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Abstract—Steel, being a widely utilized material in industrial
production, holds a pivotal role in ensuring product safety
and longevity. Hence, the exploration and implementation of
steel surface defect detection technology carry significant im-
portance. This paper introduces a steel surface defect detection
algorithm based on S-YOLOv8. The algorithm, rooted in
YOLOv8n as a benchmark model, initially incorporates a shift-
wise shift operator in the backbone network. This introduction
notably enhances accuracy compared to conventional CNN
models while markedly reducing computational demands. Fur-
thermore, the utilization of the SF-Neck framework, integrating
the scale sequence feature fusion module (SSFF) and triple
feature encoder module (TFE) in the head network, enriches
the network’s multi-scale information extraction capabilities.
Subsequently, the adoption of the WIoU loss function enhances
the overall detector performance. Lastly, the integration of
the SEAM occlusion attention module refines the detection
head segment of the YOLOv8 algorithm, effectively addressing
defect occlusion challenges. Experiments conducted on the
NEU-DET dataset reveal that the mAP value of the S-YOLOv8
model reaches an impressive 84.2%. Comparative analysis
with other mainstream algorithms demonstrates a substantial
enhancement in detection accuracy, alongside a reduction in
instances of leakage and misdetection. Consequently, this study
charts a new technical trajectory for quality control within the
steel manufacturing industry.

Index Terms—Steel surface Defect detection, S-YOLOv8,
SWC2f, WIoU, SEAM.

I. INTRODUCTION

AS an essential construction material, Steel is widely
used in industrial production and construction. As the

global economy advances and industrialization accelerates,
the demand for strip steel continues to grow. However, during
the production and processing stages, steel often manifests
various surface defects such as oxidation, cracks, pits, and
bubbles. These flaws not only detract from the visual appeal
of the steel but can also compromise its mechanical strength
and resistance to corrosion. More critically, these defects
could lead to product failure. Therefore, the prompt and
accurate identification and evaluation of imperfections on the
steel surface are of paramount importance[1].
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The detection of defects on the surface of steel commonly
employs several methods. Manual Visual Inspection is one
such method that relies on an inspector’s visual observation
during the inspection process. However, this approach is
often subject to issues of subjectivity, inefficiency, and a
higher likelihood of errors. Another method, Optical Micro-
scope Inspection, magnifies the steel surface using an optical
microscope, enabling the identification of small defects.
Despite its efficacy, this method necessitates the expertise
of skilled professionals to operate the equipment. Magnetic
Particle Flaw Detection (MPFD) is a technique that involves
applying magnetic powder to the steel surface, followed by a
magnetic field to detect defects such as surface cracks. How-
ever, its application is restricted to specific types of defects.
Ultrasonic Inspection, on the other hand, employs ultrasonic
technology to scan the steel surface, detecting both internal
and surface defects with high sensitivity and accuracy. This
method, while effective, requires skilled operators and comes
with high equipment costs. Lastly, Thermal Infrared Imaging
involves scanning the steel surface with an infrared ther-
mographic camera to detect surface temperature anomalies
and defects. However, the resolution of this technique may
be constrained by the equipment, potentially impeding the
accurate detection of small defects[2].

With the advancement of computer vision and image
processing technologies, automated surface defect detection
technology based on image processing and machine learning
has emerged as a significant research area. Scholars have
been actively exploring defect detection using deep learning-
based target detection algorithms[3].

