surface floating
object detection algorithm USV-YOLO, which realizes the
accurate recognition and detection of floating objects under
the complex conditions of inland rivers. Initially, a novel C2f-
float module is devised. It optimizes the utilization of feature
information and boosts the accuracy of detecting floating
objects by sequentially fusing and concatenating the feature
information emitted from the bottleneck layer; Secondly, the
design introduces the GS-EVC module, which improves the
utilization of raw feature information of surface floaters by
incorporating the GSConv and shuffle operations, strengthens
the dependencies between remote feature information, and
enhances the feature recognition capability; Ultimately, the
standard convolution in the backbone network is substituted
with an all - dimensional dynamic ODConv. The weighted
attention mechanism within it can accommodate the feature
extraction of intricate targets, thereby further enhancing the
network’s detection precision. Experiments are conducted on
open-source datasets, FloatingWaste-I and FloW-IMG, and the
experimental results show that the USV-YOLO algorithm in this
paper improves the average detection accuracies, mAP50 and
mAP50−95, by 4.3% and 6.1%, respectively, compared with the
original network, which is both better than the other classical
target detection algorithms.

Index Terms—Floating Object Detection, YOLOv8, C2f-float,
GS-EVC, ODConv.

I. INTRODUCTION

Water resources are the basis for maintaining the natural

ecological balance. In recent times, concurrent with the swift

progress of industrialization and urban expansion, population
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growth, and changes in consumption patterns, the amount

of floating debris in river water bodies has continued to

increase, and this floating garbage not only poses a danger

to the ecosystem but also has a significant impact on human

activities. At present, river floating debris pollution has

become a widespread and increasingly serious environmental

problem worldwide.

To protect the ecological environment, it is essential to

regularly remove floating debris from the surfaces of rivers

and lakes. As scientific and technological progress marches

on, artificial intelligence is increasingly reaching maturity

in a wide range of domains. Unmanned vehicles, drones,

and other autonomous equipment have entered the publics

awareness, leading to the emergence of unmanned cleaning

boats. These unmanned boats can replace human labor in

performing more hazardous and challenging tasks related

to floating debris cleanup. Before an unmanned boat can

begin cleaning floating objects, target detection technology

is first employed to accurately detect and localize the debris.

Research into unmanned boat-based floating object detection

technology can promote the application of autonomous ves-

sels in watershed management, further advancing the intel-

ligence and automation of such systems. Therefore, efficient

and precise floating object detection on water surfaces holds

significant theoretical and practical value for both research

and engineering applications.

Currently, Algorithms for detecting objects floating on

water surfaces can mainly be divided into two types: conven-

tional machine learning techniques and those leveraging deep

learning. In traditional machine learning-based detection,

pre-processed floating object images are typically feature-

extracted based on texture, color, and area. Subsequently,

classification algorithms, such as SVM and BP Neural Net-

works, are employed to classify and identify the floating ob-

jects. For example, Kataka et al. [1] used the CIELUV color

space to distinguish the sea body from the floating pixels,

and this method demonstrated superior performance in the

detection of plastic pixels, but it can only be systematically

detected for large sea areas, and it cannot be applied to the

detection of floating objects in inland waterways. Alid et al.

[2] set a threshold value based on the difference between

the pixel brightness of the floating wood chips and the water

surface as well as the generation time probability map of

their motion characteristics, and used this value to segment

the water surface from the wood chips, but due to the single

color and feature of the wood chips, the method is limited

and cannot accurately detect the complex kinds of water

surface floaters. In addition to this, Jin et al. [3] introduced

an automated IGASM segmentation technique for water sur-
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face debris, utilizing the Gaussian Mixture Model (GMM).

This method projects GMM outcomes into the HSV color

space and employs a light-shadow discriminant function to

identify highlights and shadows, thereby effectively isolating

the water surface debris. However, the method is prone to

fail when there are highlights or a lot of shadows on the

water surface due to too strong or too dark light. It can

be seen that it is difficult to detect floating objects on the

water surface of inland waterways, and the traditional target

detection methods generally suffer from low accuracy and

low efficiency, which cannot meet the requirements of the

detection task.

