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Abstract—Lajos studied the concept of (m,n)-ideals of semi-
groups in 1963. The concepts of bipolar fuzzy semigroups was
presented by Kim et al. in 2011. This paper we introduces
the notion of bipolar fuzzy (m,n)-ideals in semigroups. We
provided basic properties of bipolar fuzzy (m,n)-ideals and
the connection between (m,n)-ideals and bipolar fuzzy (m,n)-
ideals in semigroups. Moreover, we discuss the properties of
bipolar fuzzy n-interior ideals and the connection between n-
interior ideals and bipolar fuzzy n-interior ideals in semigroups.
We also study weakly n-interior ideals and bipolar fuzzy weakly
n-interior ideals.

Index Terms—BF (m,n)-ideals, BF prime (m,n)-ideals, BF
semiprime (m,n)-ideals, BF n-interior ideals.

I. INTRODUCTION

THE CONCEPTS of fuzzy sets was first considered
by L. A. Zadeh in 1965 [1]. The fuzzy set theories

developed by Zadeh and others have found many applications
in mathematics and elsewhere. In 1981, Kuroki [2] discussed
the concept of fuzzy Ssgs and fuzzy generalized bi-ideals
in semigroups. The notion of bipolar valued fuzzy set by
Zhang [3] in 1994 is an extension of fuzzy sets where the
membership degree range is enlarged from the interval [0, 1]
to [−1, 0]. In 2000, Lee [4] used the term bipolar valued
fuzzy sets and applied it to algebraic structures. Kim et al.
[5] studied relations of bipolar fuzzy subsemigroups, bipolar
fuzzy left (right) ideals, bipolar fuzzy bi-ideals, and bipolar
(1, 2) ideals. He provided some necessary and sufficient
conditions for a bipolar fuzzy Ssg and a bipolar fuzzy left
(right, bi-) ideals of semigroups. Moreover, bipolar fuzzy
has many applications in algebraic structures [6], [7], [8],
[9], [10]. The theory of (m,n)-ideals in semigroups was
studied by Lajos in 1963 [11]. The notion of (m,n)-ideals
of semigroups generalized the idea of one-sided ideals of
semigroups. In 2019 A. Mahboob [12] studied fuzzzy (m,n)-
ideals and proved properties of regular semigroup. Many
authors have examined theory in other structures, see, e.g.,
[13], [14], [15], [16], [17], [18], [19], [21], [20], In 2022,
W. Nakkhasen [22] discussed concept picture fuzzy (m,n)-
ideals of semigroups and investigated some basic properties
of picture fuzzy (m,n)-ideals of semigroups. In the same
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year, T. Gaketem [23] studied the concept of interval valued
fuzzy almost (m,n)-ideals in semigroups. Tiprachot et al.
[24] discussed the notion of n-interior ideals as a gener-
alization of interior ideals and characterized many classes
of ordered semigroups in terms of (m,n)-ideals and n-
interior ideals. In 2023, Tiprachot et al. [25] extend n-interior
ideals and (m,n)-ideals to hybrid in ordered semigroups.
In 2024 T. Gaketem and P. Khamrot [26] studied concepts
interval valued fuzzy (m,n)-ideals in semigroups. Recently
P. Khamrot et al. [27] extend concepts fuzzy (m,n)-ideals
and n-interior ideals in semigroups to ordered semigroups.

In this paper, we study the concept of bipolar fuzzy (m,n)
ideals, minimal bipolar fuzzy (m,n)-ideals, and bipolar
fuzzy prime (semiprime) (m,n)-ideals in semigroups. We
provide the basic properties and relationship between (m,n)-
ideals and bipolar fuzzy (m,n)-ideals in semigroups. Finally,
we discuss the properties of bipolar fuzzy n-interior ideals
and the relationship between n-interior ideals and bipolar
fuzzy n-interior ideals in semigroups. Also, we prove weakly
n-interior ideals and bipolar fuzzy weakly n-interior ideals.

II. PRELIMINARIES

In this section, we introduce certain concepts and findings
that will be beneficial in subsequent sections.

Definition 2.1. Let E be an semigroup (SG).
(1) A subsemigroup (Ssg) of E is a non-empty set K of E

such that K2 ⊆ K.
(2) A left ideal (Lid) of E is a non-empty set K of E such

that EK ⊆ K.
(3) A right ideal (Rid) of E is a non-empty set K of E such

that KE ⊆ K.
(4) By an ideal (id) of K, we mean a non-empty set of E ,

which is both a Lid and a Rid of E .
(5) An interior ideal (In id) of E is a non-empty set K is an

Ssg of E and EKE ⊆ K.
(6) A bi-ideal (Bid) of E is a non-empty set K ois an Ssg of

E and KEK ⊆ K.

An id K of an SG E and m,n are positive integers. We
called (m,n)-ideal ((m,n)-id) of an SG E if KmEKn ⊆ K.

A non-empty subset K of an SG E . We denote the

[K](m,n) =
m+n⋃
r=1

Kr ∩KmEKn is principal (m,n)-ideal,

[K](m, 0) =
m⋃
r=1

Kr ∩ KmE is principal (m, 0)-ideal,

[K](0, n) =
n⋃

r=1

Kr ∩ EKn is the principal (0, n)-ideal,

i.e., the smallest (m,n)-ideal, the smallest (m, 0)-ideal
and the smallest (0, n)-ideal of E containing K, respectively.
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Lemma 2.2. [16] Let E be an SG and m,n positive integers,
[π](m,n) the principal (m,n)-id generated by the element π.
Then
(1) ([π](m,0))

mE = πmE .
(2) E([π](0,n))n = Eπn.
(3) ([π](m,0))

mE([π](0,n))n = πmEπn.

For any zi ∈ [0, 1], i ∈ J , define∨
i∈J

zi := sup
i∈J

{zi} and
∧
i∈J

zi := inf
i∈J

{zi}.

We see that for any z, r ∈ [0, 1], we have

z ∨ r = max{z, r} and z ∧ r = min{z, r}.
A fuzzy set of a non-empty set T is a function ϑ : T →

[0, 1].
For any two fuzzy sets ϑ and ξ of a non-empty set T ,

define the symbol as follows:
(1) ϑ ≥ ξ ⇔ ϑ(z) ≥ ξ(z) for all z ∈ T ,
(2) ϑ = υ ⇔ ϑ ≥ ξ and ξ ≥ ϑ,
(3) (ϑ ∧ ξ)(z) = ϑ(z) ∧ ξ(z) = min{ρ(z), ξ(z)} for all

z ∈ T ,
(4) (ϑ ∨ ξ)(z) = ϑ(z) ∨ ξ(z) = max{ρ(z), ξ(z)} for all

z ∈ T .
For the symbol ϑ ≤ ξ, we mean ξ ≥ ϑ.

Definition 2.3. [4] A bipolar fuzzy set (BF set) ϑ on a non-
empty set E is an object having the form

ϑ := {(h, ϑP (h), ϑN (h)) | h ∈ E},

where ϑP : E → [0, 1] and ϑN : E → [−1, 0].

