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Abstract—Knowledge graph (KG) is important in
recommendation algorithms. For the past few years, graph
neural networks (GNNs) models applied to knowledge-aware
recommendation (KGR) have been a current research hotspot.
However, GNN-based KGR models have some problems, eg.
data sparsity, insufficient supervision indication, unbalanced
information utilization, and insufficient knowledge extraction.
This paper presents a knowledge-aware recommendation
algorithm that integrates an attention mechanism with
contrastive learning, thereby make the most of the rich entity
information available in the KG. Through contrastive learning,
the algorithm aims to derive more discriminative expressions
for users and items, and the attention mechanism helps to
identify key relationships between them. This dual way
improves the accuracy and efficiency of recommendations.
Firstly, by contrasting hierarchical structures within the KG,
non-local graphs are constructed for wusers and items,
facilitating the extraction of additional KG facts in KGR.
Secondly, Intra-graph-level interactive contrastive learning is
enforced within both non-local graphs to evaluate the levels of
collaborative filtering alongside the KG part, so as to obtain
more consistent information utilization. In addition,
inter-graph-level  interactive  contrastive learning is
implemented between non-local graphs to fully and effectively
extract non-local KG indication. Finally, the attention
mechanism is integrated to determine the consequence of node
neighbors and adaptively propagate the embeddings from the
neighbors of nodes. The proposed knowledge-aware
recommendation algorithm (KGAC) in this paper, along with
other recommendation algorithms, has been subjected to
extensive experimentation across three benchmark data sets.
The results of these tests confirm that KGAC outperforms other
algorithms in terms of recommendation performance.

Keywords: recommendation, knowledge graph, contrastive
learning, attention mechanism.

1. INTRODUCTION

or the past few years, the progress of artificial intelligence,
big data mining and other technologies has become more
and more rapid, the society are becoming more and more
informationalized, and there are more and more ways of
information transmission. Recommender system is a key
technology for providing wusers with personalized
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recommendations in massive amounts of information. It
predicts the products or contents that users may be interested
in by analyzing their behavior, preferences and historical data.
recommendation systems usually use multiple algorithms
[1-5], including collaborative filtering (CF), content filtering,
hybrid recommendation, etc., to offer more exact
personalized recommendations. However, traditional CF
ways are often limited by data sparseness and cold-start
matters, resulting in poor recommendation effects. To settle
these matters, some research fellows have incorporated
knowledge graph (KG) in the recommendation process [6-8].
KG is a structured semantic network for revealing
relationships between entities in the actual world. As a
structured representation of knowledge, KG encompass rich
information regarding object attributes and relationships.
Knowledge-aware recommendation (KGR) techniques for
integrating knowledge graphs in recommender systems have
garnered significant attention. In fact, there are many
research works have been done about KGR [9-11], aiming to
fully and consistently utilize the graphical information of CF
(i.e., user-item interaction [4, 5]) and KG (i.e., item-entity
relationship). A collaborative knowledge graph (CKG) has
been proposed, which unites KG with user-item interaction
data. This approach utilizes the intricate multi-level
connectivity of knowledge graph to promote the nature of
recommender systems. However, using such higher-order
relationships would face many ignored challenges: 1) When
the order raises, the amount of nodes with high-order
connections with the object user will then raise dramatically,
which will result in more computational burden and noise to
the model. 2) The contributions of high-order relationships to
prediction are unequal. This requires the model to assign
different weights to them.

Contrastive learning can help address issues eg.
insufficient supervised indication, unbalanced information
utilization, and limited knowledge extraction. The attention
mechanism makes the model more concern about vital
information by giving it more weight [12][13]. For this
reason, this paper designs a knowledge-aware
recommendation algorithm (KGAC) that uses the attention
mechanism and contrastive learning. Firstly, the KGAC
algorithm acquires entity information from the KG. Then, it
uses contrastive learning to study more discriminative user
and object representations, incorporating the attention
mechanism to capture key relationships between them.
Finally, many tests are carried out on three benchmark data
sets and compared with other recommendation algorithms.

Our achievements of this paper are summarized as below:

1. Novel Methodologies: Interaction between CF and KG
information through intra-graph contrastive learning to
promote the alignment of CF and KG partial information.
Co-supervision of higher-order CF indication and their
corresponding KG entities to integrate more KG information
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through inter-graph contrastive learning. The pattern uses an
attention mechanism to obtain key information.