As artificial intelligence continues to evolve, deep learning

- based target detection algorithms offer novel technologi-

cal assistance for detecting floating objects. Following the

successive proposal of convolutional neural network CNN

and RCNN [4], [5], the three mainstream algorithms of deep

learning-based target detection, Faster R-CNN [6], YOLO,

and SSD [7], have been widely used by scholars at home

and abroad in various visual detection tasks. Take Chen

et al. [8] as an example, they put forward an enhanced

SSD algorithm to tackle the detection of floating objects

on water surfaces, aiming to mitigate the interference from

the complex aquatic surroundings, although some parameter

decreases have been realized, the method is still not able to

meet the real-time detection requirements due to the large

parameters of the original network base. Similarly Li et al.

[9] used MobileNetV3 [10] instead of the backbone network

in SSD in order to reduce the computational cost of the

float detection model, which improved the detection speed of

the hardware, but it could not satisfy the detection of water

surface floats under complex light.Yi et al. [11] proposed

a floating object detection and localization algorithm based

on Faster R-CNN, which can reduce the localization error

without affecting the recognition accuracy, but the network

still suffers from a large number of parameters and slow

computation speed. Chen et al. [12] utilized the improved

YOLOv5 model to detect small water surface floaters in UAV

images in real-time, which can well address the missed small

target images, but it cannot be adapted to floaters detection in

complex water surface environments under unmanned boat

view. To better embed the floater network into hardware

devices, the YOLOv5 model is improved and pruned in the

method in literature [13], [14], which solves the problem

of difficult hardware deployment.Along with the gradual

maturity of the YOLO series in the past two years, many

scholars have adopted the YOLOv8 with better performance

to research water surface floating object detection tasks.

For example, Zhang et al. [15] proposed a surface small

target detection algorithm YOLOv8-WSSOD that improves

YOLOv8, which can effectively realize the accurate detection

of small targets on the surface of the water, but it is

targeted at all targets on the surface of the water such

as boats and animals, and cannot be accurately applied to

the floating garbage cleaning task. Similarly, literature [16],

[17] has also optimized and improved the model parameters

of YOLOv8 by considering the problems of small target

detection and network lightweight, respectively. In addition

to this, to promote the related research on water surface

floating debris detection, Cheng et al. [18] from Tsinghua

University proposed the first inland water segmentation and

water surface floating debris detection dataset and used the

classical target detection algorithms to conduct comparative

experiments.

Contrasted with conventional machine learning approach-

es, deep learning’s convolutional neural networks (CNNs)

boast a more outstanding ability to extract features, typi-

cally surpassing most traditional methods. For instance, in

detecting floating objects on the water’s surface, where the

surface is subject to instability due to variations in pixel

patterns caused by lighting, weather, and other environmental

factors, deep learning models are more adaptable to these

changes and demonstrate enhanced robustness. However,

most floating objects on the water’s surface are complex

targets with irregular shapes and sizes. Additionally, the

strong mobility of the water’s surface causes target overlap,

making detection more challenging. As a result, detecting

floating objects in the complex environment of an inner

river channel demands high detection accuracy. Regrettably,

existing deep learning-driven methods for identifying floating

objects on water surfaces usually show weak adaptability in

detecting small targets and have restricted feature recognition

abilities.

Therefore, in this paper, we design a water surface floating

object detection algorithm USV-YOLO for the problems of

poor adaptation of small target feature information and low

detection accuracy in some water surface floating object de-

tection algorithms, and its main contributions are as follows:

1) A novel C2f-float module has been developed to op-

timize the use of information across the network’s

feature layers and boost the network’s overall feature

extraction capacity.

2) A small-target vision center GS-EVC module is de-

signed, which strengthens the dependency between

target remote pixels by introducing GSConv [19] as

well as the shuffle [20] operation, enabling the net-

work to extract the floating object feature information

completely, and significantly improving the detection

accuracy of the overall network.

3) Replacing the standard convolution in the original

backbone network with the full-dimensional dynamic

ODConv [21] enhances the adaptability to the complex

feature information of small target floats and greatly

reduces the probability of target miss-detection and

misdetection by using different attention mechanisms

for weighting in each dimension.