Remark 2.4. For the sake of simplicity we shall use the
symbol ϑ = (E ;ϑP , ϑN ) for the BF set
ϑ = {(h, ϑP (h), ϑN (h)) | h ∈ E}.

The following is an example of a BF set.

Example 2.5. Let E = {41, 42, 43...}. Define ϑP : E →
[0, 1] is a function

ϑP (h) =

{
0 if h is old number
1 if h is even number

and ϑN : E → [−1, 0] is a function

ϑN (h) =

{
−1 if h is old number
0 if h is even number.

Then ϑ = (E ;ϑP , ϑN ) is a BF set.

For BF sets ϑ = (E ;ϑP , ϑN ) and ξ = (E; ξP , ξN ) of E ,
defined the relation as follows:
(1) ϑ ⊆ ξ if and only if ϑP (z) ≤ ξP (z) and ϑN (z) ≥ ξN (z)

for all z ∈ E ,
(2) ϑ = ξ if and only if ϑ ⊆ ξ and ξ ⊆ ϑ,
(3) ϑ∩ξ = ϑP (z)∧ξP (z) and ϑN (z)∨ξN (z), for all z ∈ E ,
(4) ϑ∪ξ = ϑP (z)∨ξP (z) and ϑN (z)∧ξN (z), for all z ∈ E .

For h ∈ E , define Fh = {(h1, h2) ∈ E × E | h = h1h2}.
Define products ϑP ◦ξP and ϑN ◦ξN as follows: For h ∈ E

(ϑP ◦ ξP )(h) =
∨

(h1,h2)∈Fh

{ϑP (h1) ∧ ξP (h2)} if h = h1h2

0 otherwise

and

(ϑN ◦ ξN )(h) =
∧

(h1,h2)∈Fh

{ϑN (h1) ∨ ξN (h2)} if h = h1h2

0 if otherwise.

Definition 2.6. [5] A BF set ϑ = (E ;ϑP , ϑN ) on an SG E
is called a BF subsemigroup (BF Ssg) on E if it satisfies
the following conditions:
(1) ϑP (hr) ≥ ϑP (h) ∧ ϑP (r)
(2) ϑN (hr) ≤ ϑN (h) ∨ ϑN (r)

for all h, r ∈ E .

The following is an example of a BF Ssg.

Example 2.7. Let E be an SG defined by the following table:

· a b c d e
a a a a a a
a a a a a a
c a a c c e
d a a c d e
e a a c c e

Define a BF set ϑ = (E;ϑP , ϑN ) on E as follows :

E a b c d e
ϑp 0.9 0.8 0.5 0.3 0.3
ϑn −0.8 −0.8 −0.6 −0.5 −0.3

Then ϑ = (E ;ϑP , ϑN ) is a BF Ssg.

Definition 2.8. [5] A BF set ϑ = (E ;ϑP , ϑN ) on an SG
E is called a BF left ideal (BF Lid) on E if it satisfies the
following conditions:
(1) ϑP (hr) ≥ ϑP (r)
(2) ϑN (hr) ≤ ϑN (r)

for all h, r ∈ E .

Definition 2.9. [5] A BF set ϑ = (E ;ϑP , ϑN ) on an SG E
is called a BF right ideal (BF Rid) on E if it satisfies the
following conditions:
(1) ϑP (hr) ≥ ϑP (h)
(2) ϑN (hr) ≤ ϑN (h)

for all h, r ∈ E .

Definition 2.10. [5] A BF Ssg ϑ = (E ;ϑP , ϑN ) on an SG
E is called a BF bi-ideal (BF Bid) on E if it satisfies the
following conditions:
(1) ϑP (hrk) ≥ ϑP (h) ∧ ϑP (k)
(2) ϑN (hrk) ≤ ϑN (h) ∨ ϑN (k)

for all h, r, k ∈ E .

Definition 2.11. [4] Let K be a non-empty set of an
SG E . A positive characteristic function and a negative
characteristic function are respectively defined by

λP
K : E → [0, 1], h 7→ λP

K(h) :=

{
1 h ∈ K,
0 h /∈ K,

and

λN
K : E → [−1, 0], h 7→ λN

K (h) :=

{
−1 h ∈ K,
0 h /∈ K.

Remark 2.12. For the sake of simplicity we shall use the
symbol λK = (E;λP

K, λ
N
K ) for the BF set

λK = {(h, λP
K(h), λ

N
K (h)) | h ∈ E}.
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Lemma 2.13. [5] Let K be a non-empty subset of an SG E .
Then K is a Ssg of E if and only if the characteristic function
λK = (E ;λP

K, λ
N
K ) is a BF Ssg of E .

III. MAIN RESULTS

In this section, we outline the concept of bipolar fuzzy
(m,n)-ideals and explore their properties within semigroups.

Definition 3.1. A BF Ssg ϑ = (E ;ϑP , ϑN ) of an SG E is
called a bipolar fuzzy (m,n)-ideal (BF (m,n)-id) of E if
(1) ϑP (e1e2 · · · emkr1r2 · · · rn) ≥ ϑP (e1)∧ ϑP (e2)∧ · · · ∧

ϑP (em) ∧ ϑP (r1) ∧ ϑP (r2) ∧ · · · ∧ ϑP (rn)
(2) ϑN (e1e2 · · · emkr1r2 · · · rn) ≤ ϑN (e1)∨ϑN (e2)∨ · · ·∧

ϑN (em) ∨ ϑN (r1) ∨ ϑN (r2) ∨ · · · ∨ ϑN (rn)

for all e1, e2, . . . , em, k, r1, r2, . . . rn of E and m,n ∈ N.

Theorem 3.2. Let E be an SG and m,n be positive integers.
Then every BF Bid of E is a BF (m,n)-ideal of E

Proof: It is clear.

Theorem 3.3. Let {ϑi | i ∈ J } be a family of BF (m,n)-
ids of an SG E . Then

∧
i∈F

ϑi is a BF (m,n)-id of E , where

ϑi = {(e, ϑP
i , ϑ

N
i ) | E ∈ E}.

Proof: Let e, h ∈ E . Then,

∧
i∈J

ϑP
i (eh) ≥

∧
i∈J

{ϑP
i (e) ∧ ϑP

i (h)}

=
∧
i∈J

ϑP
i (e) ∧

∧
i∈J

ϑP
i (h)

and

∨
i∈J

ϑN
i (eh) ≤

∨
i∈J

{ϑN
i (e) ∨ ϑN

i (h)}

=
∨
i∈J

ϑN
i (e) ∨

∨
i∈J

ϑN
i (h).

Thus,
∧
i∈J

ϑi is a BF-Ssg of E .

Let e1, e2, . . . , Em, k, r1, r2, . . . rn ∈ E . Then,∧
i∈J

ϑP
i (e1e2 · · · Emkr1r2 · · · rn)

≥
∧
i∈J

{ϑP
i (e1) ∧ ϑP

i (e2) · · · ∧ ϑP
i (en)

∧ ϑP
i (r1) ∧ ϑP

i (r2) . . . ϑ
P
i (rn)}

=
∧
i∈J

ϑP
i (e1) ∧

∧
i∈J

ϑP
i (e2) · · · ∧

∧
i∈J

ϑP
i (en)

∧
∧
i∈J

ϑP
i (r1) ∧

∧
i∈J

ϑP
i (r2) . . .