In this field, two prevalent strategies include single-stage
and two-stage algorithms. Single-stage algorithms, such as
YOLO (You Only Look Once)[4] and SSD (Single Shot
MultiBox Detector)[5], make direct predictions about the
target category and location from the image. Conversely, two-
stage algorithms, including R-CNN[6], Fast R-CNN[7], and
Faster R-CNN[8], first generate candidate regions, followed
by classification and localization of targets within these
regions. For instance, Liu et al[9] presented a multi-scale
contextual strip surface defect detection network named
MSC-DNET. This network leverages an enhanced inflated
convolutional parallel architecture to capture multi-scale con-
textual information. Moreover, a feature enhancement and
selection module is used to strengthen the identification
of single-scale features and effectively utilize multi-scale
features, thereby preventing information overload and confu-
sion. Yushang Weng et al[10] proposed an enhanced version
of the Mask R-CNN algorithm, which includes the k-means
II clustering algorithm to improve the RPN anchor frame
generation method. They also adjusted the model structure
by removing the mask branches to boost detection accuracy.
Lu Yao et al[11] introduced a defect detection model based
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on Cascade RCNN. This model employs switchable null con-
volution in place of ordinary convolution, thereby expanding
the sensory field of the output unit. Furthermore, the feature
pyramid is augmented through top-down connections. The
model also incorporates the up-sampling operator CARAFE
to enhance localization accuracy and up-sampling precision,
resulting in improved detection accuracy. Wu Shan et al[12]
proposed an advanced SSD network that constructs bottom-
up down-sampling paths and top-down up-sampling paths.
This design enhances the semantic information of spatial
features and introduces an attention mechanism module to
amplify the expressive power of feature fusion. Yanting Ma
et al[13] proposed an improved MT-YOLOv5 algorithm. This
algorithm integrates a Transformer self-attention mechanism
module and a BiFPN network structure to enhance the
extraction of image feature information, thereby achieving
superior results. Huang et al[14] put forward an improved
YOLOv8 algorithm, which replaces the C2F module with
the GhostNetv2 module to enhance model representation.
They also employ a progressive feature pyramid structure to
facilitate more effective feature fusion across non-adjacent
levels, thereby enhancing feature extraction capabilities and
accelerating training. Kebin Cui et al[15] proposed an MCB-
FAH-YOLOv8 algorithm for steel surface defect detection.
This algorithm features an improved CBAM attention mech-
anism and a replaceable four-head ASFF prediction head to
enhance detection accuracy. LiMing Liang et al[16] proposed
an improved DCD-YOLOv8n algorithm, which enhances
network accuracy by using a multi-branch feature aggrega-
tion network and a cross-dimension aggregation module. It
also adopts a deformable multi-head attention mechanism to
effectively handle complex defect features.

To summarize, the two-stage algorithms exhibit high de-
tection accuracy but slower detection speeds, making them
less suitable for real-time monitoring. On the other hand,
single-stage algorithms offer faster detection but with slightly
lower accuracy. To address the need for real-time monitoring
while enhancing defect detection accuracy, this paper pro-
poses an algorithm based on the improved YOLOv8 network.
The key innovations of this paper are as follows: Introducing
the shift-wise shift operator: By integrating this operator into
the YOLOv8[17] network backbone, the algorithm signifi-
cantly enhances the accuracy of regular CNNs while reduc-
ing computational requirements. SF-Neck framework: This
framework incorporates the Scale Sequence Feature Fusion
Module(SSFF) and Triple Feature Encoder Module(TFE) in
the header network. It utilizes the Path Aggregation Net-
work(PANet) structure to fuse multi-scale feature mappings
extracted from the backbone network, thereby enhancing
the network’s ability to extract information across multiple
scales. Adoption of WIoU loss function: This loss function
addresses the issue of imbalanced sample quality in defective
samples, thereby enhancing the overall detector performance.
SEAM occlusion attention module: This module is employed
to enhance the detection head part of the YOLOv8 algorithm,
effectively addressing the challenge of defect occlusion and
improving detection accuracy in such scenarios.

II. ALGORITHM DESIGN

YOLOv8 represents the latest iteration in the YOLO
(You Only Look Once) series, incorporating a new network

architecture and advanced technologies to enhance accu-
racy and efficiency in target detection tasks. The YOLOv8
network comprises the backbone network, neck, and head
network, each playing a distinct role in the detection process.
YOLOv8 utilizes the CSPDarkNet backbone network for
extracting image features. Notably, it replaces the original
C3 module with the C2f module, leading to a significant
reduction in parameters.This modification, coupled with im-
proved gradient flow, results in enhanced convergence speed
and accuracy. Responsible for predicting target locations and
categories, the detection head in YOLOv8 introduces innova-
tions such as SPP (Spatial Pyramid Pooling) and PAN (Path
Aggregation Network) modules. These modules enhance the
network’s ability to perceive targets across different scales
and facilitate effective feature fusion. YOLOv8 adopts a
decoupled-head structure, separating the classification and
detection heads. Additionally, it transitions from Anchor-
Based to Anchor-Free methodology, contributing to im-
proved detection performance. YOLOv8 offers models with
varying scales (N/S/M/L/X) based on scaling coefficients.
In this paper, the YOLOv8n network structure is selected
for enhancement, aligning with the specific goals of the re-
search. Overall, YOLOv8’s incorporation of novel modules,
improved network structures, and anchor-free methodology
signifies a significant advancement in target detection capa-
bilities, catering to a wide range of applications requiring
high accuracy and efficiency. To enhance the detection accu-
racy of the steel surface defect detection algorithm, this paper
introduces an algorithm specifically designed for detecting
small targets, named S-YOLOv8. The structure of the S-
YOLOv8 network is illustrated in Figure 1.