II. RELATED WORK

In this part, we delve into the architecture and underlying

mechanisms of the YOLOv8 object detection network model,

as well as the visual display center EVC [22] module,

GSConv, and the full-dimensional dynamic ODConv are

introduced.

A. YOLOv8

In 2023, Ultralytics proposed a new version of YOLOv8

based on the high efficiency and real-time performance of the

previous generations of YOLO series models. Compared with

the previous versions, YOLOv8 has been further enhanced

and improved in terms of backbone network extraction and

feature fusion and possesses stronger multi-scale feature
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fusion capability. Therefore, YOLOv8 can significantly im-

prove the performance of target detection and image segmen-

tation tasks while ensuring high efficiency and applying it to

more complex water environment scenarios. The YOLOv8

network structure is shown in Fig. 1.

As depicted in the illustration, the YOLOv8 network

framework is composed of four key elements: the input layer,

the backbone structure, the neck section, and the detection

head component. The backbone utilizes the C2f (Cross-Stage

Partial Fusion) module, which enhances gradient flow, to

improve the model’s ability to detect floating objects at

various scales. By leveraging the combined capabilities of the

convolutional layer, the C2f module, and the SPPF module,

the model achieves efficient feature extraction and effective

multi-scale feature fusion.

B. EVC

The EVC module is used in the CFPNet proposed by Quan

et al. Its structure is shown in Fig. 2.

The visual display center EVC is mainly composed of two

modules, LVC and MLP [23], which are used to capture

global remote information and local corner information,

respectively, and finally, the results of the floater features

extracted by the two modules are spliced together along the

channel dimensions for output, and the output is shown by

the representation of equation 1:

X = cat (LV C (Xin) ;MLP (Xin)) (1)

LVC is a dictionary-containing encoder, in LVC, the features

Xin output through the Stem module is first encoded through

a convolutional layer, after which the input codebook is

made to map positional information to each other through

the scaling factor S, and then fused using ϕ and fed into the

fully-connected layer and a convolutional layer of 1 × 1 to

predict the key feature information, which is then sequen-

tially multiplied and summed by the input features Xin in

channels. The output LV C (Xin) is shown in equation 2,

where δ is the scale factor and e is the fused codebook output.

LV C (Xin) = Xin ⊕ {Xin ⊗ (δ (Conv1×1 (e)))} (2)

After entering the lightweight MLP module, the input

feature Xin needs to pass through two residual modules,

and the two residual structures consist of depth-separable

convolution and channel MLP, respectively. When entering

each residual structure, it first needs to be normalized, and

then after passing through the depth separable convolution or

the channel MLP module, it sequentially performs the chan-

nel scaling and regularization operation, which is designed

to improve the generalization ability of the floater detection

model, and finally outputs the result of the serial connection

of the two residual structures, whose output MLP (Xin) is

shown in equation 4. where X0 is the output of the first

residual structure, as shown in equation 3.

X0 = DConv (GN (Xin)) +Xin (3)

MLP (Xin) = CMLP (GN (X0)) +X0 (4)

C. GSConv

GSconv, proposed by HU et al, is a hybrid convolution that

incorporates SC (the channel-dense convolution operations),

DSC [24] (Depth separable convolution), and Shuffle, and

its structure is shown in Fig. 3. In GSConv, for the feature

layer after channel scaling and dense convolution, depth

separable convolution is used again, and the two outputs

are shuffled after completing the splicing in the channel

dimension, so that the float feature information generated

by SC can be completely fused to the output information of

DSC, and the two can exchange the local feature information

of the small target float uniformly, and the SC and DSC

The combination of SC and DSC avoids taking up more

computational resources while improving the accuracy of the

model.

D. ODConv

The full-dimensional dynamic convolution (ODConv) pro-

posed by Li et al. extends the conventional dynamic convolu-

tion by incorporating three additional dynamic dimensions.

The enhanced ODConv notably boosts its feature learning

capacity through the incorporation of an innovative multi-

dimensional attention mechanism and a parallel approach. As

a result, it becomes more sensitive to the feature information

of small target floaters, particularly in corner regions. Its

structure is shown in Fig. 4.

