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Abstract—In these modern times, the world has access to
vast data in all aspects of life. These data are stored in
different formats, from structured databases to unstructured
text, images, and audio. However, with the rise in the amount
of data available, the challenge of data processing emerges to
extract useful knowledge effectively. Many computer science
practitioners in the machine learning community have focused
on Information Retrieval from data. This work focuses on
knowledge graph extraction from natural language text, specif-
ically biomedical text, for its high impact on humankind. We
introduce an end-to-end pipeline that takes in raw text and
outputs a Knowledge Graph summarizing the entities within
and the relations between them. Using state-of-the-art methods
for Named Entity Recognition and Relation Extraction, the
pipeline relies heavily on supervised learning in the steps where
it provides better results than the alternatives (e.g., unsuper-
vised learning, distant supervision). The proposed process is
applied to natural language text from the biomedical domain
through scientific papers and preprints. In the scope of this
paper, the pipeline is trained to extract four classes of entities
and five types of relations. However, its application can be
extended to other types of entities and relations depending on
the use case.

The pipeline is publically available on the Github repository
https://github.com/echchorfisalahedine/KG Extraction Pipeline.

Index Terms—Knowledge Graph, Named Entity Recognition,
Relation Extraction, Biomedical Data

I. INTRODUCTION

TEXT mining is a field of machine learning that consists
of extracting knowledge from natural language text.

Its applications in various industries include information
retrieval, sentiment analysis, topic detection, text summariza-
tion, and Knowledge Graph (KG) extraction. Text mining
relies on multiple Natural Language Processing (NLP) tasks
to transform the raw text into machine-readable data. In this
paper, we aim to build a knowledge graph from biomedi-
cal text. A knowledge graph is a structured representation
of data in the form of a network of real-world entities,
also called nodes, interconnected with edges that define
the relations among them. Automating knowledge graph
construction from text relies on a series of fundamental NLP
tasks required to extract the necessary elements of the KG:
entities and relations. In the following, we summarize the
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three essential tasks that are the core of any KG construction
model :

Named Entity Recognition (NER): Named Entity Recog-
nition is an NLP task that identifies and categorizes the
words or series of words representing real-world entities from
text. In the biomedical field, these entities can vary among
biomedical concepts such as genes, diseases, chemicals, tests,
or procedures. For example, given the sentence “Symptoms
of active Tuberculosis disease in the lungs usually begin
gradually and worsen over a few weeks”, the NER method
should identify and mark the term Tuberculosis as a disease.
Over the years, NER models have been developed rapidly.
The first systems are dictionary-based models that rely on
string-matching algorithms that check whether the words in
the text are present in a dictionary containing the targeted
vocabulary. MetaMap [1] is a state-of-the-art example of
a dictionary-based method introduced in 2001 that maps
entities to their equivalent concepts in the Unified Medical
Language System (UMLS) Metathesaurus [2] and can iden-
tify these entities in a given text. The next type of model
is rule-based systems. The rule-based models perform NER
by extracting the entities that satisfy a set of predefined
patterns and context-based rules. Proper [3] (1998) and
Text Detective [4] (2005) are examples of state-of-the-art
rule-based NER models. Machine Learning-based models
treat NER as a classification or sequence labeling problem.
Different systems were introduced, relying on ML models
such as support vector machines (SVMs), hidden Markov
models (HMMs), and CRFs and leveraging several word
features such as Part-of-Speech (POS) tags, prefixes, and
suffixes. These models were followed by Deep Learning-
based approaches that leverage word embeddings along with
context information, POS tags, and position to predict the
entities’ tags. These models benefit from pre-trained word
embeddings, the ability to use pre-trained models, and the
ability to be paired with ML-based models. Long short-term
memory (LSTM), GRAM-CNN, and BERT-based models
have recently gained considerable popularity for their im-
proved results.

Entity Linking (EL): In natural language text, a concept
may be referred to by different words or sometimes abbrevi-
ated. For the human reader, it is relatively easy to determine
whether different words refer to the same entity, which is
not the case for machines. In the following example, “The
most common symptoms of coronavirus disease are fever,
chills, and sore throat. COVID-19 also has some uncommon
symptoms like nausea and diarrhea.” the machine should
recognize coronavirus disease and COVID-19 as one single
entity just like a human would. Entity Linking is a crucial
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part of text mining as a continuation of NER. It primarily
aims to solve the ambiguities related to the fact that different
words or expressions can refer to real-world entities. EL con-
sists of mapping the extracted entities to their corresponding
concepts in a unified Knowledge Base so that the entities that
share the same meaning get mapped to the same concept. EL
methods exploit several KBs such as DBpedia [5], Freebase
[6], Wikidata [7] in the general domain, Mesh [8], and UMLS
[2] among others in the biomedical domain. The model
mentioned above, MetaMap [1], performs EL, along with
numerous state-of-the-art systems introduced in recent years
and leveraged the advancement in neural networks such as
Yamada et al. (2021) [9], and De Cao et al. (2021) [10].