2. Multifaceted tests: This study was subjected to extensive
tests three benchmark data sets. The experimental results
show that the knowledge-aware recommendation algorithm
(KGAC) put forward in this research has excellent
performance contrasted to other benchmark recommendation
algorithms.

II. RELATED WORK

A. Knowledge Graph

KG is applied to recommender systems as an external data
type capable of displaying large amounts of semantic
knowledge and rich contextual content. There are three main
modes of application of KG in recommender systems: 1)
Embedding-based method: Map entities and relationships in
the KG is a low-dimensional vector space for using
mathematical operations to simulate and reason about the
relationships between entities. TransE [14] is one of the
earliest models with important influence in the field of KG
embedding. It realizes embedding by regarding relationships
as translations between entities. Subsequently, models eg.
TransH [15] and TransR [16] emerged, improving some
limitations of TransE, eg. handling symmetric and
antisymmetric relationships. All of these ways mentioned
above ignore the higher-order message in the KG.
2)Path-based method: Path-based way [17] [18][19] focus on
using the path message in the KG to discover the reason
about the relationships between entities. For example, the
path ranking algorithm (PRA) takes the probability of each
path as a feature and uses a logistic regression classifier for
training and prediction. It can reveal the latent associations
between entities and heighten the capabilities of
recommendation systems and question answering systems by
analyzing multi-hop paths. However, when there are multiple
paths, an effective method is needed to comprehensively
consider the information of these paths to avoid information
overload. The above method extracts the meta-path by
manually. The design of these meta-paths requires specific
domain knowledge and a lot of time. And when the
recommendation scenario or KG changes, the meta-paths
need to be redesigned. 3) Graph neural network method
(GNN): GNN-based ways[20][21][22] use GNNs to deal
with KG data and can capture the topological structure and
node features in the KG. Models eg. GCN and GAT are
representatives in this field. GNN-KG can handle the
dynamics and complexity of KG and can be employed to
assignments eg. node classification and link prediction [23].
However, the computational cost is high, and for large-scale
graphs, specific optimization techniques may be required.
However, nodes with more connections in the graph may lose
their original features in the message propagation course of
GNN, resulting in overly smooth representations. And some
ways use ways of aggregating a fixed number of neighbors or
randomly selecting neighbor nodes when iteratively updating
the representations of nodes in the network, which limits the
utilization of graph information.

B. Attention Mechanism

The attention mechanisms can help recommender systems
to better obtain the connection between users and items.
Some researchers have drawn inspiration from the latest
progress of GNNs and proposed some recommendation

algorithms based on KG attention networks[24][25][26].
Generally, KG attention network-based algorithms use two
designs to settle the challenge of high-order relationship
modeling: one is recursive embedding propagation, which
captures high-order connections with linear time complexity
based on the embedding propagation of adjacent nodes; the
other is attention-based aggregation. Utilizing a neural
attention mechanism, the method learns the weight of each
neighbor during the propagation process, thereby
highlighting the significance of high-order connections. In
contrast to existing approaches, this method not only
bypasses the labor-intensive path materialization process,
enhancing efficiency and usability, but also differs from
regularization-based techniques by directly integrating
high-order relationships into the prediction model. This
allows customization of all relevant parameters to optimize
the recommended target.

C. Contrastive Learning

Contrastive learning is a way for studying more
discriminative representations, which can learn better feature
representations by contrasting the imparities between
samples. Drawing inspiration from classical self-supervised
learning techniques, researchers have suggested leveraging
self-supervision to address issues related to sparse
supervision indication. A simple method involves
augmenting or perturbing the input user-item-entity graph
and then comparing the modified nodes with the original ones,
adhering to a conventional contrastive paradigm akin to
existing literature [27][28][29]. However, this paradigm
conducts contrastive learning relatively independently,
focusing solely on comparing the same components (CF or
KG) across different graph views. This approach neglects the
internal interactions between various segments of the graph,
leading to a disconnection between CF and KG
representation learning. The CF part has limited influence in
the final user and object modeling. Under the traditional
contrastive mechanism, the problems of unbalanced message
utilization and insufficient knowledge extraction have not
been effectively solved. Therefore, it is essential to promote
the contrastive learning framework to facilitate effective
message exchange between CF and KG. This approach
enables the coherent integration of message from each
component without the need for additional explicit labels.
Recent research has introduced an interactive graph
contrastive mechanism specifically for knowledge graph
recommendation tasks (KGR), addressing limitations in the
following ways: first, by comparing CF and KG components
to equilibrate their contributions to expression studying; and
second, by assessing both non-local graphs within KG to
withdraw valuable non-local KG facts.