For ODConv, it allocates distinct attention weights to

the convolution kernel Wi across the spatial dimension,

input channel dimension, output channel dimension, and

the dimension of the convolution kernel itself, respectively,

and gradually multiplies these four types of attention by

the convolution kernel Wi in the corresponding dimensions

according to the corresponding order, which can capture

the feature information of the small targets in the corner

area more efficiently due to the complementary effect of

these four attention scalars. The above process is shown in

Equation 5, where αsi, αci, αfi, and αwi are the four atten-

tion scalars in spatial dimension, input channel dimension,

output channel dimension, and convolution kernel dimension,

respectively.

Fig. 4. Schematic diagram of the overall structure of ODConv. (a)
multiplication operation of spatial dimension attention with convolution k-
ernel; (b) multiplication operation of input channel dimension attention with
convolution kernel; (c) multiplication operation of output channel dimension
attention with convolution kernel; and (d) multiplication operation of kernel
dimensions in convolution kernel space.
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Fig. 1. YOLOv8 network structure.

y=(αw1 ·αf1 ·αc1 ·αs1 ·W1+···+αwn ·αfn ·αcn ·αsn ·Wn)∗x
(5)

III. ALGORITHM DESIGN

In the task of detecting water surface floating objects

for unmanned vessels, the presence of significant noise

disturbances in the complex water surface environment can

disrupt pixel dependencies, leading to a reduced ability of

the model to accurately recognize floating objects. Among

various deep learning-based object detection methods, most

models struggle to overcome the interference caused by

the complex water surface environment and are often in-

effective at detecting floating objects with irregular shapes

and sizes. To address these challenges and improve the

Fig. 2. EVC Module Structure.

Fig. 3. GSConv structure.
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feature extraction capabilities of the network, this paper

proposes a novel C2f-float module. This module supplants

the initial C2f module within the backbone network, thereby

improving the extraction of intricate and edge features,

especially for diminutive floating objects. Concurrently, the

standard convolution in the backbone network is substituted

with an all - dimensional dynamic ODConv. This ODConv

is more attuned to the extracted target information and

provides more refined feature extraction. Additionally, to

better capture long-range dependencies between features and

improve the detection of surface floaters with incomplete

feature information in corner areas, we propose a novel GS-

EVC module. The module is capable of identifying potential

information leakage after the initial feature extraction phase.

A. Design of the C2f-Float module

When using the C2f module of the original network to

extract features of floating objects, issues such as high light

intensity and surface reflections can lead to problems like

small target leakage and misdetection. Additionally, because

the C2f module in the original network employs a bottleneck

structure for information extraction, it tends to overlook the

pixel feature information of floating objects in the corners

of the water surface. To enhance the precision of detecting

small target pixels, this paper’s algorithm introduces a novel

C2f-float module, with a comparative structural diagram

presented in Fig. 5. C2f-float module on the original C2f

module to reconstruct the design will be convolved after the

input feature layer is divided into four channels, the number

of each channel is half of the number of output channels,

after that, respectively, using 0, 1, 2, 3 bottleneck, from the

first two layers to fusion, and finally the fusion of the three

feature results and the output of the first channel for the

channel dimensionality of the splicing. Finally the output

after completing the convolution, the output result xout can

be formulated as 6, where A is the output of all channels as

shown in equation 7.

xout = Conv1×1(cat (A)) (6)

A = (x1;x1 ⊕ x2; (x1 ⊕ x2)⊕ x3; [(x1 ⊕ x2)⊕ x3]⊕ x4)
(7)

xn denotes the output of each channel after n−1 bottleneck

layers, as shown in equation 8. Where xin is the module

input and b (xin) is the output after one bottleneck layer,

Each bottleneck contains two 3×3 convolutions. the process

is shown in equation 9:

xn = b(n−1) (xin) (8)

b (xin) = Conv3×3

(

Conv3×3(
Conv1×1(xin)

2
)

)

(9)

B. Design of backbone

When ordinary convolution is used for float feature infor-

mation extraction in the backbone network of the original

YOLOV8, it is easy to filter some of the key feature

information due to the complex environment in which the

float exists and the roughness of the feature area. Upon

substituting the original C2f module with the new C2f-float

module, to further bolster the backbone network’s feature ex-

traction prowess, this paper incorporates dynamic ODConv. It

performs weighting from four dimensions respectively, and

multiplies with the corresponding convolution kernels one

by one. Its structure is shown in Fig. 6. Where (a) is the

structure diagram of the original backbone network using

standard convolution and the original C2f module, and (b)

is the structure diagram of the improved backbone network,

in this paper, while replacing the C2f module with the new

C2f-float module, the standard convolution is replaced by

ODConv.

