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Identification and Segmentation of Camellia
Oleifera Branches to be Pruned Based on Improved
YOLOvV8-seg

Pinglu Chen, Feng Huang, Jing Xu, and Muhua Liu

Abstract—An improved recognition and segmentation model
for pruning branches of Camellia oleifera trees based on
YOLOv8n-seg was proposed, aiming to address the challenges
posed by dense interleaving of branches, severe occlusion, and
complex shape characteristics. The SPPF module was replaced
with the SPPFCSPC module, DCNv2 was introduced into the
C2f module, and Wise-loU v3 loss function replaced CloU loss
function. The experimental findings reveal that the enhanced
YOLOv8n-seg model exhibits a remarkably compact size of
merely 9.56MB, rendering it exceptionally well-suited for
deployment. The recognition mean Average Precision (box-
mAP) and the mask mean Average Precision (mask-mAP) on
the dataset of Camellia oleifera branches necessitating pruning
stand at an impressive 97.9% and 96%, respectively, surpassing
the original model by 1.1% and 1.2%. This advancement
effectively mitigates challenges associated with intricate shape
features and occlusion in Camellia oleifera branches requiring
pruning. Furthermore, the inference time for a single image is a
swift 39.5ms.

Index Terms—YOLOVS, Instance
segmentation, Pruning

Camellia oleifera,

l. INTRODUCTION

AMELLIA oleifera is one of the characteristic economic
crops in China, belonging to the category of evergreen
crops that thrive throughout the year. Its fruit possesses

abundant oil content and holds significant economic value [1].

Pruning operation directly impact economic benefits of
Camellia oleifera management and cultivation [2]-[3].
Currently, the pruning of Camellia oleifera relies on manual
assistance with simple pruning knives, which is plagued by
issues such as high labor intensity, low efficiency, and
imprecise identification of branches requiring pruning.
Developing a robotic system for Camellia oleifera pruning
presents an effective solution to address these challenges. The
accurate and rapid recognition of the branches requiring
pruning by machines as one of the primary obstacles must be
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overcome during the development of pruning robot for
Camellia oleifera. Compared to deciduous fruit trees, the lush
branches and evergreen leaves of Camellia oleifera trees
during the pruning process poses greater challenges for
machine recognition of the branches to be pruned.

Although research on the machine recognition of Camellia
oleifera tree branches is currently limited, recent studies have
witnessed an upsurge in machine recognition of fruit tree
branches due to its pivotal role in the advancement of pruning
and picking robots for fruit trees. The skeleton of grape
branches was extracted by Jia et al. [4] through a comparison
of various thinning algorithms, based on the acquisition of
binary images. Among these algorithms, the Rosenfeld
thinning algorithm was selected for its superior ability to
maintain skeleton connectivity. Huang et al. [5] proposed a
method for image recognition and frame extraction of loquat
branches. Firstly, the segmentation threshold was determined
through brightness conversion to achieve accurate
segmentation, and then the feature image was extracted by
using the branch feature of loquat branches. Under the
example verification, the correct recognition rate of loquat
branch image was 91.2%. Amatya et al. [6] developed a
machine vision system for segmentation and detection of
cherry branches and leaves. Firstly, an image segmentation
methodology was devised to discern the visible segments of
the branches, followed by the application of a Bayesian
classifier to categorize the image pixels into branches,
cherries, foliage, and other pertinent classifications. The
accuracy of branch recognition under this method was 89.6%.
Zhang et al. [7] proposed an improved AlexNet network for
apple branch detection and the average recall and accuracy of
this method were 92% and 86%, respectively. Zheng et al. [8]
proposed a lightweight Attention Ghost-HRNet (AGHRNEet)
network model based on deep learning to segment the trunk
and branches of jujube trees, and the mloU and mPA of the
method were 77.79% and 89.46%, respectively.