Contrastive learning and the attention mechanism is
important in perfecting the recommendation nature of
recommendation algorithms. The comprehensive application
of contrastive learning, the attention mechanism, and KG is
relatively rare in the research of recommendation algorithms.
To this end, the KGAC proposed in this paper incorporates
attention mechanisms and contrastive learning. Through
contrastive learning and the attention mechanism, it
integrates KG entity message, promotes the expressions of
users and items, and improves the nature of the
recommendation algorithm.
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III. PROBLEM DEFINITION

Interaction data. We set M and N to represent a set of users
and items severally in the recommendation scenario, i.e.,

U={u,uy,....up, } and I={i,i,,....iy} . Constructing the
interaction matrix ¥ e RM*V using veiled feedback from the
users, where V,; =1 signifies that a user has interacted with
an item, eg. through clicking or buying, while ¥, =0
represents that no such interaction has occurred.

Knowledge graph. Storing object attributes or external
common sense knowledge as a heterogeneous graph in a KG
[30]. Let G={(hr.t)|ht€E,reR} be the knowledge
graph, where 4,7t severally represent the head, relationship,
and tail corresponding to a knowledge triple, E and R
severally represent the set of entities and relationships in G
[31]. In many recommendation scenarios, we create a set of
alignments between items and entities, referred to as
A= {(i,e) lielee E} . Each pair (i,e) is the alignment of
item i with entity e. This alignment between items and KG
entities allows the KG to better analyze items and provide
additional message to improve interaction data.

Problem statement. With known user-item interaction
matrix Y and KG G, the main assignment of
knowledge-aware recommendation is to design a likelihood
feature that can forecast the user's interaction with a
particular item.

IV. METHODOLOGY

A. The overall structure

The knowledge-aware recommendation algorithm (KGAC)
integrates the attention mechanism and contrastive learning,
which aims to unify partial message of CF and KG through
interactive contrastive learning to achieve coherent message
utilization and extract and integrate more KG facts. The
attention mechanism is utilized to determine the weight of
each neighbor during the propagation process, enabling the
recursive transfer of embeddings from neighboring nodes to
update their representations. The synergy between the
contrastive learning module and the attention mechanism
significantly promotes the accuracy and personalization of

recommendations. Figure 1 reveals the overall structure of
the KGAC algorithm.

B. Constructing the graph

Traditional recommendation algorithms depended on
knowledge graphs often only employ the local adjacent entity
message of users or items, which has certain limitations.
Multilevel contrastive learning incorporates non-local KG
message related to similar items conquering the restrictions
of traditional recommendation algorithms depended on
knowledge graphs. This approach aims to extract valuable
message from the KG in a more comprehensive manner.
Specifically, firstly, combine the CF signal with the KG to
construct local and non-local graphs of users and items. Such
a design helps to dig deeper into the potential relationships
and facts in the KG.

The local graph extracts the first-order CF signal of users
and items from the user-item interaction matrix Y. The
components of the first-order CF indication are same with the
knowledge graph (KG) after undergoing the item-entity

alignment operation A={(i,e)|i € /,e € E}, resulting in the
incipient entity knowledge graph, as displayed in Eq. 1.
E,, = {e |(i,e) e d,and i {ily, = 1}} )

EEL = {e|(i,e) € A} (1)

InEq. 1, Eﬁ,L and E?,L severally represent the primal entity

sets of users and items in the KG of the local graph.

Then, we obtain more layers of relevant knowledge graph
facts through natural propagation in the KG. In this way, a
local graph centered around users and items is built. The
triples in the local graph are seen in Eq. 2.