Fig. 6. Comparison diagram of backbone network structure. (a) Diagram
of the original backbone network structure; (b) Diagram of the improved
backbone network structure, where we made the corresponding block
substitutions.

When applied to the backbone network for water surface

float detection, ODConv demonstrates superior adaptability

in extracting feature information from floats of various sizes

and shapes. The full-dimensional dynamic convolution sig-

nificantly enhances the feature extraction capability for water

surface floats with only a minimal increase in parameters.

Therefore, in water surface float detection, dynamic convo-

lution offers notable advantages over traditional convolution.

C. Design of the GS-EVC Module

As floating objects are mostly irregular in size and shape,

and the image features of some water surface floating objects

scattered in the image corner area are not obvious, the

problem of missed detection will occur. To detect all the

floating objects present in the water surface environment

completely, and at the same time, to be able to better adapt to

the detection needs of small target floating objects, this paper

designs a new GS-EVC (Explicit Visual Center) module and

introduces it into the improved network. Its structure before

and after improvement is shown in Fig. 7. Where (a) is the

structure diagram of the original EVC module and (b) is the

structure diagram of the improved GSConv. In this paper,

GSConv is used to replace DWConv in the original EVC,

while the shuffle operation is added after the original EVC

splicing operation.
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Fig. 5. Comparison diagrams of C2f module structures. (a) Structure of the original C2f module; (b) Structure of the improved C2f-float module.

Fig. 7. Comparison diagram of EVC module structure. (a) Structure of the
original EVC module; (b) Structure of our GS-EVC.

With almost no increase in computation, DWConv in the

original EVC module is replaced by the better-performance

GSConv. Compared with DWConv, GSConv can exchange

and fuse the feature information of small target floats more

uniformly, avoiding the loss of detailed feature information,

and thus recovering the accuracy lost in DWConv for the

sake of speed improvement. Besides, in GS-EVC, after the

lightweight MLP and LVC complete the feature splicing on

the channel, this paper adds the Shuffle operation to enhance

the mixing and redistribution of feature information, enrich

the feature expression, and avoid the problem of insufficient

and unbalanced feature information fusion. The improved

GS-EVC can be better adapted to the detection of small

targets in the complex water surface environment compared

with the original EVC module.

D. Overall algorithm structure

When using YOLOv8 for surface floating object detection

in complex water environments, the complexity of the surface

environment and floating objects often leads to insufficient

feature information extraction and low feature recognition

ability of the network for small target floating objects.

Aiming at such problems, we designed a new surface float-

ing object detection algorithm USV-YOLO based on the

YOLOv8 network, and the overall network structure is shown

in Fig. 8.

In the overall network design, for the input images of

water surface floaters, the primary feature information of

the network is firstly extracted using the ODConv and C2f-

float modules, the four-dimensional dynamically weighted

attention mechanism in ODConv is more adaptive to the

target, and the pyramid structure in C2f-float enhances the

utilization rate of the output feature layer of each bot-

tleneck. The integration of ODConv and C2f-float in the

backbone enhances the overall feature extraction capacity of

the backbone network. In the neck section, alongside the C2f-

float module, the GS-EVC module is incorporated to further

elevate the detection precision for small floating objects.

The GSConv and shuffle operations in the GS-EVC module

help capture long-range dependencies between floater pixels,

while also improving the diversity of feature representations.

This alleviates the issue of low feature utilization caused by

insufficient fusion of feature layers, which often leads to the

loss of original feature information. Finally, the feature layers

output from the neck, which contain complete information

about the water surface floaters, are passed to the detection

head to produce the final floater detection results.
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Fig. 8. USV-YOLO network overall structure diagram

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental dataset

Fig. 9. Example datasets. (a) Example Flow-IMG dataset; (b) Example
Floating Waste-I dataset.