∧
i∈J

ϑP
i (rn)

and ∨
i∈J

ϑN
i (e1e2 · · · Emkr1r2 · · · rn)

≤
∨
i∈J

{ϑN
i (e1) ∨ ϑN

i (e2) · · · ∨ ϑN
i (en)

∧ ϑN
i (r1) ∨ ϑN

i (r2) . . . ϑ
N
i (rn)}

=
∨
i∈J

ϑN
i (e1) ∨

∨
i∈J

ϑN
i (e2) · · · ∨

∨
i∈J

ϑN
i (en)

∨
∨
i∈J

ϑN
i (r1) ∨

∨
i∈J

ϑN
i (r2) . . .

∨
i∈J

ϑN
i (rn).

Thus,
∧
i∈J

ϑi is a BF (m,n)-id of E .

Theorem 3.4. Let K be a non-empty subset of an SG E and
m,n are positive integers. Then K is an (m,n)-id of E if
and only if the characteristic function λK = (E ;λP

K, λ
N
K ) is

a BF (m,n)-id of E .

Proof: Suppose that K is an (m,n)-id of E . Then, K is
a Ssg of E . By Lemma 2.13, λK = (E ;λP

K, λ
N
K ) is a BF Ssg

of E .
Let ei, rj , k, r1, r2, . . . , rn ∈ E . Then the following cases:
Case 1: If ei, rj ∈ K for all i ∈ {1, 2, . . . ,m}

and j ∈ {1, 2, . . . , n}, then e1e2 · · · emkr1r2 · · · rn ∈
KmEKn. Thus, λP

K(e1e2 · · · emkr1r2 · · · rn) = 1 and
λN
K (e1e2 · · · emkr1r2 · · · rn) = 0, λP

K(ei) = 1 for all
i ∈ {1, 2, . . . ,m}, λP

K(rj) = 1 for all j ∈ {1, 2, . . . , n} and
λN
K (ei) = 0 for all i ∈ {1, 2, . . . ,m}, λN

K (ri) = 0 for all j ∈
{1, 2, . . . , n}. So, we have λP

K(e1e2 · · · emkr1r2 · · · rn) ≥
λP
K(e1) ∧ λP

K(e2) ∧ · · · ∧ λP
K(em) ∧ · · · ∧ λP

K(r1) ∧ λP
K(r2) ∧

· · · ∧ λP
K(rn) and λN

K (e1e2 · · · emkr1r2 · · · rn) ≤ λN
K ((e1) ∨

λN
K ((e2) ∨ · · · ∨ λN

K ((em) ∨ · · · ∨ λN
K (r1) ∨ λN

K (r2) ∨ · · · ∨
λN
K (rn).
Case 2: If ei /∈ K or rj /∈ K for some i ∈ {1, 2, . . . ,m}

and j ∈ {1, 2, . . . , n}, then λP
K(e1e2 · · · emkr1r2 · · · rn) ≥

λP
K(e1) ∧ λP

K(e2) ∧ · · · ∧ λP
K(em) ∧ · · · ∧ λP

K(r1) ∧ λP
K(r2) ∧

· · · ∧ λP
K(rn) and λN

K (e1e2 · · · emkr1r2 · · · rn) ≤ λN
K (e1) ∨

λN
K (e2)∨· · ·∧λN

K (em)∨· · ·∨λN
K (r1)∨λN

K (r2)∨· · ·∨λN
K (rn).

Therefore, λK = (E ;λP
K, λ

N
K ) is a BF (m,n)-ideal of E .

Conversely, suppose that λK = (E ;λP
K, λ

N
K ) is a BF

(m,n)-id of E . Then λK is a BF Ssg of E . By Lemma 2.13,
K is a Ssg of E .

Let e1, e2, . . . em, k, r1, r2, . . . , rn ∈ KmEKn. Then for
all i ∈ {1, 2, . . .m} and j ∈ {1, 2, . . . , n}, λP

K(ei) =
1, λP

K(rj) = 1 and λN
K (ei) = −1, λN

K (rj) = −1.
By assumption, λP

K(e1e2 · · · emkr1r2 · · · rn) ≥ λP
K(e1) ∧

λP
K(e2) ∧ · · · ∧ λP

K(em) ∧ · · · ∧ λP
K(r1) ∧ λP

K(r2) ∧ · · · ∧
λP
K(rn) and λN

K (e1e2 · · · emkr1r2 · · · rn) ≤ λN
K (e1) ∨

λN
K (e2) ∨ · · · ∨ λN

K (em) ∨ · · · ∨ λN
K (r1) ∨ λN

K (r2) ∨
· · · ∨ λN

K (rn). Thus, λP
K(e1e2 · · · emkr1r2 · · · rn) = 1

and λN
K (e1e2 · · · emkr1r2 · · · rn) = −1. It impiles that,

e1e2 · · · Emkr1r2 · · · rn ∈ K. Hence, KmEKn ⊆ K. There-
fore, K is an (m,n)-id of E .

Theorem 3.5. Let E be an SG and m,n be positive integers.
Then K is an (m, 0)-ideal ((0, n)-ideal) of E if and only if
the characteristic function λK = (E ;λP

K, λ
N
K ) is a BF (m, 0)-

ideal ((0, n)-ideal) of E .

Proof: Suppose that K is an (m, 0)-ideal of E and let
e1, e2, . . . Em, k ∈ E . Then the following cases:

Case 1: If ei /∈ K for some i ∈ {1, 2, . . . ,m}, then
λP
K(ei) = 0 and λN

K (ei) = 0 for some i ∈ {1, 2, . . . ,m}.
Thus, λP

K(e1e2 · · · Emk) ≥ λP
K(e1)∧ λP

K(e2)∧ · · · ∧ λP
K(em)

and λN
K (e1e2 · · · Emk) ≤ λN

K (e1) ∨ λN
K (e2) ∨ · · · ∨ λN

K (em).
Case 2: If ei ∈ K for each i ∈ {1, 2, . . . ,m}, then

λP
K(ei) = 1 and λN

K (ei) = −1 for each i ∈ {1, 2, . . . ,m}.
Thus, λP

K(e1e2 · · · emk) ≥ λP
K(e1) ∧ λP

K(e2) ∧ · · · ∧ λP
K(em)

and λN
K (e1e2 · · · Emk) ≤ λN

K (e1) ∨ λN
K (e2) ∨ · · · ∨ λN

K (em)
Therefore, λK = (E ;λP

K, λ
N
K ) is a BF (m, 0)-ideal of E .