S, ={(h.r.)|(h,r.)eGand he E}}.1=1,...L (2)

Sli’ . and S,.l, ; denote the triples at the 1-th layer for users

and items within the local graph. Each triple comprises the
head entity from the (I-1)-th layer, the relationship, and the
tail entity from the l-th layer. After the above course we
construct the 1-th layer local graph, which encompasses the
heterogeneous structures of user-item-entity and item-entity
relationships.
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Fig. 1. The overall structure diagram of the KGAC algorithm
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Align the higher order terms of CF with KG to form the
non-local graph and enable the propagation of KG message.
Incipiently, propagation in the user-item interaction graph

derives higher-order items for users and items, where 7, and
U, represents the high-order items related to user u and its

similar users, while [/, indicates the high-order items

associated with item i. Further obtain the aligned incipient
entities Ef,, v and Eg v in the KG as displayed in Eq. 3.
Eg,N = {e |(i,,e)e A,and i, € [u},

EgN ={e|(i,,e)e A,and i €[} ®)

In Eq. 3, E?LN and EEN are the incipient entity sets of users

and items in the non-local graph KG, severally.We
constructed non-local graphs for users and items by
propagating incipient entities in KG. The triple form as
depicted in Eq. 4.

S, v ={(h.r.)|(hr)eGandheE,\}.I=1,..L (4)

C. Contrastive Learning

This section will promote the balanced utilization of
message across graphs through interactive contrastive
learning intra-graph and inter-graph.

In the case of intra-graph interaction contrastive learning,
the collaborative filtering component situated in the core
layer of the local/non-local graph serves as the anchor. In this
paper, knowledge message related to user and item
representation learning is clarified as positive samples, while
other KG entities are used as negative samples. In this way,
we clarify the following contrastive loss function for users as
displayed in Eq. 12, where T is the temperature coefficient.

Analogously, the intra-graph contrastive loss for items,
denoted as L}, , can be derived using the same approach.

The total loss for the intra-graph interaction contrast is
calculated as displayed in Eq. 5. This design enables the CF
and KG indication to promote each other, thereby enhancing
the coherence and sufficiency of representation learning.
L[ntra = Llljntm + Lllntm (5)

Although intra-graph interaction contrastive learning
achieves effective integration of message in a single graph,
there are still challenges in fusing local and non-local
message, especially the noise problem of non-local message.
Given that the non-local graph incorporates rich external
message, comprising high-order collaborative filtering
indication and their corresponding knowledge graph facts,
we introduce inter-graph interaction contrastive learning.
This method aims to withdraw valuable non-local message
by applying contrastive learning between the non-local and
local graphs. Specifically, the inter-graph interaction
contrastive learning selects a layer in the local graph as the
target layer, where the corresponding layers of the non-local
graphs are used as positive samples, and the layers of other
non-local graphs are used as negative samples. In this way,
we clarify the contrastive loss functionality for users as
displayed in Eq. 6.

(BReER 17)

vo_ € ’
Lz,,m - Z,EU ZkeL —og (BB eER 7) n Z
¢ k'xk

Similarly, the inter-graph contrastive loss of items can also
be included through a similar method. The method of
calculating the amount of user losses and item losses (i.e.,
final inter-graph contrastive losses) is displayed in Eq. 7. This
method effectively utilizes local and non-local message and
perfects the precision and robustness of the model's
representation of users and items.

L. =L

Inter Inter

(B eEXIT) (6)

+1L )

Inter
D. Attention Embedding Propagation

N, ={(h.r,t)|(h.r,t)€ G} represents the set of triples,
where 4 is the head entity. We determine its connectivity by
calculating the linear combination of entities, as displayed in

Eq. 8.
eNh = Z(h,r,z)eNh ﬂ(h’r’t)et (8)

Among them, 7(h,7,t) is the attention factor that affects
the attention of each propagation along /4, r, ¢. The attenuation
factor determines the amount of reduction when message is
transmitted between entities. The relation r determines the
number of message spread from ¢ to 4.

This study utilises the associational attention mechanism
to implement 77(%,7,t) , and its expression is as seen in Eq. 9.

w(h,r,1)=(W,e,) tanh((W,e, +e,) ©)

In this study, the tanh activation function [26] allows the
attention mark to reflect the spare between €, and €. in the
association space. Additionally, the coefficients of all triplets

associated with s are normalized using the softmax
functionality, as detailed in Eq. 10.