The aforementioned research is based on the recognition of
fruit tree branches using two-dimensional images. In order to
further acquire the positional information of the targeted
branches, certain scholars have conducted three-dimensional
point cloud recognition of fruit tree branches. Karkee et al. [9]
proposed a machine vision system, employing a three-
dimensional camera to capture three-dimensional images of
apple trees, and utilizing a thinning algorithm to calculate the
skeleton structure. The simplified two-step pruning rule was
used to identify the branches required pruning. The approach
achieved pruning rates of 85% for long branches and 69% for
overlapping branches of apple trees. Elfiky et al. [10]
successfully acquired a comprehensive three-dimensional

Volume 52, Issue 3, March 2025, Pages 606-614



TAENG International Journal of Computer Science

point cloud of an apple tree by employing geometric features
to register the two captured point cloud images from the front
and back perspectives of the tree. They further utilized the
RANSAC algorithm to accurately fit the trunk, followed by
branch identification through a clustering algorithm. Notably,
this method achieved a commendable branch recognition
accuracy of 92.2%. Ma et al. [11] proposed a visual system
based on the synchronization of two consumer RGB-D
cameras to obtain high-quality three-dimensional point
clouds of jujube trees on the spot. Based on the deep learning
algorithm (SPGNet), the trunk and branches were
automatically segmented, and then the DBSCAN clustering
algorithm was used to estimate the number of branches of
jujube trees. The classification accuracy of the algorithm for
trunk and branch was 93% and 84% respectively. Ma et al.
[12] obtained the point cloud information of jujube trees
under different weather conditions through the visual system
built by RGB-D camera, and then used the semantic
segmentation model of Deeplabv3 and Pspnet?2 to extract the
mask of pruning. Finally, the pruning skeleton was extracted
according to the binary image and the number of pruning
branches was determined. The mPA and mloU were 89% and
81.85%, respectively.

In summary, the identification method of fruit tree
branches is mainly divided into two-dimensional image
recognition and three-dimensional point cloud recognition.
The accurate identification of deciduous fruit trees with
sparse branches such as apples and jujubes, can be achieved
through the three-dimensional reconstruction of the three-
dimensional point cloud data. However, the application of
these methods for identifying branches of Camellia oleifera
with lush branches and evergreen characteristics poses
challenges. Due to the substantial occlusion and intricate
shape characteristics of Camellia oleifera tree branches,
existing branch recognition methods fail to meet the precise
identification and segmentation requirements for pruning
operations. Therefore, this study will propose an improved
YOLOv8-seg model for recognizing and segmenting
Camellia oleifera branches targeted for pruning. Firstly, the
SPPF module in the original backbone network is replaced by
the SPPFCSPC module. This replacement strengthens the
network's ability to recognize large and small branches and
extract branch shape features. Secondly, the second version
of deformable convolution (DCNv2) is introduced and fused
with the C2f module. Additionally, some C2f modules in the
Neck network are replaced, enhancing the network's capacity

Mirror reflection
Fig. 1. Data augmentation

Tarnish and noise

to capture detailed branch features, even under occlusion.
Finally, the model prediction box loss function CloU is
replaced by Wise-loU v3. This change stabilizes prediction
box regression and improves the model's positioning
performance.

Il. MATERIALS AND METHODS

A. Data Collection and Annotation

The present study identifies and segments the four most
prevalent types of branches required pruning of Camellia
oleifera, namely dead, damaged, weeping, and epicormic
branches. No public dataset currently exists for the pruning
requirements of Camellia oleifera branches. Therefore, this
study's dataset was created by capturing images at the
Camellia oleifera base in Xinjian District, Nanchang City,
Jiangxi Province (LAT 116.22N, LON 28.40E), and the base
in Poyang County, Shangrao City, Jiangxi Province (LAT
116.93N, LON 29.18E) using a Sony camera. The data set for
training the model is divided into two categories: cloudy and
sunny days, aiming to enhance its comprehensiveness. The
types of branches in the data set were categorized as follows:
dead branches, damaged branches, weeping branches and
epicormic branches, and the number of initial data sets was
1087. The labelme [13] image annotation tool was utilized to
label the data set in this study. Specifically, the polygon
annotation tool within labelme was employed to accurately
delineate the branch contour in the data to avoid the influence
of its complex background on the branches. The tags of dead
branches, damaged branches, weeping branches and
epicormic branches were set as dead branch, damaged branch,
weeping branch and epicormic branch respectively. The Json
tag file generated after labeling was converted into txt file.