Conversely, suppose that λK = (E ;λP
K, λ

N
K ) is a BF

(m, 0)-ideal of E . Then,
λK(e1e2 · · · emk) ≥ λP

K(e1) ∧ λP
K(e2) ∧ · · · ∧ λP

K(em) and
λN
K (e1e2 · · · Emk) ≤ λN

K (e1) ∨ λN
K (e2) ∨ · · · ∨ λN

K (em).
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Thus, λP
K(e1e2 · · · Emk) = 1 and λN

K (e1e2 · · · Emk) = −1.
It implies that, e1e2 · · · emk ∈ K. Hence, KmE ⊆ K.
Therefore, K is an (m, 0)-ideal of E

Definition 3.6. Let E be an SG and m,n be positive integers.
Then E is called (m,n)-regular if for each e ∈ E there exists
h ∈ E such that e = emhen equivalently for each subset K
of E if K ⊆ KmEKn or for each element E of E , e ∈ EmEen.

Lemma 3.7. Let E be an (m,n)-regular of semigroup and
m,n be positive integers. Then every BF (m,n)-id of E is a
BF Bid of E .

Proof: Suppose that ϑ is a BF (m,n)-id of E and
i, j, k ∈ E . By assumption, there exists x, y ∈ E such that
ijk = imxinjkmykn. Thus,

ϑP (ijk) = ϑP (imxinjkmykn)
= ϑP (im(xinjkmy)kn)
≥ ϑP (im) ∧ ϑP (kn)
≥ ϑP (i) ∧ ϑP (k)

and
ϑN (ijk) = ϑN (imxinjkmykn)

= ϑN (im(xinjkmy)kn)
≤ ϑN (im) ∨ ϑN (kn)
≤ ϑN (i) ∨ ϑN (k).

Hence, ϑ is a BF Bid of E .

Definition 3.8. An (m,n)-id K of an SG E is called
(1) a minimal if for every (m,n)-id of J of E such that

J ⊆ K, we have J = K.
(2) a maximal if for every (m,n)-id of J of E such that

K ⊆ J , we have J = K.
(3) a 0-minimal if for every (m,n)-id of J of E such that

J ⊆ K, we have J = K.

Definition 3.9. A BF (m,n)-id ϑ = (E ;ϑP , ϑN ) of an SG
E is
(1) a minimal if for all BF (m,n)-id ξ = (E , ξP , ξN ) of E

such that ξ ≤ ϑ, then ξ = ϑ.
(2) a maximal if for all BF (m,n)-id ξ = (E , ξP , ξN ) of E

such that ϑ ≤ ξ, then ξ = ϑ.
(3) a 0-minimal if for all BF (m,n)-id ξ = (E , ξP , ξN ) of

E such that ξ ≤ ϑ, then ξ = ϑ.

Lemma 3.10. For any non-empty subsets I and K of an
SG E , we have I ⊆ K if and only if λP

I ≤ λP
K and λN

I ≥
λN
K where λK = (E ;λP

I , λ
N
I ) and λK = (E ;λP

K, λ
N
K ) are

characteristic functions I and K respective.

Theorem 3.11. Let ∅ ̸= K ⊆ E . Then
(1) K is a minimal (m,n)-id if and only if λK =

(E;λP
K, λ

N
K ) is a minimal BF (m,n)-id.

(2) K a maximal (m,n)-id if and only if λK = (E ;λP
K, λ

N
K )

is a maximal BF (m,n)-id.
(3) K a 0-minimal (m,n)-ideal if and only if λK =

(E;λP
K, λ

N
K ) is a 0-minimal BF (m,n)-ideal.

Proof:
(1) Let K be a minimal (m,n)-id of E . Then K is an (m,n)-

ideal. Thus, by Theorem 3.4, λK = (E;λP
K, λ

N
K ) is a BF

(m,n)-id of E . Let J be an (m,n)-id of E such that
J ⊆ K. Then by Theorem 3.4, λJ = (E ;λP

J , λN
J ) is a

BF (m,n)-id of E and λJ ≤ λK. Since K is a minimal

(m,n)-id of E we have J = K. Thus, λJ = λK. Hence,
λK = (E ;λP

K, λ
N
K ) is minimal BF (m,n)-id of E .

Conversely, λK = (E ;λP
K, λ

N
K ) is minimal BF (m,n)-id

of E . Then λK = (E ;λP
K, λ

N
K ) is a BF (m,n)-id of E .

Thus, by Theorem 3.4, K is an (m,n)-id of E .
Let λJ be a BF (m,n)-id of E such that λJ ≤ λK.
Then by Theorem 3.4, J is an (m,n)-id of E such that
J ⊆ K. Since λK = (E ;λP

K, λ
N
K ) is minimal BF (m,n)-

id of E we have λJ = λK. Thus, J = K. Hence, K is
a minimal (m,n)-id of E .

(2) Let K be a maximal (m,n)-id of E . Then K is an (m,n)-
id. Thus, by Theorem 3.4, λK = (E ;λP

K , λN
K) is a BF

(m,n)-ideal of E . Let J be an (m,n)-id of E such that
K ⊆ J . Then by Theorem 3.4, λJ = (E ;λP

J , λN
J ) is a

BF (m,n)-id of E and λK ≤ λJ . Since K is a minimal
(m,n)-id of E we have J = K. Thus, λJ = λK. Hence,
λK = (E ;λP

K, λ
N
K ) is maximal BF (m,n)-id of E .

Conversely, λK = (E ;λP
K, λ

N
K ) is maximal BF (m,n)-

id of E . Then λK = (E ;λP
K, λ

N
K ) is a BF (m,n)-id of

E . Thus, by Theorem 3.4, K is an (m,n)-ideal of E .
Let λJ be a BF (m,n)-id of E such that λK ≤ λJ .
Then by Theorem 3.4, J is an (m,n)-ideal of E such
that K ⊆ J . Since λK = (E ;λP

K, λ
N
K ) is maximal BF

(m,n)-id of E we have λJ = λK. Thus, J = K. Hence,
K is a maximal (m,n)-id of E .

(3) It follows from (1).

Let ϑ = (E ;ϑP , ϑN ) be a BF set and (s, t) ∈ [0, 1] ×
[−1, 0]. Define the set U

(s,t)
ϑ := {e ∈ E | ϑP (e) ≥

s, ϑN ≤ t} is called an (s, t)-level subset of BF set of
ϑ = (E ;ϑP , ϑN ).

Lemma 3.12. [5] A BF set ϑ = (E ;ϑP , ϑN ) is a BF Ssg of
an SG E if and only if the level set U (s,t)

ϑ is a Ssg of E for
all (s, t) ∈ [0, 1]× [−1, 0].

Theorem 3.13. A BF set ϑ = (E ;ϑP , ϑN ) is a BF (m,n)-
ideal of an SG E if and only if the level set U

(s,t)
ϑ is an

(m,n)-id of E for all (s, t) ∈ [0, 1]× [−1, 0].