7 (h,r,t)

z(h,r't")
Z(h,r',r')eNh €

The attention grades included through this method
ultimately reveal which neighboring nodes require greater
focus to effectively capture collaborative indication. Our
proposed model uses the adjacency structure of the graph to
clarify the different meanings of different neighbors.
Additionally, our approach incorporates not only node

w(h,r,t)=

(10)

representations but also models the relationship between €,

and e, , thereby encoding richer message throughout the

propagation course.
We use a bidirectional interaction aggregator to achieve

the new representation of entities, 6,(,1) =f (eh,eN,,) . The

calculation of f'is as displayed in Eq. 13.

Among them, the activation function is set as LeakyReLU
[32], W1, W2 are trainable weight matrixes, and © is
element-wise product. Different from aggregators eg. GCN
and GraphSage, we perform additional encoding on the trait

interaction between €, and e,,.

We capture higher-order connectivity message and collect
data spread from high-hop neighbors by piling up additional
propagation layers. In the 1-th step, the entity is represented
using recursively, as illustrated in Eq. 11.

(In

) _ (-1 _(I-1)
e, =f(e, ey

Volume 52, Issue 3, March 2025, Pages 615-624



TAENG International Journal of Computer Science

(BB /7))

(BN L /7))

U kel kel
Llntra = z_log (0). (k) - (0) (k) +z_log (0) g (k) - (0) g (k) (12)
uell e((Eu,L °E,; /7)) + z e((Eu,L *E/T) U e((Eu,N.Eu,N /7)) + z e((Eu,N.Eu,N /7))
keL K'>L keL k'>L
f = Leaky Re LU(W,(e, || ex;, )+ Leaky Re LU(W, (e, ey, ) (13)

E. Model Prediction
The L-layer multi-order representation of user u is

{e;”,--~,e§”} and the L-layer multi-order representation of

. .. 1
an item 1 1s {ef ),"'

,EJL)} . The outputs from various layers
highlight connection message of differing orders. The
representation of each order is united into a vector, which
serves as the ultimate embedded representation for u# and 7, as
demonstrated in Eq. 14.

e, =e" .

(14)

Among them, || is the connection operation. The process
uses embedding propagation to promote the incipient
embedding while regulating the intensity of propagation.
Ultimately, the matching scores between user and item
representations can be predicted by calculating their inner
product, as illustrated in Eq. 15.

N, ¢ =e®|...][e"

Yui)=e -e (15)

F. Model Optimization

The BPR loss function is applied to the recommendation
model. This loss functionality is based on an assumption: for
observed user interactions, it reflects the user's stronger
preference. Therefore, the predicted score should be more
than those unseen interactions. The BPR loss function is seen
in Eq. 16.

Lgpr = Z_lno-(yui_ylg')
(u,i,jleO

Among them, O={(wij) (1i)eO',(1,j)e0} is the
disciplinal data set contains two parts: 1) the seen interaction
data sets O"; 2) the unseen interaction data set O". The C in
Eq.16 denotes the sigmoid function. Minimization of the
objective function (Eq. 17) is achieved by calculating the
intra-graph and inter-graph interaction contrastive loss, the
BPR loss and optimizing the model parameters.

In Eq. 17, © is the set of model parameters, while & is a
hyperparameter that balances the weights of the intra-graph
and inter-graph contrast losses. Additionally, Al is the
hyperparameter controlling the contrast loss and 42 is the
hyperparameter of the L2 regularization.

LKGAC = LBPR + ﬂ’l(aLlntra + L )+ 1’2"@”2

(16)

Inter

an”n

V. EXPERIMENT

We experimented the KGAC recommendation algorithm
put forward in this paper with other recommendation
algorithms on three benchmark data sets with the aim of
exploring the below three study matters:

RQ1: How does the nature of the KGAC recommendation
algorithm contrast to other benchmark recommendation

algorithms?

RQ2: What is the impact of attention mechanism and
contrastive learning on the KGAC recommendation
algorithm?

RQ3: What is the impact of temperature coefficient and
model depth on the KGAC recommendation algorithm?

A. Datasets

To assess the validity of the KGAC, we utilized three
benchmark data sets: Book-Crossing, MovieLens, and
Last.FM. These publicly available data sets span various
fields and disparate size and sparsity, thereby increasing the
robustness of our tests. Fundamental statistical particulars for
these data sets are summarized in Table I.

