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Bipolar Fuzzy (m,n)-Ideals and n-Interior Ideals
of Semigroups

Pannawit Khamrot, Aiyared lampan, Thiti Gaketem

Abstract—Lajos studied the concept of (m,n)-ideals of semi-
groups in 1963. The concepts of bipolar fuzzy semigroups was
presented by Kim et al. in 2011. This paper we introduces
the notion of bipolar fuzzy (m,n)-ideals in semigroups. We
provided basic properties of bipolar fuzzy (m,n)-ideals and
the connection between (m,n)-ideals and bipolar fuzzy (m,n)-
ideals in semigroups. Moreover, we discuss the properties of
bipolar fuzzy n-interior ideals and the connection between n-
interior ideals and bipolar fuzzy n-interior ideals in semigroups.
We also study weakly n-interior ideals and bipolar fuzzy weakly
n-interior ideals.

Index Terms—BF (m,n)-ideals, BF prime (m,n)-ideals, BF
semiprime (m,n)-ideals, BF n-interior ideals.

I. INTRODUCTION

HE CONCEPTS of fuzzy sets was first considered

by L. A. Zadeh in 1965 [1]. The fuzzy set theories
developed by Zadeh and others have found many applications
in mathematics and elsewhere. In 1981, Kuroki [2] discussed
the concept of fuzzy Ssgs and fuzzy generalized bi-ideals
in semigroups. The notion of bipolar valued fuzzy set by
Zhang [3] in 1994 is an extension of fuzzy sets where the
membership degree range is enlarged from the interval [0, 1]
to [—1,0]. In 2000, Lee [4] used the term bipolar valued
fuzzy sets and applied it to algebraic structures. Kim et al.
[5] studied relations of bipolar fuzzy subsemigroups, bipolar
fuzzy left (right) ideals, bipolar fuzzy bi-ideals, and bipolar
(1,2) ideals. He provided some necessary and sufficient
conditions for a bipolar fuzzy Ssg and a bipolar fuzzy left
(right, bi-) ideals of semigroups. Moreover, bipolar fuzzy
has many applications in algebraic structures [6], [7], [8],
[9], [10]. The theory of (m,n)-ideals in semigroups was
studied by Lajos in 1963 [11]. The notion of (m,n)-ideals
of semigroups generalized the idea of one-sided ideals of
semigroups. In 2019 A. Mahboob [12] studied fuzzzy (m,n)-
ideals and proved properties of regular semigroup. Many
authors have examined theory in other structures, see, e.g.,
[13], [14], [15], [16], [17], [18], [19], [21], [20], In 2022,
W. Nakkhasen [22] discussed concept picture fuzzy (m,n)-
ideals of semigroups and investigated some basic properties
of picture fuzzy (m,n)-ideals of semigroups. In the same
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year, T. Gaketem [23] studied the concept of interval valued
fuzzy almost (m,n)-ideals in semigroups. Tiprachot et al.
[24] discussed the notion of m-interior ideals as a gener-
alization of interior ideals and characterized many classes
of ordered semigroups in terms of (m,n)-ideals and n-
interior ideals. In 2023, Tiprachot et al. [25] extend n-interior
ideals and (m,n)-ideals to hybrid in ordered semigroups.
In 2024 T. Gaketem and P. Khamrot [26] studied concepts
interval valued fuzzy (m,n)-ideals in semigroups. Recently
P. Khamrot et al. [27] extend concepts fuzzy (m,n)-ideals
and n-interior ideals in semigroups to ordered semigroups.
In this paper, we study the concept of bipolar fuzzy (m,n)
ideals, minimal bipolar fuzzy (m,n)-ideals, and bipolar
fuzzy prime (semiprime) (m,n)-ideals in semigroups. We
provide the basic properties and relationship between (m, n)-
ideals and bipolar fuzzy (m, n)-ideals in semigroups. Finally,
we discuss the properties of bipolar fuzzy n-interior ideals
and the relationship between n-interior ideals and bipolar
fuzzy n-interior ideals in semigroups. Also, we prove weakly
n-interior ideals and bipolar fuzzy weakly n-interior ideals.

II. PRELIMINARIES

In this section, we introduce certain concepts and findings
that will be beneficial in subsequent sections.

Definition 2.1. Let £ be an semigroup (SG).

(1) A subsemigroup (Ssg) of € is a non-empty set K of £
such that KC? C K.

(2) A left ideal (Lid) of £ is a non-empty set K of £ such
that EK C K.

(3) A right ideal (Rid) of £ is a non-empty set K of € such
that KE C K.

(4) By an ideal (id) of K, we mean a non-empty set of &,
which is both a Lid and a Rid of £.

(5) An interior ideal (In id) of £ is a non-empty set K is an
Ssg of € and EXE C K.

(6) A bi-ideal (Bid) of £ is a non-empty set K ois an Ssg of
& and KEK C K.

An id K of an SG & and m,n are positive integers. We
called (m,n)-ideal ((m, n)-id) of an SG & if K"EK™ C K.
A non-empty subset K of an SG £. We denote the

m—+n

[K](m,n) = U K" nK™EK™ is principal (m,n)-ideal,
r=1

[K](m,0) = U K" N K™E is principal (m, 0)-ideal,
r=1

[K](0,n) = U K" NEK™ is the principal (0, n)-ideal,

r=1
i.e., the smallest (m,n)-ideal, the smallest (m,0)-ideal
and the smallest (0, n)-ideal of £ containing /C, respectively.
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Lemma 2.2. [16] Let £ be an SG and m,n positive integers,
(7] (m,n) the principal (m,n)-id generated by the element 7.
Then

(1) ([7](m.0)"E = 7™mE.

(2) 5([7T](0,n))n =&n".

3) ([Tlon,0)"E(T](0,n)" = 7™ ER™.