A. SWC2f module

Large convolutional kernels can enhance the sensory do-
main’s scope and significantly improve detection accuracy.
However, conventional large convolutional kernels are not
hardware-friendly operators, leading to compatibility issues
with hardware platforms due to their high parameter count
and computational complexity. Merely enlarging the convolu-
tion kernel size is not advisable. Instead, a small convolution
kernel and operation can simulate the effects of a larger
kernel, achieving a similar impact with fewer resources.
In this study, the SWC2f module introduces the shift-wise
shift operator, which acts as a small convolution kernel to
mitigate the drawbacks of using large convolution kernels. By
incorporating the shift-wise shift operator into the YOLOv8
network’s backbone, it replaces the convolution kernel of the
Bottleneck in C2f. This strategic use of the shift-wise shift
operator optimizes computational efficiency while maintain-
ing detection accuracy.

The large convolution kernel is deconstructed into a series
of standard small convolution kernels, with a shift operation
applied to each convolution to achieve the equivalent op-
eration of the large convolution kernel. This decomposition
through transformations is illustrated in equation (1).

y(p(i,j)) =
⌈ kw

kh ⌉∑
k=0

kh∑
m=0

kh∑
n=0

w(p(∆m,∆n) +∆p)

·x(p(i,j) + p(∆m,∆n) +∆p)
∆m = m− kw

2 ; ∆n = n− kh
2

∆p = kh ∗ k, (k ∈
[
0,
⌈
kw
kh

⌉]
)

(1)
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Fig. 1: S-YOLOv8 network structure diagram

In this context, the notation (i,j) indicates the position of
the sliding window on the feature map, with kw and kh
representing the dimensions of the convolution kernel. The
symbol p denotes positional information, while w and × refer
to the weight values and feature values at their respective
positions. For generalization purposes, it is assumed that kw
¿ kh. A large convolution kernel can be effectively replaced
by several standard small convolution kernels, which requires
alignment adjustments for parameters such as offset control
and padding settings. The module structure is illustrated vi-
sually in Fig. 2, where different colored blocks highlight the
substitution relationships. For example, a 15 × 3 convolution
can be equivalently represented as five 3 × 3 convolutions.
After this substitution, a shift operation is necessary for the
convolution, which must extend further along one dimension
and align with a grid of size kh.

Large convolutional kernels can introduce long-range de-
pendencies in the feature space. However, certain details
are frequently neglected, leading to the adoption of pruning
during the training process to eliminate certain connections.
Through coarse-grained pruning, a sparse group convolution
is achieved. Addition operations are then employed to main-
tain a constant total output across the module’s channels.

The continuous optimization of dependencies within the
data flow, while preserving the overall network architecture,
is encapsulated in the concept of the group shift operation.
The holistic structure of the shift-wise shift operator is
illustrated in Fig. 3.

Initially, multiple output branches are created by perform-
ing group shift operations on the same inputs, simulating
different convolution kernel sizes. Next, a single channel

= +

Fig. 2: Structure of the large convolution kernel
decomposition

features

features with
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data flow

direction
shift
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Fig. 3: Overall structure of shift-wise shift operator

is sampled from each group to form an identity branch.
Ultimately, all output branches are merged into a single
unified branch. By introducing new concepts of focus length
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and focus width, which arise from offset and sparsity con-
siderations, the shift-wise shift operator method delineates
a rectangular area defined by the specified focus length
and focus width. It then selects convolution kernels that
are equal to or smaller than the focus width, modifying
the arrangement of these convolutional groups to enhance
information fusion. The focus length is required to be at
least as large as the current feature map’s size. Following
these modifications, Equation (2) is derived from Equation
(1).