Relation Extraction (RE): Relationship Extraction (RE)
is a subtask of information retrieval that generally follows
NER. Its purpose is to identify the relations among the
previously extracted entities to provide a context for their
presence and meaning for their interaction in the text. Due to
its importance, RE has been of interest to the ML community
for many decades, resulting in significant advancements in
RE approaches over the years. The first RE models are
rule-based methods, which rely on a manually determined
set of patterns corresponding to a set of relations. The
text is verified against these patterns, and when a span
of text matches one of the patterns, the model concludes
that it contains the relation corresponding to that pattern.
Nebhi (2013) [11] is an example of rule-based RE models.
Machine Learning-based RE methods quickly followed next
and varied among different categories. Supervised learning
approaches deal with the problem as a classification problem
and require important amounts of data for training, such
as Zhou et al. (2005) [12]. Unsupervised learning methods,
like WEBRE (2012) [13], use unlabeled data and rely on
clustering the pair of entities based on their context into
clusters. Each cluster is assigned a semantic relation rep-
resenting the relation between all entity pairs of that cluster.
Semi-supervised RE methods leverage the advantages of
both supervised and unsupervised models by using a small
amount of labeled data to learn the extraction pattern and
then extracting similar relations from the rest of the unlabeled
data. Distant supervision approaches require matching the
text to an existing KB of entities and relations among them.
If an entity pair in a sentence matches a pair in the KB, then
the sentence is associated with the relation between the pair
in the KG. Mausam et al. (2012) [14] and Zeng et al. (2014)
[15] are state-of-the-art examples of semi-supervised and
distantly supervised methods, respectively. The advancement
in Deep Learning allowed RE to benefit from new tools such
as Convolutional Neural Networks (CNN) (Li et al. (2018)
[16]), Long Short-term Memory (LSTM) (Zhou et al. (2015)
[17]), and transformers ((Han et al. (2021) [18]) and gain
state-of-the-art results.

These three tasks will be the core of our proposed
biomedical Knowledge Graph construction pipeline. We will
investigate the best models for each step to get good perfor-
mance for the overall KG extraction process. The pipeline we
propose processes raw text, especially from scientific papers,
and provides a set of triples (Subject, Predicate, Object) as an
output visualized as a KG following different steps of NLP
techniques and relies on different state-of-the-art trainable
approaches using supervised learning. The process can be

extended beyond the scope of biomedical data. We begin the
pipeline by preprocessing and cleaning the input text. We
perform Named Entity Recognition on the forwarded text,
followed by Entity Linking and Relation Extraction. Finally,
we clean the predicted triples and generate a KG formalized
using the Resource Description Framework (RDF) standard
format.

In the following, we will review the literature to ex-
plore several approaches for KG construction from the text.
Secondly, we introduce an end-to-end pipeline to extract
information from natural language text in the form of KG
featuring different types of entities and the relations among
them. The pipeline is applied to a dataset of papers and
preprints from the biomedical domain, as it is a rich field
with an important amount of data stored in text format, such
as scientific papers, clinical notes, lab results, and diagnosis
reports. Lastly, we evaluate the overall performance of our
pipeline along with the evaluation of its main components
individually. The evaluation results are compared to those of
the works mentioned above.

II. RELATED WORK

Knowledge extraction from natural language text has
gained much interest in recent years. Many approaches have
been published containing processes to transform an input
unstructured text into KGs. In this section, we review the
literature to explore the various adequate NLP tools and
assess the advancement of this task and the results achieved.
We provide an overview of some of the works applied to
different biomedical data such as Electronic Medical Records
(EMRs), clinical notes, and scientific papers, with a summary
of their tasks, datasets, and results as depicted in table I.

Linfeng et al. [19] introduced a pipeline to transform
EMRs into exploitable KG. It focuses on extracting relations
between diseases and a set of different entities. The process
relies on eight steps briefly described as follows :

1) Data preparation: The data is collected and prepared
from the private big data platform of the Southwest
Hospital in China, which contains 16,217,270 visits
of 3,767,198 patients and consists of chief complaints,
illness history, lab exams, and drug prescriptions.

2) Named Entity Recognition: This step is performed
by a hybrid vocabulary-based bidirectional maximum
matching method, BiLSTM-CRF model, and pattern
recognizer. The model extracts nine types of entities in
total, which are disease, gender, age range, symptom,
exam, lab exam, lab item, medicine, and surgery.

3) Relation Extraction: The approach for this task is
to establish nine types of relations between the
diseases and the entities present in a single patient’s
visit. The relations are constructed from the nine
types of entities as follows: disease-related-disease,
disease-related-gender, disease-related-agerange,
disease-related-medicine, disease-related-symptom,
disease-related-exam, disease-related-labexam,
disease-related-labitem, and disease-related-surgery.

4) Property calculation: This step computes a set of prop-
erties for each relation: the probability of the object be-
ing related to the subject, the specificity that reflects the
object’s significance to the subject, and the reliability
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to curate the extracted relations. These properties are
assigned to the relation as a novel quadruplet (Subject,
Predicate, Object, Properties) instead of the standard
SPO form (Subject, Predicate, Object).