For any z; € [0,1], ¢ € J, define

\/zi :=sup{z;} and /\ z; = inf {z;}.
ics €7 ieJ i

We see that for any z,r € [0, 1], we have

zVr=max{z,r} and zAr=min{z,r}.
A fuzzy set of a non-empty set 7 is a function ¥ : T —

0, 1].
| F(])r any two fuzzy sets ¢ and & of a non-empty set 7,
define the symbol as follows:
(1) 9>¢&e9(z) >&(z) forall z€ T,
2)V=ved>fand & >0,
(3) (9 AE)(2) = V(=) A €(z) = min{p(2),€()} for all

zeT,
(4) (9 V(=) = ¥(z) v £(=) = max{p(2),£(2)} for all

zeT.

For the symbol ¥ < £, we mean £ > 9.

Definition 2.3. [4] A bipolar fuzzy set (BF set) ¥ on a non-
empty set £ is an object having the form

0= {(h, 9" (h), 9V (h)) | h € £},
where 9F : € — [0,1] and 9N : € — [-1,0].

Remark 2.4. For the sake of simplicity we shall use the
symbol VU = (£;9F,9N) for the BF set
0 = {(h, 9" (h),9% (h)) | h € £}.

The following is an example of a BF set.

Example 2.5. Let £ = {41,42,43...}. Define ¥* :
[0,1] is a function

9P (h) = 0 l:fh l:S old number
1 if h is even number
and 9N : € — [-1,0] is a function
9N () = -1 zifh z:s old number
0 if h is even number.

Then 9 = (£;9F,9") is a BF set.

For BF sets ¢ = (£;97,9V) and € = (E; &P, ¢N) of &,
defined the relation as follows:
(1) ¥ C ¢ifand only if 97 (2) < €F(2) and 9V (2) > €N (2)
for all z € €&,
(2) ¥ =¢ if and only if ¥ C £ and £ C ¥,

(3) INE =T (2)AEX(2) and IV (2) VEN (2), for all 2 € &,
(4) YUE =T (2)VEX () and 9V (2) AEN(2), forall 2 € £.
For h € &, define Fy, = {(h1,hs) € E X E | h = hiha}.

Define products 97 o0& and 97V o&™ as follows: For h € £

(W7 0 &P)(h) =
{ V' {0P(h)) AEP(ho)} if b= hyhy
(h1,h2)€EF

0 otherwise

and
(N 0 &™) (h) =

{ A {0V (hy) vV EN(hy)} if h = hyhs
(h,l,hg)th
0

if otherwise.

Definition 2.6. [5] A BF set ¥ = (&;9F,9") on an SG &
is called a BF subsemigroup (BF Ssg) on & if it satisfies
the following conditions:

(1) 9P (hr) > 9P (h) AOF(7)
(2) IN(hr) < 9N (h) VIV (r)
for all h,r € &.
The following is an example of a BF Ssg.

Example 2.7. Let £ be an SG defined by the following table:

- |la b ¢ d e
ala a a a a
ala a a a a
cla a ¢ ¢ e
d|la a ¢ d e
el|la a ¢ ¢ e

Define a BF set ¥ = (E;97,9V) on & as follows :

E ]l a b c d e
vP 0.9 0.8 0.5 0.3 0.3
Al -08 -08 —-0.6 —-05 —-0.3

Then ¥ = (£;9F,9V) is a BF Ssg.

Definition 2.8. /5] A BF set ¥ = (£;97,9") on an SG
& is called a BF left ideal (BF Lid) on & if it satisfies the
following conditions:

(1) 07 (hr) = 9 (r)

(2) OV (hr) < 9N (r)

for all h,r € &.

Definition 2.9. [5] A BF set ¥ = (£;9F,9Y) on an SG &
is called a BF right ideal (BF Rid) on & if it satisfies the
following conditions:

(1) 07 (hr) > 9 (h)

(2) 9N (hr) <9V (h)

forall h,r € &.

Definition 2.10. /5] A BF Ssg ¥ = (£;9F,9%) on an SG
& is called a BF bi-ideal (BF Bid) on £ if it satisfies the
following conditions:

(1) 9P (hrk) > 9T (h) AT (k)

(2) IN(hrk) < 9N (h) v ON (k)

for all h,r k € &.

Definition 2.11. [4] Let K be a non-empty set of an

SG &£. A positive characteristic function and a negative
characteristic function are respectively defined by

AR € 5 [0,1], h s AE(R) :{ (1) Z;E
and
AN L E 5 1,00, h o AX(h) ;:{ . Z;E

Remark 2.12. For the sake of simplicity we shall use the
symbol A\ = (E; Mg, \Y) for the BF set
A = {(h AL (h), A (R)) | h € €.

Volume 52, Issue 3, March 2025, Pages 598-605



TAENG International Journal of Computer Science

Lemma 2.13. [5] Let K be a non-empty subset of an SG E.
Then K is a Ssg of € if and only if the characteristic function
Mc = (E;AE,0\Y) is a BF Ssg of €.
III. MAIN RESULTS

In this section, we outline the concept of bipolar fuzzy
(m, n)-ideals and explore their properties within semigroups.
Definition 3.1. A BF Ssg ¥ = (£;97,9V) of an SG € is
called a bipolar fuzzy (m,n)-ideal (BF (m,n)-id) of £ if

(1) 9P (ereq---emkrirg---1,) > 9 (e1) AT (e2) A+ A
ﬂp(em) N 19P(’I“1) N 19P(’I“2) ANRRAY 19P(,,,”)

(2) IN(ereq - emkrirg---1ry) <INV (er) VIV (ea) V- A
ﬂN(em) V ’19N(T1) vV 19N(7‘2) VeV ﬂN("“n)

forall e1,es, ... em, k,r1,79,... 7 of £ and m,n € N.