Book-Crossing: This data set is sourced from the
book-crossing community and includes explicit ratings (0-10)
for various books.

MovieLens: The data set is a film recommendation data set
that includes about 1 million ratings (1-5).

Last-FM: It is a music data set comprising approximately
2,000 users, sourced from the Last.fm online music system.

We converted the specific feedback from the above three
data sets to unexpressed feedback [33]. For the MovieLens
data set, we clarify a rating of 4 as the positive threshold. For
the sparsity of the Last.FM and Book-Crossing data sets, no
threshold will be established for these data sets. We denote
positive samples with a value of 1, while for negative samples,
we discretionarily select an equal amount of items that have
not been observed by each user.

In constructing the sub-KG, we adhere to the methodology
outlined by RippleNet and utilize Microsoft's Satori tool to
create sub-KG for the MovieLens, Book-Crossing, and
Last.FM data sets. Each subset of the KG is a sub-KG that
abide by a triple format (confidence level > 0.9). For each
sub-KG graph, we collect the Satori IDs for all applicable
movies, books, and musicians by aligning their names with
the tails of the triples. Subsequently, we associate the object
IDs with the heads of the triples and extract all triples from
the sub-KG graph that exhibit a strong match.

TABLE I
STATISTICAL INFORMATION OF DATASETS
User-item Interaction Knowledge Graph
users items  interactions entities  relations triplets
Book-Crossing 17,860 14,967 139,746 77,903 25 151,500
MovieLens 6,036 2,445 753,772 182,011 12 1,241,996
Last.FM 1,872 3,804 42,346 9,366 60 15,518
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B. Evaluation Metrics

Two metrics broadly employed in the field of
recommendation algorithms were used in this study[34][35],
AUC (area under curve) and F1, to appraise the validity of
the KGAC algorithm proposed in this paper.

AUC serves as a model evaluation metric within the
machine learning domain. It essentially measures the
likelihood that, for any given pair of positive and negative
samples, the model is more prone to correctly identify a
positive sample than to misclassify a negative sample as
positive. A larger worth of AUC indicates that the pattern is
more capable of distinguishing between positive and
negative samples.

F1-score is another widely recognized metric in machine
learning, particularly for assessing classification model
performance. It is clarified as the harmonic average of
accuracy and recall, and is widely employed to appraise the
holistic effectiveness of a pattern. A higher F1 score
indicates perfect nature of the pattern.

C. Baseline Algorithms

In this research, KGAC is experimented with other
recommender system ways on three databases,
Book-Crossing, MovieLens, and Last.FM. To confirm the
validity of the KGAC model put forward in this paper, we
contrast the KGAC model with the below models: BPRMF,
CKE, PER, KGCN, KGAT, CKAN, KGIN. The details are
as follows:

BPRMF [36]: This is a Bayesian optimization based
individualized ranking BPR-Opt model.

CKE [10]: CKE integrates the framework's TransR-based
heterogeneous network embedding method, stacked
denoising  self-encoder, and stacked convolutional
self-encoder.

RippleNet [33]: It is an end-to-end framework for
integrating KG into recommender systems.

PER [37]: This approach introduces meta-path based
latent features that confirm recommendation patterns at
global and individualized levels.

KGCN [38]: As a Graph Neural Network (GNN)-based
method, KGCN incrementally incorporates neighboring
message to promote object embeddings.

KGAT [39]: This GNN-based way utilizes an attention
mechanism to iteratively integrate neighboring elements
within the user-item-entity graph, facilitating the generation
of user and item representations.

CKAN [40]: The approach combines collaboration
indication with knowledge associations and employs a
knowledge-aware attention mechanism to differentiate the
achievements of disparate knowledge neighbors.

KGIN [41]: This method is a novel GNN message
aggregation scheme that recursively integrates sequences of
remotely connected relationships while extracting useful
message about user intentions.