B. Data Augmentation

Data augmentation is crucial in deep learning. It expands
datasets, addresses class imbalance, reduces overfitting risk,
and enhances the model's generalization ability. Due to the
small number of data sets, this study expanded the data set by
data enhancement methods. The data enhancement methods
include brightness change, increase noise, add random points
and mirror reflection, as shown in Fig 1. The expanded data
set comprises a total of 5435 images, with the training sets,
verification sets, and test sets distributed in an 8:1:1 ratio. The
distribution of branches by type is presented in Table I.
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TABLE |
CAMELLIA OLEIFERA BRANCHES TO BE PRUNED AND ITS NUMBER

Number of dead

Number of damaged

Number of weeping Number of epicormic

branches branches branches branches

Sunny day dataset (initial) 142 140 149 105
Cloudy day dataset (initial) 145 150 148 108
Sunny day dataset (expansion) 710 700 745 525
Cloudy day dataset (expansion) 725 750 740 540
Training set 1135 1150 1185 877
Validation set 150 150 150 94

Testing set 150 150 150 94

Grand total 1435 1450 1485 1065

C. Introduction of YOLOv8-seg Network Model

The Ultralytics team has developed the YOLOV8 algorithm
in recent years as part of the ongoing YOLO series [15]-[16]-
[17]-[18]. This algorithm demonstrates exceptional
capabilities in various computer vision tasks, including object
detection, image classification, and instance segmentation. In
the backbone and Neck networks, YOLOv8 adopts the design
concept of YOLOv7 ELAM [19]-[20]. It replaces the C3
structure in YOLOVS5 [21]-[22] with the C2f structure, which
provides richer gradient flow, and adjusts channel numbers
for different scale models. In the head, the original coupling
head is replaced with a decoupling head, and the anchor-
based approach is switched to anchor-free, significantly
enhancing model performance. YOLOv8-seg is an instance
segmentation model in YOLOVS8, which is specially designed
for instance segmentation tasks. The segmentation principle
is based on the principle of YOLACT network. YOLOvV8-seg
has five types of network structures, namely YOLOv8n-seg,
YOLOv8s-seg, YOLOv8m-seg, YOLOv8I-seg and
YOLOv8x-seg. In this study, YOLOv8n-seg with the smallest
model structure was selected. The network structure of
YOLACT is shown in Fig 2.

D. Optimization of YOLOv8n-seg Network Model
1) Introduction of SPPFCSPC Module

The original YOLOv8 model struggles with detection and
segmentation due to the occlusion and similar shape
characteristics of Camellia oleifera branches. To address this,
the SPPF module in the backbone network's tail was replaced
with the SPPFCSPC module. The SPPFCSPC module is
improved on the basis of the SPPCSPC module used in

YOLOv7. The SPPFCSPC module performs four distinct
Max Pool operations with varying kernel sizes in its first
branch. This design enhances its ability to handle diverse
objects and improves discrimination between large and small
targets within the image. This improved performance
surpasses that of the SPPF module, albeit at a relatively
increased parameter count. The SPPFCSPC module is a novel
integration of the SPPCSPC and SPPF modules, harnessing
their respective strengths to enhance computational speed
while preserving the same receptive field. The network
architectures of SPPCSPC and SPPFCSPC are illustrated in
Fig 3 and Fig 4, correspondingly.