Proof: Let ϑ = (E ;ϑP , ϑN ) be a BF (m,n)-
id of E . Then ϑ = (E ;ϑP , ϑN ) is a BF Ssg
of E . By Lemma 3.12, U

(s,t)
ϑ is a Ssg of E . Let

e1, e2, . . . em, k, r1, r2, . . . , rn ∈ U
(s,t)
ϑ . Then ϑP (ei) ≥

s, ϑP (rj) ≥ s and ϑN (ei) ≤ t, ϑN (rj) ≤ t
for some i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . ,m}.
By assumption, ϑP (e1e2 · · · Emkr1r2 · · · rn) ≥ ϑP (e1) ∧
ϑP (e2) ∧ · · · ∧ ϑP (em) ∧ · · · ∧ ϑP (r1) ∧ ϑP (r2) ∧ · · · ∧
ϑP (rn) and ϑN (e1e2 · · · emkr1r2 · · · rn) ≤ ϑN (e1) ∨
ϑN (e2) ∨ · · · ∨ ϑN (em) ∨ · · · ∨ ϑN (r1) ∨ ϑN (r2) ∨
· · · ∨ ϑN (rn). Thus, ϑP (e1e2 · · · emkr1r2 · · · rn) ≥ s
and ϑN (e1e2 · · · emkr1r2 · · · rn) ≤ t. It implies that,
e1e2 · · · Emkr1r2 · · · rn ∈ U

(s,t)
ϑ . Hence, U (s,t)

ϑ is an (m,n)-
id of E .

Conversely, suppose that U (s,t)
ϑ is an (m,n)-id of E . Then

U
(s,t)
ϑ is a Ssg of E . By Lemma 3.12, ϑ = (E ;ϑP , ϑN )

is a BF Ssg of an SG E . If ϑ = (E ;ϑP , ϑN ) is not a
BF (m,n)-id of E , then there exists ei, k, rj ∈ E such
that ϑP (e1e2 · · · emkr1r2 · · · rn) < ϑP (e1) ∧ ϑP (e2) ∧
· · · ∧ ϑP (em) ∧ · · · ∧ ϑP (r1) ∧ ϑP (r2) ∧ · · · ∧ ϑP (rn)
or ϑN (e1e2 · · · emkr1r2 · · · rn) > ϑN (e1) ∨ ϑN (e2) ∨
· · · ∨ ϑN (em) ∨ · · · ∨ ϑN (r1) ∨ ϑN (r2) ∨ · · · ∨ ϑN (rn).
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By assumption, we have e1e2 · · · emkr1r2 · · · rn ∈ U
(s,t)
ϑ .

Thus ϑP (e1e2 · · · emkr1r2 · · · rn) ≥ ϑP (e1) ∧ ϑP (e2) ∧
· · · ∧ ϑP (em) ∧ · · · ∧ ϑP (r1) ∧ ϑP (r2) ∧ · · · ∧ ϑP (rn) or
ϑN (e1e2 · · · emkr1r2 · · · rn) ≤ ϑN (e1) ∨ ϑN (e2) ∨ · · · ∨
ϑN (em) ∨ · · · ∨ ϑN (r1) ∨ ϑN ∨ · · · ∨ ϑN (rn). It is a
contradiction. Hence, ϑ = (E ;ϑP , ϑN ) be a BF (m,n)-id
of E .

Next, we give the relationship between prime, semiprime
(m,n)-ideals and prime, semiprime BF (m,n)-ideals.

Definition 3.14. Let K be an (m,n)-id of an SG E is called
(1) prime if eh ∈ K implies e ∈ K or h ∈ K for all e, h ∈ E ,
(2) semiprime if e2 ∈ K implies e ∈ K for all e ∈ E .

Definition 3.15. Let ϑ = (E ;ϑP , ϑN ) be a BF (m,n)-id of
an SG is called
(1) prime if ϑP (eh) ≤ ϑP (e) ∨ ϑP (h) and ϑN (eh) ≥

ϑN (e) ∧ ϑN (h) for all e, h ∈ E ,
(2) semiprime if ϑP (e2) ≤ ϑP (e) and ϑN (e2) ≥ ϑN (e) for

all e ∈ E .

Remark 3.16. Every prime (m,n)-id is semiprime (m,n)-id
in an SG.

Theorem 3.17. Let K be a non-empty subset of an SG E .
Then
(1) K is a prime (m,n)-id of E if and only if λK =

(E ;λP
K, λ

N
K ) is a prime BF (m,n)-id of E .

(2) K is a semiprime (m,n)-id of E if and only if λK =
(E ;λP

K, λ
N
K ) is a semiprime BF (m,n)-id of E .

Proof:
(1) Suppose that K is a prime (m,n)-id of E . Then K is

an (m,n)-id of E . Thus, by Theorem 3.4 λK is a BF
(m,n)-id of E . Let e, h ∈ E .
Case 1: If eh ∈ K, then e ∈ K or h ∈ K. Thus,
λP
K(eh) = 1 = λP

K(e) and λN
K (eh) = −1 = λN

K (e) or
λP
K(h) = 1 = λP

K(eh) and λN
K (h) = −1 = λN

K (eh).
Hence, λP

K(eh) ≤ λP
K(e) ∨ λP

K(h) and λN
K (eh) ≥

λN
K (e) ∧ λN

K (h).
Case 2: If eh /∈ K, then λP

K(eh) = 0 and λN
K (eh) = 0.

Thus, λP
K(eh) ≤ λP

K(e)∨λP
K(h) and λN

K (eh) ≥ λN
K (e)∧

λN
K (h).

Therefore, λK = (E ;λP
K, λ

N
K ) is a prime BF (m,n)-id

of E .
Conversely, suppose that λK = (E ;λP

K, λ
N
K ) is a prime

BF (m,n)-id of E . Then λK is a BF (m,n)-ideal of
E . Thus, by Theorem 3.4, K is an (m,n)-ideal of E .
Let e, h ∈ E with eh ∈ K. Then, λP

K(eh) = 1 and
λN
K (eh) = −1. If e /∈ K and h /∈ K, then λP

K(e) =
0 = λP

K(h) and λN
K (e) = 0 = λN

K (h). By assumption,
λP
K(eh) ≤ λP

K(e)∨λP
K(h) and λN

K (eh) ≥ λN
K (e)∧λN

K (h).
Thus, λP

K(eh) = 0 and λN
K (eh) = 0. It is a contradiction,

so e ∈ K or h ∈ K. Hence, K is a prime (m,n)-id of
E .

(2) Suppose that K is a semiprime (m,n)-id of E . Then K
is an (m,n)-id of E . Thus, by Theorem 3.4 λK is a BF
(m,n)-id of E . Let e ∈ E .
Case 1: If e2 ∈ K, then e ∈ K. Thus, λP

K(e
2) = 1 =

λP
K(e) and λN

K (e2) = −1 = λN
K (e). Hence, λP

K(e
2) ≤

λP
K(e) and λN

K (e2) ≥ λN
K (e).

Case 2: If e2 /∈ K, then λP
K(e

2) = 0 and λN
K (e2) = 0.

Thus, λP
K(e

2) ≤ λP
K(e) and λN

K (e2) ≥ λN
K (e).

Therefore, λK = (E ;λP
K, λ

N
K ) is a prime BF (m,n)-id

of E .
Conversely, suppose that λK = (E ;λP

K, λ
N
K ) is a prime

BF (m,n)-id of E . Then λK is a BF (m,n)-id of E .
Thus, by Theorem 3.4, K is an (m,n)-idl of E . Let e ∈ E
with e2 ∈ K. Then, λP

K(e
2) = 1 and λN

K (e2) = −1. If
e /∈ K, then λP

K(e) = 0 and λN
K (e) = 0. By assumption,

λP
K(e

2) ≤ λP
K(e) and λN

K (e2) ≥ λN
K (e). Thus, λP

K(eh) =
0 and λN

K (e2) = 0. It is a contradiction, so e ∈ K. Hence,
K is a semiprime (m,n)-id of E .