Theorem 3.2. Let £ be an SG and m,n be positive integers.
Then every BF Bid of £ is a BF (m,n)-ideal of £
Proof: 1t is clear. u

Theorem 3.3. Let {0; | i € J} be a family of BF (m,n)-

ids of an SG E. Then N\ ¥; is a BF (m,n)-id of £, where
ieF

9 = {(e, 97, 9N) | € € £}.

’Y ) T

Proof: Let e, h € £. Then,

N7 (eh) = N\ {9F (e) A 0T (h)}
ieJ ieJ
= N\oFen \oF )
ieJ ieJ
and
\/ 9N (eh) < \/ {9} (e) VO (h)}
ieJ ieJ
= \/0N(e)v \/ o) (h)
ieJ ieJ
Thus, A 9; is a BF-Ssg of £.
i€J
Let eq, 62,6. csEmyk,r1,r9, ...y € E. Then,
/\ 195)(6162 e Emkrlrg . ’Tn)
i€J
> N\ {95 (e1) AT (e2) - AOf (en)
ieJ
A 195-3(7“1) A 195-3(7“2) . ﬁf(rn)}
= N\07(er) A N\OF (e2)--- A N\ OF (en)
i€J 1eJ ieJ
A /\1911»)(7‘1 /\19 T9) /\19P Tn)
eJ eJ 1€J
and
\/ IV (eren - Emkrire - 1y)
ieJ
<V 0N () Vo (es)--- VIl (en)
ieg
A (r) VO (r2) . 0 (1)}
=\ 0N (er) v \/ O (e2)--- v \/ 9 (en)
ieJ ieJ ieJ
\/\/ﬂfv(rl \/19N (r2) \/ﬁN Thn).
ieJ ieJ i€J

Thus, A 9; is a BF (m,n)-id of £. [ |
SV

Theorem 3.4. Let K be a non-empty subset of an SG £ and
m,n are positive integers. Then K is an (m,n)-id of £ if
and only if the characteristic function A = (£; X2, \X) is
a BF (m,n)-id of .

Proof: Suppose that K is an (m, n)-id of €. Then, K is
a Ssg of £. By Lemma 2.13, A = (&; AL, AY) is a BF Ssg
of £.

Let e;,7,k,71,72,...,7, € €. Then the following cases:

Case 1: If e,r; € K for all i € {1,2,...,m}
and j € {1,2,...,n}, then ejeq---enkriry---r, €
KmEK™. Thus, Al(ejeq---emkrira---r,) = 1 and
M (erez - emkrira---ry) = 0, AE(e;) = 1 for all
i€{1,2,....,m}, \E(r;) =1 forall j € {1,2,...,n} and

A (e;)=0forallie {1,2,...,m}, AX(r;) =0 forall j €

{1,2,...,n}. So, we have AE(ejea- - epnkriry---1,) >
A(er) AAE(ex) Ao AXE(em) Ao AXE (1) AXE () A
< AXE(r,) and A (e1e2 -+ emkrira - ry) < A ((e1) V

M ((e2) V- VAR ((em) V- VAL (1) VAR (r2) V - -+ V
A (rn).

Case 2: If e; ¢ K or r; ¢ K for some ¢ € {1,2,...,m}
and j € {1,2,...,n}, then \l(ejea---epkrira---1,) >

AE(er) AAE(ea) Ao AXE(em) A AXE (1) AXE(r2) A
A )\,Ié(rn) and )\%(6162 coeemkrirgcoory) < )\%(el) Vv
A (e2) V- AT (em) V- VAR (1) VAR (r2) Ve - - VAR (7).
Therefore, A = (€; A\, A\Y) is a BF (m,n)-ideal of £.

Conversely, suppose that \c = (E;AL,AY) is a BF
(m,n)-id of €. Then A\ is a BF Ssg of £. By Lemma 2.13,
K is a Ssg of €.

Let e1,e9,...€m,k,71,72,...,7, € K™EK". Then for
all i € {1,2,...m} and j € {1,2,...,n}, AB(e;) =
L AE(r;) = 1 and A{(e;)) = -1, A¥(ry) = -1
By assumption, AL (e1e--enkrira - ry) > Ag(er) A
M(ea) Ao AXE(em) Ao AXE(r) AXE(r) Ao A
AE(rn) and A(erea--epnkrira--m,) < A(er) V
Mea) Voo VA (e) Voo VAR (r1) VAR (r2) V

-V )\%(rn). Thus, A£(6162~~~emkr1r2~~rn) = 1
and A\ (erez---emkrira---r,) = —1. It impiles that,
ereg - Epkrire - -1, € K. Hence, K™EK™ C K. There-
fore, KC is an (m,n)-id of £. |

Theorem 3.5. Let £ be an SG and m, n be positive integers.
Then K is an (m,0)-ideal ((0,n)-ideal) of € if and only if
the characteristic function M\ = (£; A\, A\Y) is a BF (m, 0)-
ideal ((0,n)-ideal) of E.

Proof: Suppose that /C is an (m,0)-ideal of £ and let
e1,€e2,...Enm, k € £. Then the following cases:

Case 1: If e; ¢ K for some i € {1,2,...,m}, then

A(e;) = 0 and A\ (e;) = O for some i € {1,2,...,m}.
Thus, AL (e1e2 -+ Enk) > AE(e1) AAE(e2) A+ AXE(em)
and A\Y (e1e - Enk) < A (e1) VAR (e2) V- V AR (em).