2) C2f Network Combined with Deformable Convolution

The task of detecting and segmenting branches for pruning
in Camellia oleifera trees presents unique and intricate
features. The diverse shape of the branches to be pruned
coupled with the obstructive presence of leaves, pose
significant challenges for effectively extracting features by
the model. In the original model's feature extraction stage,
traditional convolution may fail to capture intricate branch
features, potentially causing false detections. To address this
limitation, this study introduced the second edition of
deformable convolution (DCNv2) [23] to eliminate the
shortcomings of traditional convolution in the feature
extraction stage. The second version of deformable
convolution is based on deformable convolution (DCN).
While deformable convolution (DCN) adapts to geometric
changes by adjusting sampling positions based on input
features, some sampling points extend beyond the region of
interest, impairing feature extraction.

Prediction | NMS P

Head /

C5 T
L;m_
C3
C2
Cl

' P7 Mask
- Coefficients
P6 — Assembly
=) (
P3

® @

Protonet

7
7

Prototypes

Fig. 2. YOLACT network structure flow chart
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The second edition of deformable convolution introduces
a modulation mechanism that can stack more deformable

convolution layers, and proposes a feature simulation scheme
to guide network training, thus eliminating the shortcomings
of deformable convolution. However, only adding the second
version of the deformable convolution does not significantly
improve the performance of the model. This study designed
the C2f-DCN module based on the C2f network and
integrated it into the 15th layer of the Neck network.
Experimental results reveal that excessive replacement of
C2f-DCN modules increases model parameters without
significantly improving performance. However, carefully
replacing specific C2f-DCN modules effectively addresses
the occlusion issue in identifying and segmenting Camellia
oleifera branches for pruning. The C2f-DCN module network
structure and the DCNv2 network structure are shown in Fig
5 and Fig 6, respectively.

3) Optimization of Loss Function
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YOLOV8 uses CloU Loss as its prediction box loss
function. CloU loss is an improvement over DloU Loss, and
it incorporates factors such as the distance between the
centers of the prediction and ground truth boxes and their
aspect ratio. These additions enhance the stability of box
regression. However, the method for calculating the aspect
ratio between prediction and ground truth boxes is not clearly
defined, which negatively impacts network optimization. To
address this, this study proposes replacing CloU Loss with
Wise-loU v3 [24]. Wise-loU v3 is an improved version of
Wise-loU v1. It introduces distance attention based on
distance metrics, thereby forming a dual-attention
mechanism that enhances the model's ability to focus on
relevant features. The specific formula is as follows:

Lwiouvi =RwiouLiou 1)

Rwiou=eXp((xXg)*+(yy ) V(W5 +H3)) ()

Note: Lwouvi 1S the bounding box loss of Wise-loU v1;
Liou is the bounding box loss of loU; Ry,.u 1S the distance
attention; x and y are the abscissa and ordinate of the center
point of the prediction box, respectively; X, and Y are the

abscissa and ordinate of the center point of the real box,
respectively; Wy and Hy are the width and height of the
minimum circumscribed rectangle of the prediction box and
the real box, respectively; * represents the separation
operation from the calculated graph to make it a constant
without gradient.

The Wise-loU v3 loss function introduces the concept of
outlier degree to evaluate the quality of anchor boxes. Based
on differences in outlier degree, corresponding gradient
enhancements are assigned. This approach constructs a non-
monotonic focus coefficient, which is integrated into the
Wise-loU v1 loss function. As a result, Wise-loU v3 can
dynamically adjust gradient allocation in different scenarios,
improving the model's localization accuracy. The specific
formula for Wise-loU v3 is as follows:

Lol — (3
Lwiouva=rLwiouv (4)
r=ploa’° (5)

Note: Ly, is a monotone focusing coefficient; /8 is an
outlier and g € [0, +x]; — is a moving average; r is a
loU
nonmonotone  focusing factor;, « and ¢ are
hyperparameters, o= 1.9, J=3.
4) Improved YOLOv8n-seg Network Model
Building on the previous analysis, this study enhanced the