D. Performance Analysis (RQ1)

The proposed KGAC algorithm was subjected to multiple
tests alongside other benchmark algorithms across three data
sets: Book-Crossing, MovieLens, and Last.FM. The
comparative consequences, derived from statistical analysis,
are presented in Table I1. Each row's best performance in the
baseline algorithms is marked by underlining, and the best
performing consequences are noted in bold. As displayed in
Table II, the proposed KGAC algorithm outperforms other
baseline algorithms across all three data sets. More
specifically, on the Book-Crossing data set, the KGAC
algorithm outperformed the best baseline algorithm (CKAN)
by 3.18% in AUC and 2.20% in the F1; on the MovieLens
data set, the KGAC algorithm outperformed the best
baseline algorithms (RippleNet, KGIN) by 0.72% in AUC
and 1.01% in the F1; on the Last.FM data set, the KGAC
algorithm outperformed the best baseline algorithm (KGIN)
by 0.68% in AUC and 1.71% in the F1.

We attribute this improvement to several elements: (1) By
comparing CF indication with KG indication within
non-local graphs, interactive contrastive learning at the
intra-graph level facilitates interaction between the two
components, enabling mutual supervision that promotes
representation learning. (2) The comparison of non-local
graphs for users and items allows interactive contrastive
learning at the inter-graph level to fully integrate non-local
KG facts, thereby enabling the pattern to study
discriminative trait expressions from both types of graphs. (3)
The attention mechanism makes the model to prioritize
crucial message link to the nowaday assignment, thereby
reducing the focus on less pertinent data. This selective
attention promotes overall model performance by avoiding
the equal treatment of all input data.

E. Ablation Experiment (RQ2)

To appraise the impact of the model's key parts, namely,
the contrastive learning module and the attention module, on
recommendation nature, we compared KGAC against
several variants. (1) KGAC-A: This variant removes the
attention network module and retains the interactive
contrastive learning module; (2) KGAC-C: This specific
variant omits the interactive contrastive learning module
while preserving the attention network module.

Depended on the experimental consequences (displayed
in Fig.2-Fig.4) we can easily conclude: (1) Interactive
contrastive learning facilitates the representation studying of
users and items, allows for the aggregation of more external
message, and dramatically improves the nature of the pattern.
(2) The attention mechanism can make the model focus on
the key message instead of treating all message equally, and
also make a certain contribution to the perfection of model
nature.

TABLE 11
COMPARISON RESULTS OF THE KGAC ALGORITHM AND OTHER BASELINE ALGORITHMS
Datasets BPRMF CKE RippleNet PER KGCN KGAT CKAN KGIN KGAC
. AUC  0.6581 0.6752 0.7206 0.6042 0.6836 0.7309 0.7414 0.7268 0.7732
Book-Crossing
F1 0.6114 0.6231 0.6467 0.5721 0.6307 0.6538 0.6665 0.6609 0.6885
MovieL AUC 0.8916  0.9058 0.9185 0.7119 09084 009135 09076 09184 0.9256
ovieLens
v F1 0.7918 0.8019 0.8417 0.6665 0.8361 0.8436 0.8404 0.8437 0.8538
Last FM AUC  0.7558  0.7467 0.7756 0.6409 0.8019 0.8287 0.8412 0.8479 0.8547
ast.
s F1 0.7005 0.6735 0.7021 0.6027 0.7081 0.7419 0.7587 0.7593 0.7764
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Book-Crossing
0.7800 .
) AUC 0.7250
0.7720 0.7100
2 F1
0.7640 0.6950
0.7560 0.6900
0.7480 0.6630
0.7400 0.6500
KGAC KGAC-A KGAC-C
B AUC mFl1
Fig. 2. Ablation experiment on the dataset Book-Crossing
MovieLens
0.9260 AUC 0.8800
0.9250 = 0.8700
09240 0.8600
09230 0.8500
09220 0.8400
09210 0.8300
KGAC KGAC-A KGAC-C
m AUC mF1
Fig. 3. Ablation experiment on the dataset MovieLens
LastFM
0.8600 AUC 0.7780
0.3540 F1 0.7770
0.8480 0.7760
0.8420 0.7750
0.8360 0.7740
0.8300 0.7730
KGAC KGAC-A KGAC-C
m AUC = Fl

Fig. 4. Ablation experiment on the dataset Last.FM

F. Main Parameter Analysis (RO3)

Model Depth

The model depth, designated as L, is the aggregation layers
within both local and non-local graphs, as well as the number
of layers in the positive pair utilized in the collaborative
contrastive mechanism. To investigate the effects of model
depth, we enforced tests with the KGAC algorithm for L
values of 1, 2, 3, 4 across the Book-Crossing, MovieLens,