In this paper, the methods used are trained and evalu-

ated using the publicly available datasets FloW-IMG and

FloatingWaste-I. Both FloW-IMG [25] and FloatingWaste-

I [26] are datasets for water surface floating debris detection

from the viewpoint of an unmanned boat in an inland

waterway scenario, as shown in Fig. 9.

Among them, FloW-IMG is released by Ouka Smart

Hublot in 2021, which contains 2,000 images of floating

waste, the presence of the scene is mostly a sunny day

with sufficient lighting conditions, and the number of targets

contained in a frame ranges from 1 to 17, and most of them

are small targets (which occupy less than 32 × 32 pixels);

FloatingWaste-I contains 1867 images of floating objects,

and this dataset contains more water scenes in complex

lighting, including sunny, cloudy, rainy, and nighttime. The

final dataset we use contains a total of 3800 float images from

FloW-IMG and FloatingWaste-I, which are uniformly labeled

into a float category. To fulfill the experimental requirements,

in this paper, the 3800 datasets are divided into training,

validation, and test sets in the ratio of 6:2:2.

B. Experimental environment and parameter settings

The experimental platform environment as well as the

hyperparameter settings in this paper are shown in Table I:

TABLE I
EXPERIMENTAL PLATFORM ENVIRONMENT AND HYPERPARAMETER

SETTINGS

Designation Versions/parameters

Experimental environment

Operating System Windows 11

GPU NVIDIA RTX3060

CPU i5-12490F

RAM 16G

framework Pytorch

CUDA version 11.4

Python 3.9.0

Batch size 16

Epoch 1000

C. Evaluation indicators

In this paper, we mainly use the common metrics in target

detection models: mean accuracy (mAP), recall, detection

precision, and model computation (GFLOPs) to evaluate the

models. mAP is used to evaluate the detection accuracy of

the model, and its calculation process is shown in Eq. 10,
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where N is the number of detection categories, and APi

denotes the area enclosed under the PR-curve consisting of

the precision rate P as the horizontal axis and the recall rate

R as the vertical axis. mAP50 and mAP50−95 represent the

average accuracies when the threshold IoU is set to 0.5 and

0.5-0.95, respectively.

mAP =

∑N

i=1 APi

N
(10)

The recall indicates the proportion of actual positive

samples that are correctly identified as positive, and the

calculation process is as shown in Equation 11. Precision

reflects the ratio of correctly identified positive instances

to the total number of predicted positive instances, and the

calculation process is as shown in Equation 12.

R =
TP

TP + FN
(11)

P =
TP

TP + FP
(12)

where TP denotes the number of correctly detected floats,

FN denotes the actual number of unpredicted floats, and FP

denotes the number of incorrectly detected floats.

D. Analysis of experimental results

1) Feasibility experiment results and analysis: To ver-

ify the effectiveness of our water surface floating objec-

t detection algorithm, we conducted feasibility validation

experiments. Both the original YOLOv8 network and its

enhanced version were successively evaluated on this paper’s

dataset to verify the algorithm’s effectiveness and assess

its practicality. The evaluation metrics used to analyze the

experimental results are mean accuracy (mAP), detection

accuracy (precision), and recall, respectively.

As can be seen from Table II, the average precision and

detection accuracy are significantly improved after adding

the improved C2f-float module and GS-EVC module to

the original network, respectively. After adding them to

the original network at the same time, their mAP50 and

mAP50−95 are improved by 3.5% and 4.3%, respectively.

The detection accuracy is improved by 1.6%. After adding

ODConv to the backbone network, it can further improve

the detection accuracy by a small margin on the previous

basis. As obtained from Table II, the algorithm in this paper

significantly improves the average precision, detection accu-

racy, and recall compared with the original network, with the

average precision mAP50 and mAP50−95 improved by 4.3%

and 6.1%, respectively, and the detection accuracy as well as

recall improved by 2.1% and 5.9%, respectively, compared

with the original network. The experiment demonstrates that

the algorithm presented in this paper holds certain merits for

the water surface floating object detection network.