YOLOv8n-seg model through several key modifications.
First, the SPPF module in the original backbone network was
replaced with the SPPFCSPC module, thereby improving the
network's ability to recognize both large and small branches
in images and extract branch shape features more effectively.
Second, the second version of deformable convolution
(DCNv2) was integrated into the C2f module, replacing
several C2f modules in the Neck network. This change
enables the model to better capture detailed features of
occluded branches, thus enhancing overall performance.
Finally, the original CloU loss function for the prediction box
was substituted with Wise-loU v3, leading to more stable box
regression and improved positioning accuracy. The enhanced
YOLOv8n-seg model is illustrated in Fig 7.

E. Evaluation Index

In order to objectively analyze the classification and
segmentation performance of the Camellia oleifera tree
branch data set, this study introduced evaluation indicators
such as precision (P), recall (R), mean average precision
(mAP), Fl-score and inferring time per image. The primary
objective of this study is to accurately identify and segment
the branches that require pruning. Therefore, the mean
average precision (mAP) was employed as the main
evaluation index with the loU threshold set at 0.5. The
evaluation indicators can be expressed as follows:

P=TP/(TP+FP)x100% (6)
R=TP/(TP+FN)x100% @
F1-score=2-P-R/(P+R)x100% (8)
mAP=2 S1, P(K) AR(K)x100% (9)

Note: TP refers to the accurate identification of positive
samples as positive samples; FP indicates the number of
negative samples incorrectly identified as positive samples.
FN indicates the number of positive samples incorrectly
identified as negative samples; C is the number of categories;
N is the number of reference thresholds; k is the threshold,;
P(K) is the accuracy rate; R(k) is the recall rate.

I111. MODEL TRAINING AND RESULT ANALYSIS

A. Experimental Environment and Parameter Settings

The training environment was set up on a Windows 10
operating system with an NVIDIA GeForce RTX 3080 GPU.
The system included 32GB of RAM, 10GB of GPU memory;,
and an Intel Core i7-12700F CPU. CUDA version 11.3 and
Python 3.8.16 were used as development tools. The model
training involved 200 iterations with a batch size of 32 per
iteration. The initial learning rate was set to 0.01, the
momentum parameter was set to 0.937, and the weight decay
factor was set to 0.0005.
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Fig. 7. Improve the network structure of YOLOv8n-seg

B. Analysis of Model Results

The improved YOLOv8n-seg model was assessed for its
effectiveness in accurately identifying and segmenting the
branches to be pruned of Camellia oleifera. A total of 4347
images from the test set were utilized for training, and a
comparison was made against the original model. The results
obtained from the testing phase are presented in Fig 8 and Fig
9.

As illustrated in Fig 8, the loss value decreases most
rapidly during the first 25 epochs for both the original and
improved models. Subsequently, it gradually converges to a
stable state after 100 epochs. The model is configured to
terminate the mosaic data at the final 10 epochs during
training, resulting in a subsequent decrease in loss value and
eventual stabilization. The box-loss and mask-loss values of
the improved model are significantly lower than those of the
original model, indicating that the model improvement is
effective. Fig 9 reveals that the mAP value experiences the
most rapid increase during the initial 25 epochs following
model improvement, gradually stabilizing after reaching 100
epochs. Notably, the improved model exhibits significantly
higher box-mAP and mask-mAP compared to its original
counterpart, reaffirming the effectiveness of our proposed
enhancements.
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Fig. 8. Loss function curve before and after the model improvement
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Fig. 9. mAP curve before and after the model improvement

C. Comparative Experiments on Different Pyramid Pooling
Structures

The original YOLOv8n-seg model employs the SPPF
module for pyramid pooling. To evaluate the efficacy and
versatility of the SPPFCSPC module introduced in this study,
a comparative analysis was conducted with several
commonly used pyramid pooling modules, including the
SimSPPF, ASPP, and SPPCSPC modules. Each of these five
modules, along with the original SPPF module, was
integrated into the YOLOv8n-seg model, and the data set of
Camellia oleifera to be pruned was utilized for training and
validation. The evaluation results of the experiment are
shown in Table II.