5) Graph cleaning: In this step, entities and relations with
several occurrences inferior to a chosen threshold of 10
are removed to clean noisy triples.

6) Related-entity Ranking: This step introduces a new
score function to rate the relation between the subject
and the object based on the calculated properties,
which is the multiplication of the probability, the
specificity, and the reliability of the relations between
a given subject and its related objects. The function
is adapted to the relation disease-related-labexam to
account for abnormal exam results.

7) Graph Embedding: PrTransH model [20] is trained to
learn graph embeddings of all diseases and relations
that serve in disease clustering using the DBSCAN
algorithm [21].

In another work, Harnoune et al. [22] tackle the challenge
of extracting knowledge graphs from clinical notes. It intro-
duces a pipeline for extracting entities and relations in text
spans from patient drug prescriptions. The pipeline consists
of 5 steps as follows:

1) Preprocessing: The first step of the pipeline consists of
tokenizing the input text followed by word embedding
using a BERT model [23]. The model returns text
embedding that is fed to the next step.

2) Named Entity Recognition: This step applies BERT for
NER paired with a CRF layer to link the extracted enti-
ties to their respective classes. Many variants of BERT
were tested namely: BioBERT [24], BioClinicalBERT
[25], BioDischargeSummury [25], BioRoberta [26] to
extract several types of entities such as Patient, Drug,
Strength, Posology, ADE (side effect of the drug),
and Reason. The input text is segmented into spans
containing as many paragraphs as the maximum num-
ber of tokens in BERT (512) can fit. In this context,
BioClinicalBERT proved more efficient than the other
variants.

3) Coreference Resolution: In this step, NeuralCoref re-
solves coreference in text using a pre-trained statistical
model integrated into spaCy’s NLP pipeline.

4) Relation Extraction: In this work, the RE task is tackled
as a binary classification problem to predict if a relation
is present between each pair of entities in the input
span using the BERT variant BioClinicalBERT. The
approach maps entities in pairs based on their classes
and predicts whether the relation exists for each.

5) Graph Construction: A KG is constructed using the
extracted entities and several properties and is linked
based on the predicted relations. Five types of enti-
ties form the nodes (Patient, Drug, Posology, ADE,
Reason), and the other types are represented by their
attributes (e.g., Strength, Dosage, Duration). The edges
represent the entities’ relations in entity-type-1 and
entity-type-2 ( e.g. Patient-Posology). The graph is
built on a neo4j database.

6) Graph Analysis: The work provides a series of analysis
operations that can be carried out on the KG, such
as the drug most used by the patients, the set of

prescriptions that treat the same symptom (reason), and
the most important reason for taking the drug in the
graph.

Wise et al. [27] focused on extracting knowledge graphs
from the scientific papers from the COVID-19 Open Re-
search Dataset (CORD-19) [28]. The work aims to build a
KG named COVID-19 Knowledge Graph (CKG) containing
information about the scientific articles and the biomedical
entities stored inside. The resulting KG is leveraged to
perform Information Retrieval and article recommendation.
However, in this section, we will focus on the pipeline and
the various NLP tasks leading to the construction of the KG.
The pipeline contains the following steps:

1) Entities Extraction: The KG is constructed from 5
types of entities and determined attributes. Paper en-
tities that represent the scientific article, Author enti-
ties, and Institution entities that represent the affilia-
tion for the authors and their attributes are retrieved
from CORD-19 [28] metadata. Concept entities are
extracted from the article’s abstract and body using the
Amazon Web Service for NER Comprehend Medical
(CM) Detect Entities V2 and sorted into categories
such as Anatomy, Test Treatment Procedure, Medical
Conditions, and Medication. The KG also contains
topic entities deduced by Z-LDA [29] and the help
of medical professionals.

2) Relations Extraction: The relations of the KG are
determined by the interactions of the different types
of entities and are explained as follows: authored-by
(Paper – Author), affiliated-with (Author – Institution),
associated-concept (Paper – Concept), associated-
Topic (Paper – Topic), cites (Paper – Paper).

3) KG Curation: This work discards the extracted biomed-
ical entities with a confidence score of less than 50% to
clean the resulting KG. It also performs lemmatization
to normalize the entities’ names and run a distribution
of the entities to filter out those with an occurrence of
0.0001% and pass those with an occurrence of 50% or
more to manual qualitative assessment. The authors’
entities are also normalized to avoid redundancy and
improve citation liking based on the authors’ names.

Gajendran et al. [30] propose an end-to-end pipeline to
extract biomedical knowledge from abstracts of the CORD-
19 papers in the form of the top diseases, proteins, and
chemicals related to COVID-19. The pipeline relies on six
steps :

1) Preprocessing: The CORD-19 abstracts are collected
and prepared for the next step.