Case 2: If e; € K for each i € {1,2,...,m}, then
A(e;) = 1 and A (e;) = —1 for each i € {1,2,...,m}.
Thus, )\,12(6162 ceemk) > )\g(el) A )\%(62) ARRRWA )\E(em)
and A\Y (erea - Enk) < A (e1) VAR (e2) V-V A (en)

Therefore, A = (€; AL, A\Y) is a BF (m, 0)-ideal of £.
Conversely, suppose that Ac = (E;AL,A\Y) is a BF
(m, 0)-ideal of £. Then,
Ac(erez - emk) > AE(e1) A AR (e2) A -+
)\%(6162 . gmk) < )\%(61) \Y )\%(62) Vo

A AR (em) and
V AN (em).
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ThllS, /\115(6162 s gmki) =1 and )\%(6162 s gm]f) = —1.
It implies that, ejes---e,,k € K. Hence, KE C K.
Therefore, K is an (m, 0)-ideal of £ [ |
Definition 3.6. Let £ be an SG and m,n be positive integers.
Then & is called (m,n)-regular if for each e € & there exists
h € & such that e = e™he™ equivalently for each subset K
of EIf K C KMEK™ or for each element € of €, e € E™Ee™.

Lemma 3.7. Let £ be an (m,n)-regular of semigroup and
m,n be positive integers. Then every BF (m,n)-id of € is a
BF Bid of €.

Proof: Suppose that ¥ is a BF (m,n)-id of £ and
1,7,k € £. By assumption, there exists z,y € & such that
ijk = imzi" jkmyk". Thus,

9P (ijk) = 9P (imai"jkmyk™)
ﬂp(im(xinjkmy)k'n)
,ﬂP(im) A ﬁp(k")

9P (i) AP (k)

and
IN(ijk) =

Hence, 9 is a BF Bid of £. [ |

Definition 3.8. An (m,n)-id KC of an SG & is called

(1) a minimal if for every (m,n)-id of J of & such that
J C K, we have J = K.

(2) @ maximal if for every (m,n)-id of J of &€ such that
K CJ, we have J = K.

(3) a 0-minimal if for every (m,n)-id of J of € such that
J C K, we have J = K.

Definition 3.9. A BF (m,n)-id ¥ = (&;9F,9Y) of an SG

Eis

(1) a minimal if for all BF (m,n)-id ¢ = (£,6F,&N) of €
such that £ < U, then £ = 9.

(2) a maximal if for all BF (m,n)-id ¢ = (£,F,&N) of €
such that 9 < &, then & = 9.

(3) a O-minimal if for all BF (m,n)-id ¢ = (€,¢F,¢N) of
E such that £ < U, then £ = 1.

Lemma 3.10. For any non-empty subsets T and K of an
SG &, we have T C K if and only if/\é) < /\,FC) and /\IIV >
MY where A\ = (E; M2 N and M\ = (E; ML, \Y) are
characteristic functions I and K respective.

Theorem 3.11. Let ) # K C E. Then

(1) K is a minimal (m,n)-id if and only if \c =
(E; A\E. YY) is @ minimal BF (m,n)-id.

(2) K a maximal (m,n)-id if and only if M = (£; A2, AY)
is a maximal BF (m,n)-id.

(3) K a O-minimal (m,n)-ideal if and only if A\c =
(E; AE,AY) is a O-minimal BF (m,n)-ideal.

Proof:

(1) Let K be a minimal (m,n)-id of £. Then K is an (m, n)-
ideal. Thus, by Theorem 3.4, A\, = (E; AL, AY) is a BF
(m,n)-id of £€. Let J be an (m,n)-id of & such that
J C K. Then by Theorem 3.4, Ay = (£; A5, A\)) is a
BF (m,n)-id of £ and A7 < Ak. Since K is a minimal

(m,n)-id of €& we have J = K. Thus, A7 = Ax. Hence,
Mc = (£; A2, A is minimal BF (m,n)-id of £.
Conversely, A\ = (£; AL, \Y) is minimal BF (m,n)-id
of £. Then A\c = (£; AL, AY) is a BF (m,n)-id of £.
Thus, by Theorem 3.4, K is an (m,n)-id of &.

Let Ay be a BF (m,n)-id of £ such that Ay < Ag.
Then by Theorem 3.4, J is an (m,n)-id of £ such that
J C K. Since A = (&; AL, AY) is minimal BF (m, n)-
id of £ we have A7 = Ac. Thus, J = K. Hence, K is
a minimal (m,n)-id of &.

Let K be a maximal (m, n)-id of £. Then K is an (m, n)-
id. Thus, by Theorem 3.4, A\x = (£; AL, AY) is a BF
(m,n)-ideal of £. Let J be an (m,n)-id of £ such that
K C J. Then by Theorem 3.4, A\ 7 = (5;)\5,)\%) is a
BF (m,n)-id of £ and A < A 7. Since K is a minimal
(m,n)-id of £ we have J = K. Thus, A7 = Ac. Hence,
e = (&, A2, A\X) is maximal BF (m,n)-id of &.
Conversely, A = (E; AL, AY) is maximal BF (m,n)-
id of £. Then A\c = (£;AE,AY) is a BF (m,n)-id of
E. Thus, by Theorem 3.4, K is an (m,n)-ideal of .
Let Ay be a BF (m,n)-id of £ such that Ax < A7.
Then by Theorem 3.4, 7 is an (m,n)-ideal of £ such
that £ C J. Since \c = (&; A2, \Y) is maximal BF
(m,n)-id of € we have A7 = Ag. Thus, J = K. Hence,
KC is a maximal (m,n)-id of &.

(3) It follows from (1).

|
Let ¥ = (£;97,9") be a BF set and (s,t) € [0,1] x
[—1,0]. Define the set Uf;’t) = {e € & | 9(e) >
s, 9N < t} is called an (s,t)-level subset of BF set of
9 = (&9, 9N).
Lemma 3.12. [5] A BF set ¥ = (;97,9") is a BF Ssg of
an SG & if and only if the level set Ués’t) is a Ssg of & for
all (s,t) € [0,1] x [—1,0].
Theorem 3.13. A BF set ¥ = (;9F,9") is a BF (m,n)-
ideal of an SG & if and only if the level set Ués’t) is an
(m,n)-id of € for all (s,t) € [0,1] x [—1,0].