TABLE Il
COMPARISON OF EVALUATION INDEXES OF DIFFERENT PYRAMID POOLING
STRUCTURES
Network mAP/% F1-score/% Model size/MB
box  mask box mask
SPPF 96.8 948 9453 93.07 6.45
SimSPPF 96.6 94.1 93.9 9242 6.45
ASPP 96.8 93.8 94.49 9264 10.3
SPPCSPC 974 953 9521 93.65 9.53
SPPFCSPC 974 956 95.23 93.82 9.53

Volume 52, Issue 3, March 2025, Pages 606-614



TAENG International Journal of Computer Science

As illustrated in Table Il, integrating both the SPPCSPC
and SPPFCSPC modules leads to improvements in mAP and
F1-score compared to the original model with only the SPPF
module. However, this enhancement is accompanied by an
increase in model size of 3.08 MB. In contrast, the
SPPFCSPC module enhances mAP and F1-score without
increasing the model size. Specifically, the introduction of the
SPPFCSPC module results in a 0.6% increase in box-mAP, a
0.8% increase in mask-mAP, a 0.7% increase in box F1-score,
and a 0.75% increase in mask F1-score relative to the original
model. These findings underscore the effectiveness of
incorporating the SPPFCSPC module for improving model
performance.

D. Improved Model Ablation Experiment

The SPPFCSPC module was introduced in this study based
on YOLOv8n-seg, enhancing the network's recognition
ability for both large and small branches as well as its
extraction capability of branch shape features during the
feature extraction stage. Additionally, the C2f module in the
Neck network incorporated the second version of deformable
convolution (DCNv2) to replace some existing C2f modules,
thereby improving the network's ability to capture detailed
features of occluded branches that need to be pruned. Finally,
Wise-loU v3 replaced the prediction box regression loss
function, ensuring a more stable regression process. To assess
the impact of the three improvement strategies on model
performance, ablation experiments were conducted. The
results are presented in Table 111

The original YOLOv8n-seg model, as indicated in Table 111,
was employed for experiment 1. It achieved the following
results: a box-mAP of 96.8%, a mask-mAP of 94.8%, a box
F1-score of 94.53%, a mask F1-score of 93.07%, and a model
size of 6.45 MB. Experiment 2 introduced the SPPFCSPC
module on the basis of experiment 1 to enhance the ability of
the model to identify large and small branches and extract the
shape features of branches. In Experiment 2, the box-mAP,
mask-mAP, box Fl1-score, and mask F1-score increased by
0.6%, 0.8%, 0.7%, and 0.75%, respectively, compared to
Experiment 1. However, this improvement came at the cost
of a 3.08 MB increase in model size due to additional
parameters. In Experiment 3, DCNv2 was integrated into the
C2f module based on the architecture from Experiment 2,
enhancing the model's capability to capture detailed branch
features under occlusion. The box-mAP, mask-mAP, box F1-
score and mask F1-score of the model increases by 0.1%,
0.4%, 0.15% and 0.41%, respectively, and the model size
increases by 0.03 MB. In experiment 4, based on experiment
3, the loss function of calculating the prediction box
regression was replaced by Wise-loU v3. The box-mAP, box

F1-score and mask F1-score of the model are increased by
0.4%, 0.66% and 0.4%, respectively. Because the loss
function of calculating the prediction box regression is
replaced, the mask-mAP of the model does not increase, and
the relative model size does not change. Through the above
comparative analysis, this study has positive significance for
all improvements of YOLOv8n-seg model.