The visualization of the results of water surface float

detection by the original YOLOv8 network and our USV-

YOLO network is shown in Fig. 10. Comparing (a), (b), (c),

and (d), our algorithm can detect small-target water surface

floaters missed by the original network, and it can be seen

that our algorithm extracts feature information of small-target

floaters with inconspicuous features in the corner area more

abundantly, and detects them better.

To verify the robustness of our algorithm, we use images

of floating objects on the water surface taken under different

illumination levels for verification, including cloudy days,

dusk, evening, sunny days, etc. The verification results are

shown in Fig. 11. Our algorithm maintains strong robustness

in complex scenarios and is capable of fully detecting

floating objects on water surfaces.

Fig. 11. Plot of experimental results under different light

2) Comparative experimental results and analysis: To

further validate the performance of the algorithm, we conduct

comparative experiments using the dataset of this paper with

other classical target detection networks under the same ex-

perimental environment and analyze the experimental results

comparatively. The results of the comparison experiments

are shown in Table III. The comparison metrics are mean

accuracy (mAP), detection accuracy (precision), and model

computation (GFLOPs) when the threshold IoU is 0.5 and

0.5-0.95, respectively.

TABLE III
COMPARISON OF EXPERIMENTAL RESULTS

Network mAP50(%) precision(%) GFLOPs

YOLOv5s 81.0 80.0 16.0

YOLOv5m 82.1 83.4 40.5

SSD 70.2 78.7 273.7

Faster R-CNN 73.5 83.9 947

YOLOv7-tiny [27] 77.6 84.5 13.0

YOLOv8n 82.9 88.0 8.1

USV-YOLO(our) 87.2 90.1 34.5

Through Table III, it can be seen that the average accuracy

of mAP50 and mAP50−95 of our algorithm reaches 87.2%

and 56.8%, respectively, and the detection accuracy reaches

90.1%, which is improved by 4.3%, 6.1%, and 2.1%, re-

spectively, compared with the original YOLOv8. Contrasted

with prevailing target detection networks, our water surface

floating object detection algorithm has notable advantages.

It meets the detection needs of unmanned boats in inland

waterways, largely due to its enhanced network performance.

V. CONCLUSION

This paper introduces a surface-floating object detection

network, USV-YOLO, built upon YOLOv8, aiming to re-

solve the problems of missed and incorrect detections when

IAENG International Journal of Computer Science

Volume 52, Issue 3, March 2025, Pages 579-588

 
______________________________________________________________________________________ 



TABLE II
COMPARISON OF FEASIBILITY EXPERIMENT RESULTS

Model mAP50(%) mAP50−95(%) precision(%) recall(%)

YOLOv8 82.9 50.7 88.0 68.9

YOLOv8+C2f-float 84.5 54.5 89.3 68.5

YOLOv8+EVC 83.5 52.8 88.3 69.2

YOLOv8+GS-EVC 84.9 53.7 87.8 70.1

YOLOv8+C2f-float +GS-EVC 86.4 55.0 89.6 73.2

YOLOv8+ ODConv +C2f-float +GS-EVC(our) 87.2 56.8 90.1 74.8

Fig. 10. Comparison chart of network visualization effect

identifying small floating targets on water surfaces in the

intricate setting of inland waterways. First, we introduce a

new C2f-float module that enhances feature utilization by

fusing and concatenating the bottleneck layer across each

channel sequentially. Additionally, we design a GS-EVC

module that strengthens the dependency relationship among

small target features and ensures that corner area information

is emphasized during global feature extraction. Finally, we

replace the standard convolution in the backbone network

with a full-dimensional dynamic ODConv, which offers

better adaptability for small target features. This alteration

further boosts the feature extraction capacity and elevates the

network’s overall performance. The experimental outcomes

show that our algorithm surpasses the original network and

other object detection models in detection accuracy. How-

ever, the algorithm still has some limitations, particularly in

detecting certain rare and complex types of floating objects in

specialized environments, such as lakes or rivers. Therefore,

in subsequent research, we intend to enhance the model’s

capabilities further to tackle these issues.
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