Proof: Let ¥ = (&9F,9N) be a BF (m,n)-
id of & Then 9 = (&9F,9Y) is a BF Ssg
of £& By Lemma 3.12, Ués’t) is a Ssg of & Let
e1,e2,...em, k,r1,r0,..., 1, € Ués’t). Then 97 (e;) >

s, 9P(r;) > s and IN(e;) < t, IN(r;) <t
for some i € {1,2,...,m} and j € {1,2,...,m}.
By assumption, 97 (ejez -+ Enkrire---1m,) > 9F(e1) A
P (ex) Ao A9 (en) A - AP (r)) AIP (o) A oo+ A
9P (r,) and 9N (ereq---epkrira---m,) < ON(ey) V
IWN(ea) V - vV IN(ey) Voo VN () v 9N () v

-V 9N (r,). Thus, 9F(ejeq---epmkrire - 1) > s

and 9V (ejeq---enkrirg---r,) < t. It implies that,
ereg- - Epkriry -1y € Ués’t). Hence, Ués’t) is an (m, n)-
id of &.

Conversely, suppose that Ués’t) is an (m, n)-id of £. Then
U is a Ssg of £. By Lemma 3.12, 0 = (&7, 97)
is a BF Ssg of an SG &. If ¥ = (£;9F,9") is not a
BF (m,n)-id of &, then there exists e;, k,r; € & such
that 9 (ereq - epmkrira---m,) < 9F(er) A 9F(ez) A
o NI (em) Ao AP (ry) A 9P (ra) A oo A 9E (1)
or W(ejeq - -emkrira---1,) > 9V(er) vV 9V (es) V
oV IN(en) Vo vV IN () VIN () Voo v 9N ().
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By assumption, we have ejeg---epkrirg- -1, € Uﬁ,s’t).
Thus 9 (e1en - -emkrira---1,) > 9F(e1) A 9P (ex) A
AN (en) A NP (r) AP (ra) Ao A9E (1) or
IV (ereg - emkrira - rn) < 9N (ep) VIV (eg) V -V
IWN(em) V- VOIN(r) VOV v v N (r,). Tt is a
contradiction. Hence, ¥ = (£;9F,9") be a BF (m,n)-id
of £. ]
Next, we give the relationship between prime, semiprime
(m,n)-ideals and prime, semiprime BF (m, n)-ideals.

Definition 3.14. Let K be an (m,n)-id of an SG & is called

(1) prime if eh € K implies e € K or h € K forall e, h € &,
(2) semiprime if €2 € K implies e € K for all e € £.

Definition 3.15. Let ¥ = (£;9F,9N) be a BF (m,n)-id of

an SG is called

(1) prime if 9F(eh) < 9F(e) v O (h) and 9N (eh) >
IV (e) NIV (h) for all e, h € €,

(2) semiprime if 97 (e?) < 9 (e) and 9N (%) > 9V (e) for
all e € £.

Remark 3.16. Every prime (m,n)-id is semiprime (m,n)-id
in an SG.

Theorem 3.17. Let K be a non-empty subset of an SG E.

Then

(1) K is a prime (m,n)-id of £ if and only if A\¢ =
(E;AE,NR) is a prime BF (m,n)-id of &.

(2) K is a semiprime (m,n)-id of £ if and only if \x =

(E; AL, AY) is a semiprime BF (m,n)-id of £.

Proof:

Suppose that K is a prime (m,n)-id of €. Then K is

an (m,n)-id of £. Thus, by Theorem 3.4 Ax is a BF
(m,n)-id of €. Let e, h € £.

(1)

Case 1: If eh € K, then e € K or h € K. Thus,
M(eh) = 1 = AE(e) and AY(eh) = —1 = A (e) or
ME(h) =1 = AE(e h) and A¥(h) = —1 = A\ (eh).
Hence, AE(eh) < AE(e) vV AE(h) and A{(eh) >

Y (e) AR (),
Case 2: If eh ¢ K
Thus, )\,C(eh) <
MY (h).
Therefore, Ax = (£; A, AY) is a prime BF (m,n)-id
of £.

Conversely, suppose that A = (€; Af, AY) is a prime
BF (m,n)-id of £. Then A is a BF (m,n)-ideal of
E. Thus, by Theorem 3.4, KC is an (m,n)-ideal of &.
Let e,h € & with eh € K. Then, \Z(eh) = 1 and
M (eh) = —1.If e ¢ K and h ¢ K, then \L(e) =
0 = AZ(h) and A\ (e) = 0 = AY(h). By assumption,
AP (eh) < AR (e)VAZ(h) and AN (eh) > AN (e) AN (h).
Thus, AZ(eh) = 0 and AY (eh) = 0. It is a contradiction,
so e € K or h € K. Hence, K is a prime (m,n)-id of
E.

Suppose that K is a semiprime (m,n)-id of £. Then K
is an (m,n)-id of £. Thus, by Theorem 3.4 g is a BF
(m,n)-id of €. Lete € &.

Case 1: If €2 € K, then e € K. Thus, AL (e?) =
AL (e) and AR (e?) = 71 = AJ(e). Hence, A\E(e

, then A (eh) = 0 and AY (eh) = 0.
AZ(E) VAL (R) and A (eh) = A (e) A

1 =
?) <

Ak (e) and )\;c( %) = M (e).
Case 2: If €2 §Z1Cten)\P( 2) = 0 and A (e?) = 0.
Thus, A\E(e?) < AL (e) and A (e2) > AF (e).

Therefore, A = (; AL, \Y) is a prime BF (m,n)-id
of £.