2) Feature Extraction: In this step, a BERT-BiLSTM-
CRF model is finetuned to extract 3 types of enti-
ties (Disease, Protein, Chemical) using NCBI-Disease
[31], JNLPBA [32], and CHEMDNER [33] datasets
respectively.

3) Named Entity Recognition: The CORD-19 abstracts
are passed as input to 3 distinct NER models to extract
the diseases’, proteins’, and chemicals’ entities, respec-
tively. This model consists of a finetuned SciBERT [34]
model, which yields a representation vector of 768 in
size, to the BiLSTM [35] layer that produces a vector
with a length of the number of entities’ types in the
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training dataset. The output is fed to a CRF layer that
extracts the best possible tag sequence for the input
sentence.

4) Relation Extraction: This work focuses on extracting
two types of relations between the entities. Two inde-
pendent SciBERT models are used to predict whether
or not a relation exists between entities in a single sen-
tence. The first model is trained on BC5CDR [36] for
the Chemical-Disease relation, and the second model is
trained on CHEMPROT [37] for the Chemical-Protein
relation.

5) Graph Construction: A Neo4j graph database stores the
resulting entities and relations from the NER and RE
steps. The nodes represent the entities by their names
and types, and the two relations are represented by
directed edges linking the head-to-tail entities. To clean
the resulting KG from noise, the triples whose head or
tail entities have a lower occurrence count than five are
discarded.

6) Representation Learning Module: A TransD model
[38] is used to detect the top 25 entities related to
COVID-19. For this purpose, the model is trained
to learn the embeddings of all entities and relations.
The embeddings of the entities whose edge count is
less than five are discarded. The remaining obtained
embeddings are compared to the model’s embedding
of COVID-19 using cosine similarity to determine the
top 25 entities related to each entity type to COVID-19.

Lamy et al. [39] is another state-of-the-art work exploiting
EMRs to extract valuable knowledge for healthcare practi-
tioners. In this work, EMRs are processed through a pipeline
to provide structured clinical data that are suitable for
querying and analysis operations. The records are gathered
and sorted by specialties such as oncology, rheumatology,
and gastroenterology. In summary, the pipeline follows four
steps:

1) Data preprocessing: The initial EMRs are cleaned
up by resolving all abbreviations and acronyms and
correcting orthographic errors.

2) Data translation: Since major development in NLP
techniques has focused on English text, the text is
translated from Portuguese to English using the Google
Translate API, preserving the data’s original meaning
and slightly impacting the pipeline’s performance.

3) Named Entity Recognition: The processed English text
is passed to cTAKES [40], a state-of-the-art NLP tool
that extracts medical terms using a series of operations.
Firstly, the Sentence Boundary Detector segments the
text into sentences. These sentences are split into
words using a tokenizer, which are normalized after
removing prefixes and suffixes. The POS tagger assigns
each word its respective tag (e.g., noun, verb). This
Shallow Parser then links these words into higher
logical units and noun groups such as respiratory
tract infections. The final component is the Named
Entity Recognizer, which identifies entities based on
the SNOMED-CT dictionary containing over 300.000
clinical terms. The pipeline can extract multiple entity
types such as diseases, medications, symptoms, signs,
anatomical regions, and clinical procedures.

4) Storage and querying: The extracted entities are stored

in an XMI (XML Metadata Interchange) file and a
structured database. With the help of SQL queries, The
work can extract valuable knowledge from the data
and find relations between entities from different types,
correlations, and patterns in the EMRs.

Table I below summarizes the works discussed above.
From the analysis of several related work methods, we

notice that the approaches providing end-to-end pipelines for
KG extraction usually focus on a specific type of data or
specific types of entities and relations. In our work, we aim
to provide a pipeline that takes in any form of biomedical
natural language text and can be trained and scaled to extract
any type of entities and relations. Our work also focuses on
returning pure biomedical content, free from any literature
or general information like the notions of authors, papers,
and organizations.

III. PROPOSED METHOD

In this work, we propose a pipeline that takes a biomedical
raw text as input and transforms it into a KG, using a series of
text mining tasks and employing several state-of-the-art NLP
tools. Our goal is to provide a trainable end-to-end pipeline
for any case of KG extraction from biomedical text. This
approach mainly contains supervised learning tools to offer
a high degree of trainability for different scenarios, which
means that the pipeline’s output relies on the nature of the
data used in the training phases of the different steps. The
pipeline can be customized to extract different entities and
relations by training some components on a set of entity and
relation types. In our case, the work is applied to biomedical
text in the form of scientific papers and preprints from the
CORD-19 dataset [28]. For that, we use several biomedical
datasets to train the different models.

Figure 1 depicts the overall architecture of the proposed
pipeline. This pipeline is composed of 6 steps in total,
summarized as follows:

• Text preprocessing: In this step, we prepare our input
data by performing a series of NLP tasks from any data
that may interfere with the pipeline’s performance.

• Named Entity Recognition: We aim to extract the
biomedical entities present in the text. In our case, we
leverage several publicly available benchmark datasets
to extract four types of entities: Disease, Drug, Gene
or gene product, and Cell.