y(p(i,j)) =
f(kw,kh,A)∏

k=0

A∑
m=0

A∑
n=0

w(p(∆m,∆n) +∆p)

·x(p(i, j) + p(∆m,∆n) +∆p)
∆m = m− A

2 ; ∆n = n− A
2

∆p = g(kh, k), (k ∈ [0, f(kw, kh,A)])

(2)

In this context, A denoting the size of the minor convolu-
tion kernel. The terms kw and kh refer to the focal length and
focal width, respectively, while f(kw, kh,A) signifies the
function associated with (kw, kh,A). Similarly, the weights
and feature offsets p are functions linked to (kh, k), denoted
as g.

To streamline computational efforts during training, The
’ghost’ and reparameterization (REP) techniques are incor-
porated into the shift-wise module. This module comprises
convolution operations with k sets of kernel sizes n × n,
alongside corresponding shift-wise operations, where k is an
integer part of m/n. Assuming the input feature sizes are
denoted as B, C, H, and W, representing batch, channel,
height, and width, respectively, the computational complexity
of the shift-wise operation is outlined in Equation (3).

n ∗ n ∗H ′ ∗W ′ ∗ k ∗ C ∗B
+add(H ∗W ∗ k ∗ C ∗ 2)

Cshift = (k ∗ n) ∗ n ∗H ∗W ∗ C ∗B + δ
(3)

In the output of the group convolution, the unit branch
randomly selects C feature samples, resulting in a total of
kC channels in the group convolution. Two branches then
reorganize the features within the group convolution output.
The two branches with larger convolution kernels perform
a shift operation followed by feature summation. All C
channels undergo the identical shift operation. The ”add”
function defines the required shift and addition processes,
with the cost of the addition operation represented as δ. This
spatially sparse dependency reduces the time expense, and as
a result, the shift-wise shift module considerably lowers both
the number of parameters and the computational complexity
of the convolution operation.

B. ST-Neck Framework
To improve the network’s ability to extract multi-scale

feature information and enhance the model’s performance in
detecting small targets, the Scale Sequence Feature Fusion
(SSFF) module and the Triple Feature Encoder (TFE) module
are incorporated into the Neck section of the YOLOv8
model. The SSFF module merges the semantics of images
at different scales by normalizing, up-sampling, and feeding
the multi-scale sequence features into a 3D convolutional
information unit. The TFE module comprises three different
sizes of feature maps to better capture fine-grained object
information across various scales, with a focus on leveraging
the smaller feature maps.

1) SSFF Module: To address the multi-scale challenge in
steel surface images, the SSFF scale sequence feature fusion
module is employed. This module effectively combines high-
level information from deep feature maps with semantic
details from shallow feature maps. thereby boosting the
neural network’s capability to extract features across various
scales. The scale space is established along the scale axis of
the image, capturing both the scale specifics of the image
and hinting at the potential scale range of an object. Even
for blurred images where fine details may be obscured, the
fundamental feature structure of the image remains intact.
Sequential representations of multi-scale feature maps (such
as P4, P6, and P8) derived from the backbone are assembled,
each encapsulating distinct scale information of the image
contents. The scaled image, which serves as the input to
SSFF, is depicted in equation (4).

Fσ(w, h) = Gσ(w, h)× f(w, h)

Gσ(w, h) =
1

2πσ2 e
−(w2+h2)/2σ2 (4)

In this context, f(w, h) denotes a two-dimensional feature
map characterized by a width of w and a height of h.
Fσ(w, h) is produced through a sequence of convolutional
smoothing operations utilizing a two-dimensional Gaussian
filter Gσ(w, h), where σ acts as the scaling factor for the
standard deviation of the two-dimensional Gaussian filter
used in the convolution operation.

The resulting images have varying resolutions and scales.
Feature maps with different scale sizes are treated as their
respective scale spaces, and the effective feature maps with
varying resolutions are standardized to a uniform resolution
for alignment. The feature maps at different scales are
aligned horizontally, and their scale sequence features are
extracted using 3D convolution. The output feature maps
display varying resolutions due to Gaussian smoothing. The
high-resolution feature map at the P4 level retains most of
the essential information for detecting small targets; thus, the
SSFF module is designed based on the P4 level, as shown in
Fig. 4. The proposed SSFF module consists of the following
five components.