IV. BIPOLAR FUZZY n-INTERIOR IDEALS

Before, we will review the definition of n-interior ideals
and weakly n-interior ideals in Sgs.

Definition 4.1. [24] A Ssg K of an SG E is said to be an
n-interior ideal (n-In id) of E if EKnE ⊆ K, where n is an
integer.

Definition 4.2. A non-empty subset K of an SG E is called
a weakly n-interior ideal (W n-In id) of E if EKnE ⊆ K,
where n is an integer.

Next, we defined bipolar fuzzy n-interior ideals and bipo-
lar fuzzy weakly n-interior ideals in SGs.

Definition 4.3. A BF Ssg ϑ = (E ;ϑP , ϑN ) in an SG E is
called BF n-interior ideal (BF n-In id) of E if

(1) ϑP (hrni k) ≥ ϑP (ri) ∧ ϑP (r2) ∧ · · · ∧ ϑP (rn)

(2) ϑN (hrni k) ≤ ϑN (ri) ∨ ϑN (r2) ∨ · · · ∨ ϑN (rn)

for all h, ri, k ∈ E and where i ∈ {1, 2, . . . , n}.

Definition 4.4. A BF set ϑ = (E ;ϑP , ϑN ) in an SG E is
called BF weakly n-interior ideal (BF W n-In id) of E if

(1) ϑP (hrni k) ≥ ϑP (ri) ∧ ϑP (r2) ∧ · · · ∧ ϑP (rn)

(2) ϑN (hrni k) ≤ ϑN (ri) ∨ ϑN (r2) ∨ · · · ∨ ϑN (rn)

for all h, ri, k ∈ E and where i ∈ {1, 2, . . . , n}.

Theorem 4.5. Let {ϑi | i ∈ J } be a family of BF n-interior
ideals (BF n-In id) of an SG E . Then

∧
i∈F

ϑi is a BF n-In id

of E , where ϑi = {(e, ϑP
i , ϑ

N
i ) | E ∈ E}.

Proof: Let e, h ∈ E . Then,

∧
i∈J

ϑP
i (eh) ≥

∧
i∈J

{ϑP
i (e) ∧ ϑP

i (h)}

=
∧
i∈J

ϑP
i (e) ∧

∧
i∈J

ϑP
i (h)

and

∨
i∈J

ϑN
i (eh) ≤

∨
i∈J

{ϑN
i (e) ∨ ϑN

i (h)}

=
∨
i∈J

ϑN
i (e) ∨

∨
i∈J

ϑN
i (h).

Thus,
∧
i∈J

ϑi is a BF-Ssg of E .
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Let h, rni , k ∈ E for all i ∈ {1, 2, . . . , n}. Then,∧
i∈J

ϑP
i (hr

n
i k)

≥
∧
i∈J

{ϑP
i (r1) ∧ ϑP

i (r2) · · · ∧ ϑP
i (rn)}

=
∧
i∈J

ϑP
i (r1) ∧

∧
i∈J

ϑP
i (r2) · · · ∧

∧
i∈J

ϑP
i (rn)

and ∨
i∈J

ϑN
i (hrni k)

≥
∨
i∈J

{ϑN
i (r1) ∨ ϑN

i (r2) · · · ∨ ϑN
i (rn)}

=
∨
i∈J

ϑN
i (r1) ∧

∨
i∈J

ϑN
i (r2) · · · ∨

∨
i∈J

ϑN
i (rn).

Thus,
∧
i∈J

ϑi is a BF n-In id of E .

Theorem 4.6. Let {ϑi | i ∈ J } be a family of BF W n-In
id s of an SG E . Then

∧
i∈F

ϑi is a BF W n-In id of E , where

ϑi = {(e, ϑP
i , ϑ

N
i ) | E ∈ E}.

Proof: It follows from Theorem 4.5.

Theorem 4.7. Let K be an non-empty subset of an SG E and
m,n are positive integers. Then the following statements hold
(1) K is an n-In id of E if and only if the characteristic

function λK = (E ;λP
K, λ

N
K ) is a BF n-In id of E .

(2) K is a W n-In id of E if and only if the characteristic
function λK = (E ;λP

K, λ
N
K ) is a BF W n-In id of E .

Proof:
(1) Suppose that K is an n-interior ideal of E . Then K is a

Ssg of E . Thus, by Theorem 2.13, λK = (E ;λP
K, λ

N
K ) is

a BF Ssg of E . Let h, ri, k ∈ E where i ∈ {1, 2, . . . , n}.
If ri ∈ K for all i ∈ {1, 2, . . . , n}, then hrni k ∈ K.
Thus, λP

K(ri) = λP
K(hr

n
i k) = 1 and λN

K (ri) =
λN
K (hrni k) = −1 for all i ∈ {1, 2, . . . , n}. Hence,

λP
K(hr

n
i k) ≥ λP

K(ri) ∧ λP
K(r2) ∧ · · · ∧ λP

K(rn) and
λN
K (hrni k) ≤ λN

K (ri) ∨ λN
K (r2) ∨ · · · ∨ λN

K (rn).
If ri /∈ K for some i ∈ {1, 2, . . . , n}, then λP

K(ri) = 0
and λN

K (ri) = 0 for some i ∈ {1, 2, . . . , n}. Thus,
λP
K(hr

n
i k) ≥ λP

K(ri) ∧ λP
K(r2) ∧ · · · ∧ λP

K(rn) and
λN
K (hrni k) ≤ λN

K (ri) ∨ λN
K (r2) ∨ · · · ∨ λN

K (rn).
Therefore, λK = (E ;λP

K, λ
N
K ) is a BF n-In id of E .

Conversely, suppose that λK = (E;λP
K, λ

N
K ) is a BF

n-In id of E . Then λK = (E ;λP
K, λ

N
K ) is a BF Ssg

of E . Thus, by Theorem 2.13, K is a Ssg of E .
Let rni ∈ EKnE where n is an integer and for all
i ∈ {1, 2, . . . , n}. Then λP

K(r
n
i ) = 1 and λn

K(r
n
i ) = 0

for all i ∈ {1, 2, . . . , n}. By assumption, λP
K(hr

n
i k) ≥

λP
K(ri) ∧ λP

K(r2) ∧ · · · ∧ λP
K(rn) and λN

K (hrni k) ≤
ϑN
K(ri)∨ λN

K (r2)∨ · · · ∨ λN
K (rn). Thus, λP

K(hr
n
i k) = 1

for all i ∈ {1, 2, . . . , n} and λN
K (hrni k) = 0. Hence,

rni ∈ K for all i ∈ {1, 2, . . . , n}. Therefore, K is an
n-In id of E .

(2) It follows from (1).