• Entity Linking: In this step, we map the extracted
entities to their corresponding standard terminology in
the UMLS [2] set of vocabularies.

• Relation Extraction: We perform RE to extract the
relations among entities in a sentence from the input
text.

• Graph cleaning: We conduct cleaning operations to cure
the output from noise and wrong predictions.

• KG construction: Finally, we group the filtered entities
and relations into a refined KG and visualize it for the
end user.

A. Prepossessing

The first step requires cleaning and structuring the input
text. We use fragments of the topic modeling pipeline [41]
proposed in our previous work. Specifically, we apply the
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TABLE I
APPROACHES FOR KNOWLEDGE GRAPH EXTRACTION FROM TEXT: SUMMARY OF TASKS, DATASETS, AND EVALUATION RESULTS.

Reference Tasks Datasets Evaluation
Metrics Results

Linfeng et al.
(2020) [19]

NER
Related-entity
Ranking
RE
KG Extraction

Chief complaints,
Illness history
Lab exams
Drug prescriptions

NER
P 0.9727
R 0.9689
F1 0.9708

Related-
entity
Ranking1

NDGC 0.85/1.00

Harnoune et al.
(2021) [22]

NER
RE
KG Extraction

Care-III
(MIMIC-III)

NER F1 0.907
RE F1 0.88

Wise et al.
(2020) [27]

NER
KG Extraction CORD-19

Gajendran et al.
(2023) [30]

NER
RE
KG Extraction
KG Embedding

CORD-19
NCBI-Disease
JNLPBA
CHEMDNER
BC5CDR
CHEMPROT

NER
P 0.8849
R 0.8902
F1 0.8876

RE
P 0.74
R 0.73
F1 0.73

Lamy et al.
(2023) [39] NER Electronic Medical Records NER

P 0.75
R 0.61
F1 0.67

same preprocessing operations to clean the input text be-
fore passing it to the next step. In this case, we perform
tokenization, lemmatization, and Language detection opera-
tions using the open-source library spaCy for various NLP
tasks. Next, we remove a custom list of stopwords. This
custom list contains the standard Natural Language Toolkit
(NLTK) stopwords in addition to a set of common words,
mainly found in scientific publications (e.g., “i.e.”, “fig”,
“al.” ). These words do not carry a specific meaning but
form an essential part of scientific text. Finally, we remove
punctuation except for the full-stop symbol (.) to keep the
notion of sentences and distinguish between sentences later
on. For our application on CORD-19, we also integrate the
part responsible for the papers’ collection from [41] to feed
the papers to our pipeline. The body texts of each paper run
through the same preprocessing operations and are grouped
in a single string, forming a set of sentences to be forwarded
to the next step.

B. Named Entity Recognition

1) Process: In this step, we aim to extract the medical
entities present in the processed text by training a supervised
learning model to recognize four types of entities: Disease,
Drug, Gene or gene product, and Cell. In various literature
reviews, benchmarks are carried out to compare NER models
based on their performance and properties. Transfer learning-
based approaches have proven to be effective in the case of
training the model for a task on a limited amount of domain-
specific data. This method consists of pre-training the model
on a high-resource unlabeled dataset and then fine-tuning
it on a small domain-specific dataset to perform a specific
task. For NER, Agrawal et al. [42] provided a review of
several neural network-based methods and their applications
on different benchmark datasets (GENIA [32], GermEval
2014, JNLPBA [32]). We focus on GENIA and JNLPBA for
their similarity to our training data. In Table II, we provide
a comparison of the F1-scores of pre-trained BERT models

from the Google AI SciBERT [34] and BioBERT [24], in
addition to a CRF model and Bi-LSTM-CRF as cited in [42].
Generally, pre-trained BERT models performed better than
CRF and Bi-LSTM-CRF on both datasets.

TABLE II
COMPARISON OF F1 SCORES OF SEVERAL STATE-OF-THE-ART NER

MODELS ON 2 DATASETS [42]

Models F1-score
(GENIA)

F1-score
(JNLPBA)

SciBERT 74.07 80.68
BioBERT 74.38 80.48
CRF model 65.15 74.23
Bi-LSTM-CRF 70.19 77.56

In another work, Lee et al. [24] performed a benchmark on
different versions of the variant BioBERT [24], pre-trained
on PubMed, PCM, and combinations of both. The models
were trained on several benchmark datasets to extract disease,
drug, chemical, gene, protein, and species entities. BioBERT
v1.1, pre-trained on 1.1M PubMed abstracts (4.5B words),
showed an overall better performance than the other versions
of the variant, a pre-trained BERT model on a general domain
corpus, and state-of-the-art results from previous works.