Stack
BN SiLU

f(i,j)

G(x,y)

Fig. 4: Structure of SSFF module

Adjusted the channel count of the P6 and P8 layer feature
levels to 256 using 1×1 convolution. Resized the feature
maps of the P6 and P8 layers to align with the dimensions
of the P4 level using nearest neighbor interpolation[18]. Em-
ployed the unsqueeze method to increase the dimensions of
each feature map, converting them from a three-dimensional
tensor [height, width, channels] to a four-dimensional tensor
[depth, height, width, channels]. The resulting 4D feature
maps were then concatenated along the depth axis to form
3D feature maps for subsequent convolution operations. Fi-
nally, scale sequence feature extraction was performed using
3D convolution, 3D batch normalization, and the SiLU[19]
activation function.
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2) TFE structure: Since steel surface defects primarily
consist of small-sized targets that are densely overlapped, the
changes in shape and appearance across different sizes can
be compared by zooming into the image. Considering the
varying dimensions of feature layers within the backbone
network, the conventional FPN fusion approach primarily
upsamples the smaller feature maps and subsequently merges
or adds them to the previous feature layer. This process
neglects the valuable information present in the larger feature
layers. To remedy this, the TFE module has been introduced
to categorize features into large, medium, and small groups,
consolidate the large feature maps, and utilize a feature
enhancement technique to enrich the detailed feature infor-
mation. The design of the TFE module is illustrated in Fig.
5.

The structural diagram of the TFE module features three
distinct sizes of input feature maps, with C representing the
number of channels and S signifying the size of the feature
maps. Prior to feature encoding, the channel count is adjusted
to align with the primary scale features. The large-scale
feature map (Large) is processed using a convolution module,
which modifies its channel count to 1C. Subsequently, a
hybrid approach that integrates max pooling and average
pooling is employed for downsampling, effectively reducing
spatial dimensions and bolstering the network’s robustness
to spatial variations and translations in the image.

Likewise, the small-scale feature map (Small) undergoes
processing through a convolution module to adjust the chan-
nel count, followed by upsampling using nearest neighbor
interpolation. This method helps preserve local features and
mitigate the loss of information related to small targets.

Finally, three feature maps of different sizes with the
same dimensions undergo convolution once, after which the
features are merged using the Concat operation to generate a
comprehensive feature representation. This process is illus-
trated in equation (5).

FTFE = Concat(Fl, Fm, Fs) (5)

In this context, FTFE signifies the feature mapping output
produced by the TFE module, while Fl, Fm, and Fs denote
the feature mappings of large, medium, and small sizes,
respectively. FTFE is created by concatenating Fl, Fm, and
Fs, ensuring it retains the same resolution as Fm, but with
three times the number of channels compared to Fm.

C. WIoU Loss Function

Target detection, as the fundamental issue in computer
vision, relies heavily on the design of the loss function for
its detection performance. This function serves to evaluate
the detection efficacy between predicted and actual detec-
tion frames. YOLOv8 employs CIoU as its regression loss
function, which considers the overlap area and aspect ratio
of target frames. It introduces a correction factor to enhance
the accuracy of similarity assessment between these frames.
However, the description of aspect ratio is somewhat am-
biguous, and the issue of directional mismatch between real
and predicted frames is overlooked. This omission results in
slow model convergence and reduced prediction accuracy.

Due to the quality imbalance in steel surface defect
samples, this study employs the WIoU loss function as the

regression loss criterion. The WIoU is designed based on the
bounding box loss framework of the dynamic non-monotonic
focusing mechanism. It incorporates the idea of ”outlier
degree” to assess the quality of anchor frames and intro-
duces an improved gradient gain distribution strategy. These
improvements significantly boost model detection accuracy.

WIoU constructs a distance attention mechanism grounded
in metric distance and yields WIoUv1 with a two-layer
attention mechanism, as illustrated in Equation (6).