Last.FM data sets, with the consequences illustrated in
Figures 5 to 7. On the Book-Crossing data set, KGAC is best
when L = 1; on the MovieLens data set, KGAC is best when
L =2; on the Last.FM data set, KGAC is best when L = 3.
Experimental results indicate that an aggregation layer of
three or fewer layers is ideal for gathering neighboring
message from local and non-local graphs, providing
adequate support for the collaborative contrastive learning of
distinctive embeddings across CF and KG layers. Adding
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further layers tends to introduce additional noise rather than
enhancing performance.
Temperature coefficient

The temperature coefficient 7 is a critical factor in
contrastive learning and significantly influences model
performance. To investigate the impact of 7, we enforced
tests with the KGAC algorithm for 7€{0.05, 0.075, 0.1, 0.2,
0.3, 0.4} across the Book-Crossing, MovieLens, Last. FM
data sets, with the consequences illustrated in Fig.8-Fig.10.
Analysis of the findings indicates that the temperature

coefficient 7 regulates the extent to which contrastive loss
focuses on challenging negative samples. A too large
temperature coefficient 7  will lead to poor model
performance. If the temperature coefficient 7 is small, it will
lead to difficulties in model convergence, poor generalization
ability, the model performance will also be adversely affected.
Generally speaking, a temperature coefficient 7 in the range
of {0.1, 0.2} can obtain satisfactory recommendation
performance.

Book-Crossing

0.7725 J} AUC 0.6950
0.77 0.6920
D on -
= 0.7675 0.6890 =
“ 0.7650 0.6860
0.7625 ﬁ 0.6830
0.7600 F1 0.6800
L=1 L=2 L=3 L=
AUC F1
Fig. 5. The impact of model depth on the performance of KGAC on the dataset Book-Crossing
MovieLens
0.9270 l} AUC 0 S“*:w
0.9255 /\ 0.8550
8] 0.8540
-5 L]
i 0.8530
0.9225 1} Tl
F1 0.8520
0.9210 0.8310
=] L=2 L=3 L=
AUC F1
Fig. 6. The impact of model depth on the performance of KGAC on the dataset MovieLens
Last.FM
0.8570 P 0.7790
0.7780
™

0.8550

Q 08530 | 0.777

% 03510 0.7760
0.8490 m 0.7750

0.8470

0.7740

AUC

F1

Fig. 7. The impact of model depth on the performance of KGAC on the dataset Last. FM
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Book-Crossing
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0.7710 0.6940
8]
5 0.7680 ppize] ™
0.7650 1]\ X
F1 0.6850
0.7620 0.6820
005 0075 01 02 03 04
AUC F1
Fig. 8. The impact of temperature coefficient on the performance of KGAC on the dataset Book-Crossing
MovieLens
0.9270 T 0.8560
0.9255 & 0.8550
O 0.9240 0.8540 _,
< 0922 G 0.8530 ™
0.9210 F1 0.8520
0.9195 0.8510
003 0075 0.1 02 03 04
AUC F1
Fig. 9. The impact of temperature coefficient on the performance of KGAC on the dataset MovieLens
Last.FM
0.8573 .
0.8540 {V"UC g:g E
U 0.8505 g
5 0.7810
0.8433 n 767
F1 0.7670
0.8400 0.7600
003 0075 0.1 02 03 04
AUC F1

Fig. 10. The impact of temperature coefficient on the performance of KGAC on the dataset Last.FM

V. CONCLUSIONS

In view of some problems existing in current
recommendation algorithms, this paper proposes the KGAC
that integrates attention mechanism and contrastive learning.
Through intra-graph interactive contrast of the layers of CF
and KG parts, it coherently utilizes the CF and KG
information in each local and non-local graph. By structuring
non-local graphs and proceeding inter-graph interactive

contrastive learning, more KG facts are fully extracted and
integrated for user and item representation studying. Through
the attention mechanism, the consequence of node neighbors
is discriminated, important node message is focused on, and
the embeddings from the neighbors of nodes are adaptively
spread to update the representation of nodes. Many tests on
three real-world data sets prove the reasonability and validity
of KGAC. In addition to knowledge graph, there are many
other structural information being in real-world scenarios, eg.
social networks and object contexts. Future work will explore
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more precise and individualized recommendations for users

by

gathering social network and object context, and

combining knowledge graphs.
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