We adopt BioBERT [24] v1.1 and fine-tune it to perform
NER on biomedical text by training multiple model instances
on different datasets for each entity type. Our approach at
this point consists of extracting entities on a sentence level by
applying the four independent models to preserve the model’s
performance to recognize a single type of entity. We use the
weighted Cross Entropy Loss function to counter the effect
of class imbalance and allow the models to focus on the
classes representing medical entities. The extracted entities
from each model are then combined into a list representing
each sentence’s heterogeneous entities. Finally, these lists are
grouped into a global list containing the entities from the
whole corpus.

BioBERT can be fine-tuned to extract all types of entities
depending on the training datasets, reflecting the customiza-
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Fig. 1. Overall architecture of the proposed pipeline for Knowledge Graph construction from biomedical text: We feed the input text to the preprocessing
component. Then we pass the processed text to our independently trained BioBERT models to extract 4 entities (Disease, Drug, Cell, Gene). The extracted
entities are passed to the EL phase where they are linked to their respective classes in the UMLS Metathesaurus. We apply RE on each sentence in the
text and its respective entities through a trained BERT model to extract the relations between those enities. Next, we clean the extracted triples and format
the final triples into an RDF/XML file.

tion aspect in our pipeline. This variant of BERT’s use is
based on our application of the pipeline in the biomedical
context. We create an Entity class to accommodate all the
properties we need. The class contains the extracted name, a
list of start and end indexes representing the entity’s position,
and the entity’s predicted class (B-Disease, B-Drug, e.g.).
Some extracted entities are composed of several consecutive
words. We group these words into a single meaningful entity.
The new entity’s name is the concatenation of all the entities’
names, and its position is a list containing the starting index
of the first and the ending index of the last one.

2) Datasets: To fine-tune our BioBERT models for NER,
we train four instances of the model on different datasets,
each corresponding to a type of mined entity. We use various
datasets from the BioNLP workshop for NER and other
sources. We manually customize the data for our work to
a unified format (Entity-name; IOB-tag). The IOB tags for
all entities are O, representing the absence of the entity, B-
Entity for the beginning of the entity, and I-Entity for the
inside. For each entity type, we use the following datasets:

Disease: We combine the training and test sets of NBCI-
Disease [31] and the training set of BC5CDR [36] for
diseases into a more extensive training corpus for the model.
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Fig. 2. Visualization of a subgraph of the RDF graph extracted from 10 CORD-19 papers. The subgraph contains examples of Disease entities (Cardiopul-
monary, varicella zoster) and other examples of B-Gene or gene product entities (CLSPN gene, h4k16) and relations (ns1:disease has abnormal cell,
ns1:disease may have associated disease).

We preserve the test set of BC5CDR [36] to test and evaluate
the model.

Genes or gene product: For this entity, we form our
training set from the training and test sets of JNLPBA for
genes [32] and the training set of BC2GM [43], and our test
set from the test set of BC2GM [43].

Cell: We use the JNLPBA dataset [32] for cells with the
standard distribution of the train and test sets.

Drug: DDICorpus [44] is a set of sentences with tagged
drug entities and the relations between them in the form of
XML documents. We retrieved the full text of the sentences

and the tagged entities and transformed them into a unified
format.

C. Entity Linking

Next, we feed the extracted entities into the entity linking
step, applying scispaCy EntityLinker to each entity. The
EnitityLinker is a spaCy pipeline component that relies on a
Thinc model with a linear output layer and helps clear the
disambiguation in the extracted entities by linking them to
a knowledge base. In our case, we choose the entity linking
component from the en core sci sm scpCy pipeline, and we
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link our entities to UMLS approximately 3M concepts. As a
premature cleaning step, we discarded entities that could not
be linked, followed by predictions with a confidence score
lower than a threshold of 70%. We also discard the extracted
entities linked to a concept with a nonmedical type in UMLS,
such as T092 (Organization) and T064 (Governmental or
Regulatory Activity). We enrich the Entity class with two
more properties, the CUI and the UMLS [2] label of the
entity after performing EL.

D. Relation Extraction

1) Process: In this step, we aim to extract the relations
among all entities in the corpus. We first predict the relations
between every pair of entities at the sentence level to ac-
complish that. We use the framework OpenNRE [45], which
contains models to perform RE. It allows leveraging CNN
and BERT models in our use case, sentence-level RE. Results
have shown that BERT outperforms CNN on all evaluation
datasets. We treat this task as a multi-classification problem.
We train a BERT model to predict the relation, from a set
of relations, between all pairs of entities present in a single
sentence. Next, we infer the model on each sentence from
the corpus by feeding it the full text of the sentence and the
positions of the head and tail entities. The model returns a
prediction for each pair from the set of relations.

2) Datasets: Before applying our BERT model on
the input text, we train the model on a personalized
dataset derived from the training set of BioRel [46], a
dataset containing 534277 sentences and 125 relations
extracted using distant supervision from a comprehensive
set of datasets such as SemEval-2010 Task 8, ACE
2003-2004, NYT, BC5CDR, BB3, SeeDev, GE4, i2b2
2010. Each sentence contains the text of the sentence,
the relation, and the pair of head and tail entities,
along with other properties irrelevant to our use case.
Considering our application case on CORD-19 [28] papers,
we limit the set of relations to a set containing five
relations in total: may treat, disease has associated gene,
disease may have associated disease, dis-
ease has abnormal cell, and chemi-
cal or drug affects gene product.