Theorem 4.8. A BF set ϑ = (E ;ϑP , ϑN ) is a BF n-In id of
an SG E if and only if the level set U (s,t)

ϑ is an n-In id of E
for all (s, t) ∈ [0, 1]× [−1, 0].

Proof: Let ϑ = (E ;ϑP , ϑN ) be a BF n-In id of E .
Then ϑ = (E ;ϑP , ϑN ) is a BF Ssg of E . By Lemma 3.12,
U

(s,t)
ϑ is a Ssg of E . Let r1, r2, . . . rm, k, h ∈ U

(s,t)
ϑ . Then

ϑP (ri) ≥ s and ϑN (ri) ≤ t for some i ∈ {1, 2, . . . , n}. By
assumption, ϑP (hrni k) ≥ ϑP (r1) ∧ ϑP (r2) ∧ · · · ∧ ϑP (rn)
and ϑN (hrni k) ≤ ϑN (r1) ∨ ϑN (r2) ∨ · · · ∨ ϑN (rm). Thus,
ϑP (hrni k) ≥ s and ϑN (hrni k) ≤ t. It implies that, rni ∈
U

(s,t)
ϑ . Hence, U (s,t)

ϑ is an n-In id of E .
Conversely, suppose that U (s,t)

ϑ is an n-interior ideal of E .
Then U

(s,t)
ϑ is a Ssg of E . By Lemma 3.12, ϑ = (E ;ϑP , ϑN )

is a BF Ssg of an SG E . If ϑ = (E ;ϑP , ϑN ) is not a BF n-
interior ideal of E , then there exists ri, k, h ∈ E such that
ϑP (hrni k) < ϑP (r1)∧ϑP (r2)∧· · ·∧ϑP (rn) or ϑN (hrni k) >
ϑN (r1) ∨ ϑN (r2) ∨ · · · ∨ ϑN (rn). By assumption, we have
hrni k ∈ U

(s,t)
ϑ . Thus, ϑP (hrni k) ≥ ϑP (r1) ∧ ϑP (r2) ∧ · · · ∧

ϑP (rn) or ϑN (hrni k) ≤ ϑN (r1)∨ϑN (r2)∨ · · · ∨ϑN (rn). It
is a contradiction. Hence, ϑ = (E ;ϑP , ϑN ) is a BF n-In id
of E .

Corollary 4.9. A BF set ϑ = (E ;ϑP , ϑN ) is a BF W n-In
id of an SG E if and only if the level set U (s,t)

ϑ is a W n-In
id of E for all (s, t) ∈ [0, 1]× [−1, 0].

Definition 4.10. An n-interior ideal K of an SG E is called

(1) a minimal if for every n-In id of J of E such that
J ⊆ K, we have J = K,

(2) a maximal if for every n-In id of J of E such that
K ⊆ J , we have J = K.

(3) a 0-minimal if for every n-interior ideal of J of E such
that J ⊆ K, we have J = K.

Definition 4.11. A BF n-interior ideal ϑ = (E ;ϑP , ϑN ) of
an SG E is

(1) a minimal if for all BF n-In id ξ = (E ; ξP , ξN ) of E
such that ξ ≤ ϑ, then ξ = ϑ,

(2) a maximal if for all BF n-In id ξ = (E ; ξP , ξN ) of E
such that ϑ ≤ ξ, then ξ = ϑ.

(3) a 0-minimal if for all BF n-interior idealξ =
(E , ξP , ξN ) of E such that ξ ≤ ϑ, then ξ = ϑ.

Theorem 4.12. A non-empty subset K of an SG E . Then the
following statements hold

(1) K is a minimal n-In id if and only if λK = (E;λP
K, λ

N
K )

is a minimal BF n-In id of E .
(2) K is a maximal n-In id if and only if λK = (E;λP

K, λ
N
K )

is a maximal BF n-In id of E .
(3) K is a 0-minimal n-In id if and only if λK =

(E;λP
K, λ

N
K ) is a 0-minimal BF n-In id of E .

Proof:

(1) Let K be a minimal n-In id of E . Then K is an n-In
id of E . Thus, by Theorem 4.7, λK = (E ;λP

K, λ
N
K ) is a

BF n-In id of E . Let J be an n-interior ideal of E such
that J ⊆ K. Then by Theorem 4.7, λJ = (E ;λP

J , λN
J )

is a BF n-interior ideal of E and λJ ≤ λK. Since K is
a minimal n-interior ideal of E we have J = K. Thus,
λJ = λK. Hence, λK = (E ;λP

K, λ
N
K ) is minimal BF

n-In id of E .
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Conversely, λK = (E ;λP
K, λ

N
K ) is minimal BF n-In id

of E . Then λK = (E ;λP
K, λ

N
K ) is a BF n-interior ideal

of E . Thus, by Theorem 4.7, K is an n-In id of E .
Let λJ = (E ;λP

J , λN
J ) be a BF n-In id of E such that

λJ ≤ λK. Then by Theorem 4.7, J is an n-In id of E
such that J ⊆ K. Since λK = (E ;λP

K, λ
N
K ) is minimal

BF n-In id of E we have λJ = λK. Thus, J = K.
Hence, K is a minimal n-In id of E .

(2) Let K be a maximal n-In id of E . Then K is an n-
In id. Thus, by Theorem 4.7, λK = (E ;λP

K, λ
N
K ) is a

BF n-In id of E . Let J be an n-In id of E such that
K ⊆ J . Then by Theorem 4.7, λJ = (E ;λP

J , λN
J ) is a

BF n-In id of E and λK ≤ λJ . Since K is a maximal
n-In id of E we have J = K. Thus, λJ = λK. Hence,
λK = (E ;λP

K, λ
N
K ) is maximal BF n-In id of E .

Conversely, λK = (E ;λP
K, λ

N
K ) is maximal BF n-In id

of E . Then λK = (E ;λP
K, λ

N
K ) is a BF n-In id of E .

Thus, by Theorem 4.7, K is an n-In id of E . Let λJ =
(E ;λP

J , λN
J ) be a BF n-In id of E such that λK ≤ λJ .

Then by Theorem 4.7, J is an n-In id of E such that
K ⊆ J . Since λK = (E ;λP

K, λ
N
K ) is maximal BF n-In

id of E we have λJ = λK. Thus, J = K. Hence, K is
a maximal n-In id of E .

(3) It follows from (1).

Definition 4.13. A W n-In id K of an SG E is called
(1) a minimal if for every W n-In idof J of E such that

J ⊆ K, we have J = K,
(2) a maximal if for every W n-In id of J of E such that

K ⊆ J , we have J = K.
(3) a 0-minimal if for every W n-In id of J of E such that

J ⊆ K, we have J = K.

Definition 4.14. A BF W n-In id ϑ = (E ;ϑP , ϑN ) of an SG
E is
(1) a minimal if for all BF W n-In id ξ = (E ; ξP , ξN ) of E

such that ξ ≤ ϑ, then ξ = ϑ,
(2) a maximal if for all BF W n-In id ξ = (E ; ξP , ξN ) of

E such that ϑ ≤ ξ, then ξ = ϑ.
(3) a 0-minimal if for all BF W n-In id ξ = (E , ξP , ξN ) of

E such that ξ ≤ ϑ, then ξ = ϑ.