To evaluate the performance improvements of the
enhanced model relative to the original, four images were
randomly selected from the test set for detailed analysis (Fig
10). As illustrated in Fig 10, the enhanced model effectively
addresses issues related to incomplete segmentation of
epicormic branch edges and repetitive recognition during
segmentation. Additionally, it improves the accuracy of
identifying dead branches by reducing both missed detections
and redundant segmentations. These enhancements
underscore the practical value and reliability of the improved
model.

E. Comparative Experiments of Different Models

The improved model was compared to several mainstream
instance segmentation models, including YOLOv5n-seg,
Mask R-CNN [25], Mask Scoring R-CNN (MS R-CNN) [26],
Hybrid Task Cascade (HTC) [27] and YOLOv9-seg.
Convergence training was conducted for these models and
their performance was compared as presented in Table 1V.

The improved YOLOv8n-seg model achieves a box-mAP
of 97.9% according to Table IV, surpassing the performance
of YOLOv5n-seg model, Mask R-CNN model, and MS R-
CNN model by 2.3%, 3.2%, and 3.3% respectively. It only
exhibits a slight decrease in performance compared to the
HTC model (0.1%) and the YOLOV9-seg model (0.5%). The
improved model achieves a mask-mAP that is respectively
12.9%, 6%, 6.3%, and 0.7% higher than YOLOv5n-seg,
Mask R-CNN, MS R-CNN, and HTC models while being
only 0.7% lower than the YOLOV9-seg model. In terms of
inference time, the improved YOLOv8n-seg model exhibits
an inference time of 39.5ms, which is only 17.1ms slower
than the YOLOV5n-seg model but still maintains significant
advantages over other instance segmentation models. The
improved model has a compact size of only 9.56 MB, which
provides distinct advantages over other instance
segmentation models and facilitates efficient deployment in
practical applications. In summary, the improved YOLOv8n-
seg model exhibits superior comprehensive advantages in
terms of accuracy, inference time, and model size, thereby
better fulfilling the requirements for rapid and precise
identification and segmentation of Camellia oleifera branches
to be pruned within the intricate environment of a Camellia
oleifera forest.

TABLE 11
IMPROVED MODEL ABLATION EXPERIMENTAL RESULTS
Order SPPFCSPC C2f-DCN Wise-loU v3 mAP/% F1-score/% Model size /
module module loss box mask box mask MB
1 - - - 96.8 94.8 94.53 93.07 6.45
2 8] - - 97.4 95.6 95.23 93.82 9.53
3 a a - 97.5 96 95.38 94.23 9.56
4 a 8] a 97.9 96 96.04 94.63 9.56
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Fig. 10. Comparison before and after model improvement

TABLE IV
COMPARISON RESULTS OF DIFFERENT MODELS
Model mAP/% Inference Model
box mask  time/ms size/MB

YOLOv5n-seg 95.6 83.1 22.4 3.92

Mask R-CNN 94.7 90 86.21 335

MS R-CNN 94.6 89.7 93.28 459

HTC 98 95.3 149.25 588

YOLOV9-seg 984  96.7 66.7 111

This study 97.9 96 395 9.56

IV. DIscuUssION

The accurate identification and segmentation of branches
to be pruned are crucial in pruning operations for fruit and
Camellia oleifera trees because they enable the precise
localization of the pruning point for the pruning robot. The
working environment in orchards and Camellia oleifera
forests is highly complex. Branches exhibit diverse shapes
and often overlap, which significantly affects recognition
accuracy. Qiao et al. [28] proposed an enhanced PSPNet
network model for precise identification and segmentation of
jujube tree trunks, achieving an impressive loU score of
81.88%. This approach effectively satisfies the requirements
for subsequent tasks in jujube harvesting robotics. Similarly,
Zheng et al. [8] introduced a refined Ghost-HRNet network
model to precisely recognize and segment jujube tree trunks
and branches, achieving a remarkable mPA score of 89.46%.
Compared to other semantic segmentation models, it exhibits
distinct advantages, thereby providing valuable theoretical
support for the advancement of future jujube harvesting
robots. In contrast to the aforementioned research objects,
Yang et al. [29] proposed a citrus branch recognition and
segmentation method based on the Mask RCNN model for
reconstructing citrus branches. This approach achieved an

average reconstruction accuracy of 88.64% for fruit tree
branches, thereby providing theoretical support for
subsequent studies on obstacle avoidance picking by robotic
systems.