The choice of the relations is consistent with the specified
entities as they represent the interactions that may occur
among these entities. We construct our RE training set from
100 sentences corresponding to each relation and our RE
testing set from 50 sentences for each relation.

E. Graph Cleaning

At this level, we possess a set of triples formed by
the extracted entities from the NER and EL steps and the
relations representing the interaction between each pair of
these entities. Before constructing the final KG, we clean
the predicted data as a continuance of the cleaning operation
performed at the EL step. We discard the identified relations
with a confidence score less than the 70% threshold to further
clean the results from weak predictions. We also discard
some relations based on medical logic. Each relation has
a defined type for its head entity and a defined type for
its tail entity, and any prediction that does not respect its
respective pair of entity types is dropped (e.g., may treat is

a relation that can only be established between a Drug entity
and a Disease entity, a prediction stating that a Drug entity
may treat a Gene or gene product entity is not taken into
account).

F. Knowledge Graph Formalization

For the final step of the pipeline, we group the final
set of triples into a Resource Description Format (RDF)
graph, following the RDF standard format. The nodes are
divided into two categories. The first category represents the
entities linked successfully to their corresponding UMLS [2]
concept, which are identified by the URI of the concept
on UMLS. The second category represents the rest of the
entities that were not linked to UMLS and are identified
by a local node ID on the graph. This format allows our
pipeline to be integrated into and paired with larger systems
as a KGE component to perform other machine learning tasks
such as graph completion and link prediction. Our output can
also be exploited for ontology development and update, as
the RDF/XML format is one of the standard representations
of ontologies. Fig. 2 shows a visualization of a subgraph
extracted from the output KG.

IV. RESULTS AND DISCUSSION

In this section, we evaluate the performance of our pipeline
using two approaches. Firstly, we tackle the evaluation of
individual trainable components in the NER and RE step
using three of the metrics for classification models (precision,
recall, F1 score) and compare these results to other state-of-
the-art works mentioned in section II. Secondly, we tried
a new approach to evaluate the performance of the whole
pipeline. We feed the pipeline a biomedical text that we
already know the entities and relations within. We compare
the output to the ground truth data of the text and provide
an overview of the quality of that output.

A. Named Entity Recognition

For this part, we train and test 4 separate BioBERT [24]
models on four different datasets, each one corresponding to
a single entity type. With the training epochs set to 3 for
all models, the disease entities’ model is trained on 26422
sentences and tested on 3941 sentences. The second model
focused on drug entity extraction, and it was trained on
5288 sentences and tested on 597 sentences. A model was
trained and tested on 7438 and 1695 sentences to recognize
gene entities, respectively. The last model destined to extract
cell entities was trained on 3032 sentences and trained on
1905 sentences. The evaluation results are extracted from
the testing phase and are shown in Table III alongside other
results from the state-of-the-art works mentioned above. We
evaluate our model using micro precision, recall, and F1-
score to account for the difference in class density in medical
natural language text. The results show that our approach
to tackling the NER problem is well positioned among the
other solutions used by state-of-the-art methods for the same
purpose.
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TABLE III
COMPARISON BETWEEN THE RESULTS OF OUR APPROACH ON NER AND THE RESULTS OF OTHER RELATED WORK METHODS.

Metrics
Model Precision Recall F1-score

Our approach
(BioBERT)

Disease 0.9788 0.9776 0.97813
Drug 0.9929 0.9929 0.9929
Gene 0.9769 0.9765 0.9766
Cell 0.9914 0.9915 0.9914
Average 0.985 0.9846 0.9847

Gajendran et al. [30]
(BERT-BiLSTM-CRF)

Disease 0.8849 0.8902 0.8876
Chemical 0.9088 0.9225 0.9156
Protein 0.7125 0.815 0.7606
Average 0.8354 0.8759 0.8546

Linfeng et al. [19]
(vocabulary-based
bidirectional
maximum matching
+ BiLSTM-CRF
+ pattern recognizer)

Disease

0.9727 0.9689 0.9708

Gender
Age range
Symptom
Exam
Lab exam
Lab item
Medicine
Surgery

Harnoune et al. [22]
(BioClinicalBERT)

Patient

0.907
Drug
Posology
ADE
Reason

Lamy et al. [39]
(cTAKES)

Clinical
procedures

0.75 0.61 0.67Diseases
Medications
Symptoms
Signs
Anatomical
regions

B. Relation extraction

We train the model on the training dataset derived from
BioRel [46] over 20 epochs to prepare the BERT model for
inference. The training set contains 500 sentences divided
equally among the five relations. Then, we evaluate the
model’s performance on the constructed t est set containing
213 sentences. Our model’s precision, recall, and F1-score
are shown in Table IV, compared to other state-of-the-art
works implementations of RE solutions for which the same
evaluation metrics are available. Our approach has exceeded
other state-of-the-art methods in the RE step of the KG
extraction process.