Conversely, suppose that A = (€; AL, AY) is a prime
BF (m,n)-id of £. Then A¢ is a BF (m,n)-id of &.
Thus, by Theorem 3.4, K is an (m,n)-idl of £. Lete € £
with e € K. Then, A\L(e?) = 1 and A\Y(e?) = —1. If
e ¢ K, then AE(e) = 0 and A¥ (e) = 0. By assumption,
A (%) < AE(e) and MY (e?) > MK (e). Thus, AE(eh) =
0 and )\%(62) = 0. It is a contradiction, so e € K. Hence,
KC is a semiprime (m,n)-id of &.

IV. BIPOLAR FUZZY n-INTERIOR IDEALS

Before, we will review the definition of n-interior ideals
and weakly n-interior ideals in Sgs.

Definition 4.1. [24] A Ssg K of an SG & is said to be an
n-interior ideal (n-In id) of £ if EK"E C K, where n is an
integer.

Definition 4.2. A non-empty subset K of an SG & is called
a weakly n-interior ideal (W n-In id) of £ if EK"E C K,
where n is an integer.

Next, we defined bipolar fuzzy n-interior ideals and bipo-
lar fuzzy weakly n-interior ideals in SGs.

Definition 4.3. A BF Ssg ¥ = (£;97,9V) in an SG & is
called BF n-interior ideal (BF n-In id) of £ if

(1) 9P (hrk) > 9F (1)) ANIE (ra) A -+ AP (7))
(2) IN(hrtk) < ON(ri) VON(re) V- VIV (1)
forall hyr;, k € € and where i € {1,2,...,n}.

Definition 4.4. A BF set ¥ = (;9F,9V) in an SG € is
called BF weakly n-interior ideal (BF W n-In id) of £ if

(1) 97 (hrk) > 07 (1) AOP (ra) Ao AOP (1)
(2) IN(hrik) < ON(r)) VON(re) vV - VIV (1)
for all hyr;, k € € and where i € {1,2,...,n}.

Theorem 4.5. Let {¥; | i € J} be a family of BF n-interior

ideals (BF n-In id) of an SG . Then N\ 9; is a BF n-In id
ieF

of &, where V; = {(e,9F,9N) | £ € £}.

b 70 1

Proof: Let e, h € £. Then,

N\ 05 (eh) = N\ {9F (e) A 0T (h)}
ieJ ieJ
= N\l (e)n \vF(n)
ieJ =
and
\/ 0¥ (eh) < \/ {9 (e) VO (h)}
ieJ ieJ
= \/ 9N (e)v \/ o) (h).
ieJ ieJ
Thus, A ¥; is a BF-Ssg of £.

icJ
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Let h,rl',k € € for all ¢ € {1,2,...,n}. Then,
N\ 97 (hri'k)
i€J
> NP () A9F () -+ AOF ()}
ieJ
=N\ ) A NOF(ra) - A N\ 0L (rn)
i€eJ ieJ ieJ
and
\/ 0N (hr}k)
(ASVE
>\/ {0 (r1) v O (ra) - VO ()}
SV
:\/ﬂﬁv(rl) A \/’l%\[(’l"g)"'\/ \/195\/(7“”)
icJ ieJ i€J
Thus, A 9; is a BF n-In id of £. [ |
ieJ

Theorem 4.6. Let {0; | i € J} be a family of BF W n-In

id s of an SG E. Then N 9; is a BF W n-In id of &, where
ieF

% ={(e 9P, 9N) | € €&}

y Yy v Y

Proof: Tt follows from Theorem 4.5. |

Theorem 4.7. Let K be an non-empty subset of an SG £ and
m,n are positive integers. Then the following statements hold

(1) K is an n-In id of £ if and only if the characteristic
function \c = (E; AL, \Y) is a BF n-In id of £.

2) Kisa Wn-Inid of £ if and only if the characteristic
function M\ = (E;AE,\Y) is @ BF W n-In id of €.

Proof:
Suppose that X is an n-interior ideal of £. Then K is a
Ssg of €. Thus, by Theorem 2.13, A = (E; AL, AY) is
aBF Ssg of £. Let h,r;,k € € where i € {1,2,...,n}.
If r, € C for all i € {1,2,...,n}, then hrl'k € K.
Thus, AZ(r;) = AE(RrPk) = 1 and NJ(r;) =
MY (hrk) = —1 for all i € {1,2,...,n}. Hence,
Ao (hrik) > AE(ri) A AR(r2) A --+ A AR(rn) and
A (hrik) < AR (ri) VAR (ra) V- -V AR (ry).
If r; ¢ K for some i € {1,2,...,n}, then AE(r;) =0
and A\ (r;) = 0 for some i € {1,2,...,n}. Thus,
ME(hrik) > AE(r) A AE(ra) A -+ A AE(ry,) and
A (hrik) < AR (ri) VAR (ra) V- - VAR (rn).
Therefore, A\ = (; A%, A ) is a BF n-In id of &.
Conversely, suppose that \c = (E;AE,AY) is a BF
n-In id of €. Then A\x = (£;AE,AY) is a BF Ssg
of £. Thus, by Theorem 2.13, K is a Ssg of £.
Let r? € EK"E where n is an integer and for all
i € {1,2,...,n}. Then AE(r?) = 1 and \g(r?) = 0
for all i € {1,2,...,n}. By assumption, A\t (hr?k) >
ME(ri) A AE(ra) A oo A AE(ry) and AR (Rrk) <
IR () VAR (re) V- -V AR (7). Thus, AE(hrk) =1
for all i € {1,2,...,n} and A (hr?k) = 0. Hence,
r? € K for all i € {1,2,...,n}. Therefore, IC is an
n-In id of &.
(2) Tt follows from (1).

ey

Theorem 4.8. A BF set ¥ = (£;97,9") is a BF n-In id of
an SG & if and only if the level set Ués’t) is an n-In id of £
for all (s,t) €10,1] x [-1,0].