The above analysis indicates that branch recognition and
segmentation in orchards are frequently examined using
semantic or instance segmentation models. The primary
challenge of this study lies in accurately identifying and
segmenting four distinct types of pruning branches among all
Camellia oleifera branches. Unlike previous research that
primarily focused on single targets such as individual
branches or stems, this study comprehensively analyzes and
segments four common types of pruning branches found in
Camellia oleifera trees. These branches exhibit growth
patterns similar to those of normal branches, which poses
significant challenges for accurate machine identification and
segmentation.

To address these challenges, an enhanced YOLOv8n-seg
model was proposed based on a comprehensive analysis of
previous research. This model not only simultaneously
identifies and segments various pruning branches but also
surpasses the Mask RCNN model in terms of accuracy,
inference time, and model size. It is well-suited for complex
orchard environments and provides a valuable reference for
future studies on intelligent machinery operations in such
settings.

V. CONCLUSION

This study aims to develop a method for accurately and
efficiently identifying and segmenting pruning branches in
Camellia oleifera trees. It establishes a theoretical basis for
precise pruning point positioning by pruning robots. The
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results demonstrate the superior accuracy and efficiency of a
deep learning-based instance segmentation model in
identifying and segmenting pruning branches. The specific
conclusions are summarized as follows:

1) To address the challenges of similar shapes and mutual
occlusion between pruning and normal branches of Camellia
oleifera in natural environments, this study introduced the
SPPFCSPC module, C2f-DCN model, and Wise-loU v3 loss
function. The SPPFCSPC module improved the model's
ability to identify branches of varying sizes and extract shape
features. As a result, the model achieved a box-mAP of 97.4%
and a mask-mAP of 95.6%, surpassing the original model by
0.6% and 0.8%, respectively. Additionally, the inclusion of
the C2f-DCN model and Wise-loU v3 loss function enhanced
the model's capability to capture intricate features of occluded
branches. This led to further improvements of 1.1% in box-
mAP and 1.2% in mask-mAP.

2) The improved YOLOv8n-seg model, along with other
leading instance segmentation models such as YOLOv5n-seg,
YOLOV9-seg, Mask R-CNN, MS R-CNN, and HTC, was
trained and evaluated on a self-created dataset for camellia
tree pruning. This process validated the superiority of the
improved model. The experimental results demonstrate that
the improved YOLOv8n-seg model achieves a box-mAP of
97.9% and a mask-mAP of 96% on the test set. The inference
time for processing a single image is measured to be 39.5 ms,
while the model size amounts to 9.56 MB. The improved
model exhibits higher accuracy compared to the original
model. Compared to other mainstream instance segmentation
models, the improved YOLOvV8n-seg exhibits clear
advantages in comprehensive indices. It effectively addresses
recognition and segmentation tasks for Camellia oleifera
pruning within real forest environments. It presents a viable
solution for the subsequent investigation of mechanized
pruning equipment for Camellia oleifera trees.

However, this method still possesses certain limitations
and drawbacks. Firstly, the validation of this approach is
solely conducted through computer simulations before its
practical implementation on operational machinery. Secondly,
in the process of pruning Camellia oleifera trees, there exists
a wide range of branch types that extend beyond the four
categories examined in this study. Therefore, further
investigation is required to address the identification and
segmentation challenges associated with other branches
targeted for pruning.
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