TABLE IV
COMPARISON BETWEEN THE RESULTS OF OUR APPROACH ON RE AND

THE RESULTS OF OTHER RELATED WORK METHODS.

Metrics
Model Precision Recall F1-score

Our approach
(BERT)

0.9385 0.8442 0.8888

Gajendran et al. [30]
(SciBERT)

0.74 0.73 0.73

Harnoune et al. [22]
(BioBERT) 0.88

C. Overall performance

Furthermore, after evaluating the pipeline components
individually, we proceeded to analyze the performance of

the pipeline as a whole. For this purpose, we manually
select all the sentences (328 sentences) from the test set of
BioREL [46] that contain the five relations. These sentences
have the same structure as the ones in the training set
mentioned in section III-D. We construct a natural language
text by concatenating the text of all these sentences into
one paragraph, and we keep their corresponding relations
and pair of head and tail entities as golden truth data to
compare it to the pipeline output at the end. After obtaining
the final KG from our pipeline, we matched the extracted
entities and the predicted relations on a sentence level. We
analyzed the cases of the correct and wrong predictions as
shown in Fig. 3. Our method correctly predicted 240 out of
328 sentences with a rate of 75%. Subsequently, it failed to
do the same for the remaining 25% of the data. Upon further
analysis, we noticed that 13% of the sentences were not
predicted correctly because of a problem in the recognition
of the entities phase, which means that the NER model did
not extract the proper entities (words) from the sentences.
5% of the sentences had wrong predictions due to entity
classification problems, as the NER model failed to predict
the correct type for the extracted entities. Lastly, the pipeline
failed to provide correct predictions for 7% of the sentences
because of a RE problem linked to wrong predictions by the
RE model.

V. APPLICATIONS AND CHALLENGES

A KGE pipeline, such as the one provided in this work,
is an essential tool with many applications for both biomed-
ical professionals and machine learning practitioners. It can
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Fig. 3. Distribution of the predicted triples corresponding to the evaluation
data

extract the knowledge stored in natural language text and
transform it into a machine-readable and easy-to-browse
format. It can also process large amounts of text in a limited
time and combine the result into an interconnected output,
relieving the end user of the heavy task of manually reading
the whole text. Other systems, such as QA, recommenda-
tion, and knowledge discovery systems, can also exploit the
output of this pipeline. Particularly in the biomedical field,
it can be applied in different contexts to achieve specific
results. For example, the KG can help drug discovery, where
users can predict new links between drugs, diseases, gene
mutations, and genetic markers. Decision support systems
also use KGs as a knowledge base to assist clinicians in
diagnosing complex cases by surfacing relevant symptoms,
conditions, and treatment suggestions. KGE pipelines have a
significant potential in ontology development, maintenance,
and update. It can help ontology developers by accelerating
text processing and entity and relation extraction.

The process of KGE still faces many challenges, some
of which we faced during the development of this pipeline.
Firstly, processing natural language text will always pose the
challenge of ambiguity, polysemy, long-range dependencies,
and context complexity. Other challenges can be traced back
to the pipeline’s components. For example, a small margin of
error in the early steps of the process can be propagated to the
following steps, resulting in a significant gap from the desired
results. The integration of these steps also greatly impacts
the overall performance and needs attention when choosing
the adequate tools that work well together and the correct
data to pass from one component to the next. On another
note, employing supervised learning tools brings another
challenge: securing important amounts of clean and correct
training data, which may only sometimes be available in
some fields. Applying KGE in the biomedical domain faces
the same challenges as scientific and clinical text, which is
more complex and ambiguous, and significant amounts of
data are unavailable due to privacy and ethical concerns.

VI. CONCLUSION

In this work, we address the problem of knowledge ex-
traction from natural language text. Specifically, we focus on
Knowledge Graph extraction from biomedical data. For this
purpose, we review some fundamental text mining concepts
required for KG construction. Then, we review some state-
of-the-art works that tackled the same problem by providing

full pipelines to process biomedical text. Lastly, we introduce
an end-to-end pipeline to process and transform natural
language text into a KG.

Our approach provides a level of customization through its
trainability on different data depending on the application use
case. In our case, this process was applied to four biomedical
concepts (Disease, Drug, Gene, Cell) and their possible
interactions, influencing the choice of certain aspects of
the pipeline’s components. The pipeline achieved F1 scores
ranging from 0.89 to 0.96 across all classes in NER and 0.88
in RE. These results are not only positioned well compared
to other state-of-the-art works but also improvable with more
ablation studies.

Our future work will proceed in 2 directions: Firstly, we
will focus on the performance of the pipeline by analyzing
its weak points and enhancing each component accordingly.
Secondly, our work so far returns a KG that has various
benefits to biomedical domain practitioners. However, this
is not the end goal in the text mining field. For that, the
output KG is set to be paired with question-answering,
recommendation, decision support, and querying tools to
provide more value to the end user.
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