Proof: Let ¥ = (£;97,9V) be a BF n-In id of &.
Then ¥ = (&;9F,9Y) is a BF Ssg of £. By Lemma 3.12,
Ués’t) is a Ssg of &. Let r1,7r2,...7m, k. h € Ués’t). Then
9P (r;) > s and 9N (r;) < t for some i € {1,2,...,n}. By
assumption, 9F (hrl'k) > 9T (r1) AIF(ra) A -+ AT (1)
and 9N (hrtk) < 9N (r) VIN(rg) V- V9N (). Thus,
9P (hrPk) > s and 9V (hr?k) < t. It implies that, 7" €
U Hence, US™ is an n-In id of .

Conversely, suppose that Ués’t) is an n-interior ideal of £.
Then US™") is a Ssg of £. By Lemma 3.12, 9 = (£; 97, 9V)
is a BF Ssg of an SG &. If ¥ = (&£;9F,9") is not a BF n-
interior ideal of &£, then there exists r;,k,h € £ such that
I (hrik) < 9F (r)) NI (ra) A+ - A9 (1)) or 9N (k) >
IV (r) VOIN (rg) V- - VIV (r,). By assumption, we have
hrtk € US™) . Thus, 97 (hrtk) > 97 (r)) AP (ra) A+ A
9 (r,) or 9N (hrk) < 9N (r)) VIV (rg) V- - VIV (). Tt
is a contradiction. Hence, ¥ = (£;9F,9") is a BF n-In id
of £. ]

Corollary 4.9. A BF set ¥ = (£;9F,9Y) is a BE W n-In
id of an SG & if and only if the level set Ulgs’t) isa Wn-In
id of € for all (s,t) € [0,1] x [-1,0].

Definition 4.10. An n-interior ideal KC of an SG & is called

(1) a minimal if for every n-In id of J of £ such that
J C K, we have J = K,

(2) a maximal if for every n-In id of J of £ such that
K CJ, we have J = K.

(3) a O-minimal if for every n-interior ideal of J of € such
that J C K, we have J = K.

Definition 4.11. A BF n-interior ideal ¥ = (£;97,9) of

an SG & is

(1) a minimal if for all BF n-In id £ = (£;¢F,¢N) of €
such that £ <1, then £ = 1,

(2) a maximal if for all BF n-In id ¢ = (£;¢F,&N) of €
such that ¢ < &, then £ = 1.

(3) a O-minimal if for all BF n-interior idealé =
(E,6P ENY of & such that &€ <V, then & = 1.

Theorem 4.12. A non-empty subset IC of an SG E. Then the
following statements hold

(1) K is a minimal n-In id if and only if \c = (E; A\E,AY)
is a minimal BF n-In id of .
K is a maximal n-In id if and only if A\ = (E; A2, \Y)
is a maximal BF n-In id of &.
K is a 0-minimal n-In id if and only if A\c =
(E; AL, AR is a O-minimal BF n-In id of .

@)
3

Proof:

Let C be a minimal n-In id of £. Then K is an n-In
id of €. Thus, by Theorem 4.7, A = (E; AL, A\Y) is a
BF n-In id of £. Let J be an n-interior ideal of £ such
that 7 C K. Then by Theorem 4.7, A7 = (&; A5, AY)
is a BF n-interior ideal of £ and Ay < Ag. Since K is
a minimal n-interior ideal of £ we have J = K. Thus,
A7 = Ax. Hence, A\c = (&AL, AY) is minimal BF
n-In id of &£.

ey
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Conversely, A = (;AF, AY) is minimal BF n-In id
of £ Then A\ = (£;AE,A\Y) is a BF n-interior ideal
of £. Thus, by Theorem 4.7, K is an n-In id of £.
Let Ay = (&;25, M) be a BF n-In id of & such that
A7 < Ak. Then by Theorem 4.7, J is an n-In id of £
such that 7 C K. Since A\ = (&; A2, AY) is minimal
BF n-In id of £ we have Ay = Ax. Thus, J = K.
Hence, K is a minimal n-In id of £.

Let K be a maximal n-In id of £. Then K is an n-
In id. Thus, by Theorem 4.7, A\c = (E; AL, AY) is a
BF n-In id of £. Let J be an n-In id of £ such that
K C J. Then by Theorem 4.7, Ay = (&; A7, AY) is a
BF n-In id of £ and Ax < Ay. Since K is a maximal
n-In id of £ we have J = K. Thus, A7 = Ax. Hence,
A = (E; AL, AY) is maximal BF n-In id of £.
Conversely, Ac = (&; AL, A\Y) is maximal BF n-In id
of £ Then A\¢ = (&AL, A\Y) is a BF n-In id of £.
Thus, by Theorem 4.7, K is an n-In id of £. Let Ay =
(&; A5, AY) be a BF n-In id of & such that A\x < 7.
Then by Theorem 4.7, J is an n-In id of £ such that
K C J. Since A = (E; Ak, AY) is maximal BF n-In
id of £ we have A7 = . Thus, J = K. Hence, K is
a maximal n-In id of £.

(3) It follows from (1).

©))

Definition 4.13. A W n-In id KC of an SG & is called

(1) a minimal if for every W n-In idof J of & such that
J CK, we have J = K,

(2) a maximal if for every W n-In id of J of € such that
K CJ, we have J =K.

(3) a O-minimal if for every W n-In id of J of £ such that
J C K, we have J = K.

Definition 4.14. A BF W n-In id 9 = (£;9F,9V) of an SG

Eis

(1) @ minimal if for all BF W n-In id £ = (£;6F,6N) of €
such that £ <1, then £ = 1,

(2) a maximal if for all BE W n-In id ¢ = (£;¢F,&N) of
& such that ¥ < &, then & = 0.

(3) a O-minimal if for all BF W n-In id ¢ = (€,67,6N) of
E such that £ < 0, then £ = 0.