Theorem 4.15. A non-empty subset K of an SG E . Then the
following statements hold
(1) K is a minimal W n-In id if and only if λK =

(E;λP
K, λ

N
K ) is a minimal BF W n-In id of E .

(2) K is a maximal W n-In id if and only if λK =
(E;λP

K, λ
N
K ) is a maximal BF W n-In id of E .

The following theorem we can prove according to the
theorem 4.12.

Theorem 4.16. A non-empty subset K of an SG E is a
0-minimal weakly n-interior ideal if and only if λK =
(E;λP

K, λ
N
K ) is a 0-minimal BF weakly n-interior ideal.

Proof: It follows from Theorem 4.12.
Next, we give the relationship between prime, semiprime

n-In ids and prime, semiprime BF n-In ids.

Definition 4.17. Let K be an n-In id of an SG E is called
(1) prime if eh ∈ K implies e ∈ K or h ∈ K for all

e, h ∈ E ,

(2) semiprime if e2 ∈ K implies e ∈ K for all e ∈ E .

Definition 4.18. Let ϑ = (E ;ϑP , ϑN ) be a BF n-In id of an
SG E is called

(1) prime if ϑP (eh) ≤ ϑP (e) ∨ ϑP (h) and ϑN (eh) ≥
ϑN (e) ∧ ϑN (h) for all e, h ∈ E ,

(2) semiprime if ϑP (e2) ≤ ϑP (e) and ϑN (e2) ≥ ϑN (e) for
all e ∈ E .

Remark 4.19. Every prime n-In id is semiprime n-In id in
an SG.

Theorem 4.20. Let K be a non-empty subset of an SG E .
Then the following statements hold

(1) K is a prime n-In id of E if and only if λK =
(E ;λP

K, λ
N
K ) is a prime BF n-In id of E .

(2) K is a semiprime n-In id of E if and only if λK =
(E ;λP

K, λ
N
K ) is a semiprime BF n-In id of E .

Proof:

(1) Suppose that K is a prime n-In id of E . Then K is an
n-In id of E . Thus, by Theorem 4.7 λK = (E ;λP

K, λ
N
K )

is a BF n-In id of E . Let e, h ∈ E .
Case 1: If eh ∈ K, then e ∈ K or h ∈ K. Thus
λP
K(eh) = 1 = λP

K(e) and λN
K (eh) = −1 = λN

K (e) or
λP
K(h) = −1 = λP

K(eh) or λN
K (eh) = −1 = λN

K (h).
Hence, λP

K(eh) ≤ λP
K(e) ∨ λP

K(h) and λN
K (eh) ≥

λN
K (e) ∧ λN

K (h).
Case 2: If eh /∈ K, then λP

K(eh) = 0 and λN
K (eh) = 0.

Thus, λP
K(eh) ≤ λP

K(e)∨λP
K(h) and λN

K (eh) ≥ λN
K (e)∧

λN
K (h).

Therefore, λK = (E ;λP
K, λ

N
K ) is a prime BF n-In id of

E .
Conversely, suppose that λK = (E ;λP

K, λ
N
K ) is a prime

BF n-In id of E . Then λK is a BF n-In id of E . Thus,
by Theorem 4.7, K is an n-In id of E . Let e, h ∈ E with
eh ∈ K. Then, λP

K(eh) = 1 and
λN
K (eh) = −1. If e /∈ K and h /∈ K, then λP

K(e) =
0 = λP

K(h) and λN
K (e) = 0 = λN

K (h). By assumption,
λP
K(eh) ≤ λP

K(e) ∨ λP
K(h) and λN

K (eh) ≥ λN
K (e) ∧

λN
K (h). Thus,λP

K(eh) = 0 and λN
K (eh) = 0. It is a

contradiction, so e ∈ K or h ∈ K. Hence, K is a prime
n-In id of E .

(2) Suppose that K is a semiprime n-In id of E . Then
K is an n-In id of E . Thus, by Theorem 4.7 λK =
(E ;λP

K, λ
N
K ) is a BF n-In id of E . Let e, h ∈ E .

Case 1: If e2 ∈ K, then e ∈ K . Thus λP
K(e

2) = 1 =
λP
K(e) and λN

K (e2) = −1 = λN
K (e) Hence, λP

K(e
2) ≤

λP
K(e) and λN

K (e2) ≥ λN
K (e).

Case 2: If e2 /∈ K, then λP
K(e

2) = 0 and λN
K (eh) = 0.

Thus, λP
K(e

2) ≤ λP
K(e) and λN

K (e2) ≥ λN
K (e).

Therefore, λK = (E ;λP
K, λ

N
K ) is a prime BF n-In id of

E .
Conversely, suppose that λK = (E ;λP

K, λ
N
K ) is a prime

BF n-In id of E . Then λK is a BF n- in id of E . Thus,
by Theorem 4.7, K is an n-In id of E . Let e ∈ E with
e2 ∈ K. Then, λP

K(e
2) = 1 and

λN
K (e2) = −1. If e /∈ K, then λP

K(e) = 0 and
λN
K (e) = 0. By assumption, λP

K(e
2) ≤ λP

K(e) and
λN
K (e2) ≥ λN

K (e). Thus,λP
K(e

2) = 0 and λN
K (e2) = 0. It

is a contradiction, so e ∈ K. Hence, K is a prime n-In
id of E .
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Definition 4.21. Let K be a W n-In id of an SG E is called
(1) prime if eh ∈ K implies e ∈ K or h ∈ K for all

e, h ∈ E ,
(2) semiprime if e2 ∈ K implies e ∈ K for all e ∈ E .

Definition 4.22. Let ϑ = (E ;ϑP , ϑN ) be a BF W n-In id of
an SG E is called
(1) prime if ϑP (eh) ≤ ϑP (e) ∨ ϑP (h) and ϑN (eh) ≥

ϑN (e) ∧ ϑN (h) for all e, h ∈ E ,
(2) semiprime if ϑP (e2) ≤ ϑP (e) and ϑN (e2) ≥ ϑN (e) for

all e ∈ E .

Theorem 4.23. Let K be a non-empty subset of an SG E .
Then the following statements hold
(1) K is a prime W n-In id of E if and only if λK =

(E ;λP
K, λ

N
K ) is a prime BF W n-In id of E .

(2) K is a semiprime W n-In id of E if and only if λK =
(E ;λP

K, λ
N
K ) is a semiprime BF W n-In id of E .

Proof: It follows from Theorem 4.20.

V. CONCLUSION

In this paper, we introduce the concept of bipolar fuzzy
(m,n)-ideals in semigroups and investigate their properties.
Additionally, we establish the relationship between (m,n)-
ideals and bipolar fuzzy (m,n)-ideals. Furthermore, we
define bipolar fuzzy n-interior ideals in semigroup and prove
the relationship between n-interior ideals and bipolar fuzzy
n-interior ideals. Also, we prove weakly n-interior ideals and
bipolar fuzzy weakly n-interior ideals. In the future, we plan
to explore hybrid almost (m,n)-ideals and n-interior ideals
in semigroups or within the algebraic context.
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