Theorem 4.15. A non-empty subset K of an SG E. Then the
following statements hold
(1) K is a minimal W n-In id if and only if \x =
(E; B 0N is @ minimal BF W n-In id of £.
) K is a maximal W n-In id if and only if A\x =
(B; B 0Y) is a maximal BE W n-In id of E.

The following theorem we can prove according to the
theorem 4.12.

Theorem 4.16. A non-empty subset K of an SG £ is a

0-minimal weakly n-interior ideal if and only if A\¢ =

(E; AE AN is a 0-minimal BF weakly n-interior ideal.
Proof: 1t follows from Theorem 4.12. |

Next, we give the relationship between prime, semiprime
n-In ids and prime, semiprime BF n-In ids.

Definition 4.17. Let K be an n-In id of an SG & is called

(1) prime if eh € K implies e € K or h € K for all
e,h €€,

(2) semiprime if €? € K implies e € K for all e € E.

Definition 4.18. Let ¥ = (&;9F,9Y) be a BF n-In id of an
SG & is called

(1) prime if 9F(eh) < 9F(e) v 9P (h) and 9N (eh) >
IV (e) NIN (D) for all e,h € &,

(2) semiprime if 9 (e2) < 9P (e) and 9N (e?) > IV (e) for
all e € £.

Remark 4.19. Every prime n-In id is semiprime n-In id in
an SG.

Theorem 4.20. Let I be a non-empty subset of an SG E.
Then the following statements hold

(1) K is a prime n-In id of £ if and only if A\x =
(E;ME, AR is a prime BF n-In id of €.

(2) K is a semiprime n-In id of £ if and only if \x =
(E; AR AR is a semiprime BF n-In id of E.

Proof:

Suppose that K is a prime n-In id of £. Then K is an
n-In id of €. Thus, by Theorem 4.7 A = (E; A, AY)
is a BF n-Inid of £. Let e,h € £.

Case 1: If eh € K, then e € K or h € K. Thus
M(eh) =1 = AE(e) and A\ (eh) = —1 = A (e) or
M(h) = =1 = AE(eh) or A (eh) = —1 = AY(h).
Hence, AE(eh) < AE(e) v AE(h) and A{(eh) >
MY (e) A AR (h).

Case 2: If eh ¢ K, then AL (eh) = 0 and A (eh) = 0.
Thus, AL (eh) < AE(e)VAL(h) and AR (eh) > AX (e) A
MY (h).

Therefore, A\ = (£; A2, AY) is a prime BF n-In id of
E.

Conversely, suppose that A = (£; AL, AY) is a prime
BF n-In id of £. Then A is a BF n-In id of £. Thus,
by Theorem 4.7, K is an n-In id of £. Let e, h € £ with
eh € K. Then, AE(eh) =1 and

M (eh) = —1.If e ¢ K and h ¢ K, then AL (e) =
0 = AE(h) and A\ (e) = 0 = A (h). By assumption,
Ae(eh) < AE(e) vV AL (h) and A (eh) > A(e) A
MY (h). Thus,\E(eh) = 0 and A\ (eh) = 0. It is a
contradiction, so e € IC or h € K. Hence, K is a prime
n-In id of &.

Suppose that I is a semiprime n-In id of £. Then
K is an n-In id of £. Thus, by Theorem 4.7 Ax =
(E;AE, AR is a BF n-Inid of €. Let e,h € £.

Case 1: If €2 € K, then e € K . Thus AL (e?) = 1 =
M (e) and A (e?) = —1 = A¥(e) Hence, AE(e?) <
AL (e) and MY (e?) > AR (e).

Case 2: If € ¢ K, then AL (e?) = 0 and A\Y (eh) = 0.
Thus, AE(e?) < AE(e) and A (e?) > A (e).
Therefore, A\ = (£; AL, AY) is a prime BF n-In id of
E.

Conversely, suppose that A = (£; A2, AX) is a prime
BF n-In id of £. Then Ag is a BF n- in id of £. Thus,
by Theorem 4.7, IC is an n-In id of £. Let e € £ with
e? € K. Then, AL (e?) =1 and

M(e?) = —1. If e ¢ K, then \2(e) = 0 and
M (e) = 0. By assumption, AZ(e?) < AE(e) and
MY (e?) > AR (e). Thus,AE(e?) = 0 and MY (e?) = 0. It
is a contradiction, so e € K. Hence, K is a prime n-In
id of &.

ey

©))
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Definition 4.21. Let IC be a W n-In id of an SG & is called

(1) prime if eh € K implies e € K or h € K for all
e,h €€,
(2) semiprime if €2 € K implies e € K for all e € £.

Definition 4.22. Let ¥ = (£;9F,9V) be a BF W n-In id of

an SG & is called

(1) prime if 9F(eh) < 9F(e) v 9P (h) and 9N (eh) >
IV (e) NIN (D) for all e,h € &,

(2) semiprime if 9 (e2) < 9T (e) and 9N (e?) > IV (e) for
all e € £.

Theorem 4.23. Let K be a non-empty subset of an SG E.

Then the following statements hold

(1) K is a prime W n-In id of € if and only if A\x =
(E;NE, NN is a prime BF W n-In id of €.

(2) K is a semiprime W n-In id of £ if and only if A\
(E; AR AR is a semiprime BFE W n-In id of £.

Proof: Tt follows from Theorem 4.20. ]

V. CONCLUSION

In this paper, we introduce the concept of bipolar fuzzy
(m,n)-ideals in semigroups and investigate their properties.
Additionally, we establish the relationship between (m,n)-
ideals and bipolar fuzzy (m,n)-ideals. Furthermore, we
define bipolar fuzzy n-interior ideals in semigroup and prove
the relationship between n-interior ideals and bipolar fuzzy
n-interior ideals. Also, we prove weakly n-interior ideals and
bipolar fuzzy weakly n-interior ideals. In the future, we plan
to explore hybrid almost (m,n)-ideals and n-interior ideals
in semigroups or within the algebraic context.
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