LWIoUv1 = RWIoULIoU

RWIoU = exp(
(x−xgt)

2+(y−ygt)
2

(Wg
2+Hg

2)∗
)

(6)

Where LIoU represents the ratio occupied by the inter-
section range of the prediction and target frames, RWIoU

will significantly amplify the LIoU of normal quality anchor
frames. LWIoU significantly reduces the LWIoU loss of high-
quality anchor frames and focuses on the center point when
the anchor and target frames are well overlapped. Wg and Hg

denote the width and length sizes of the minimum closure
frames, (x, y) indicate the relationship between each point of
the anchor frame and the target frame corresponding to the
position (xgt, ygt), and * denotes the separation operation.
Moreover, to prevent large harmful gradients that may lead to
low sample quality, small gradient gains are allocated to the
large outliers. The -constructed non-monotonic aggregation
coefficient is utilized to formulate WIoUv3, and the WIoUv3
formula is presented in Equation (7).

LWIoUv3 = rLWIoUv1, r =
β

δαβ−δ
(7)

In the case where (r=1) and (β=δ), the gradient gain of
the anchor frame reaches its maximum when the outlier
condition for that frame satisfies (β=C), with C being a
constant value. WIoUv3 provides a reduced gradient gain for
low-quality anchor frames, thereby effectively minimizing
harmful gradients and enhancing the performance of the
target detection model. This approach improves the model’s
generalization ability and accelerates its convergence speed
through a weighting mechanism and dynamic adjustment of
the weights.

D. SEAMHead

Defect occlusions on steel surfaces can result in alignment
errors, local aliasing, and missing features. In this study, we
introduce the SEAM attention module, integrated into the
detection head, to address the diminished response of oc-
cluded defects. The module aims to enhance the response of
unoccluded defects. The SEAM module primarily comprises
a fusion of depth-separable convolution and residual concate-
nation. Depth-separable convolution operates on a channel-
by-channel basis, this approach focuses on understanding
the importance of different channels while minimizing the
number of parameters. However, it fails to consider the
relationships between channels. To remedy this, the outputs
from various depth-separable convolutions are merged using
pointwise (1×1) convolution. Following this, a two-layer
fully connected network integrates information from each
channel to enhance connections across all channels. The
structure of the SEAM module is illustrated in Fig. 6.
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III. EXPERIMENTS

A. Experimental Dataset

The NEU-DET dataset is a compilation of steel surface de-
fect images developed by Northeastern University. It includes
six prevalent types of steel surface defects: cracking (Cr),
inclusions (In), patches (Pa), pitting surfaces (PS), rolled
oxide (RS), and scratches (Sc). The dataset contains a total
of 1,800 grayscale images, with 300 samples for each defect
category. Each image is annotated to indicate both the type
of defect and its location. An example from the dataset is
shown in Fig. 7.

B. Experimental Environment

In this study, the experimental configuration utilized the
Windows 10 operating system, an Intel(R) Core (TM) i7-
10700F CPU operating at 2.90GHz, and an NVIDIA GeForce
RTX 3070 graphics card featuring 8GB of video memory.
The coding was carried out using the PyCharm integrated de-
velopment environment, with PyTorch version 1.12.1 serving
as the deep learning framework. The development environ-
ment was based on Python 3.8, and graphics acceleration
was facilitated by CUDA version 11.6. The experimental
parameters were set as follows: a learning rate of 0.01,
a batch size of 16, and a total of 150 iterations. During
model training, the Mosaic data augmentation technique
was employed on the input data to process the images.
This technique involved scaling and merging four random
images to enhance the model’s capability to detect small
targets, thereby boosting the performance and robustness of
the network model. All experiments in this research were
conducted within the same environment to train the model,
compare performance metrics, and validate the effectiveness
of the model enhancements.

C. Evaluation Indicators

To more effectively evaluate the performance of the en-
hanced model, this paper utilizes key metrics including mAP
(mean Average Precision), number of parameters (Params),
computational load (GFLOPs), and floating-point operations

as criteria for assessment. mAP is an essential metric that
reflects the average precision for detecting all target cate-
gories within the dataset. It integrates precision (P) and recall
(R) to provide a comprehensive evaluation of the model’s
effectiveness. Precision (P) denotes the fraction of samples
predicted as positive by the model that are actually positive,
while recall (R) indicates the proportion of all true positive
samples that are correctly identified. Average precision (AP)
computes the average precision value for each category of
defective targets. The formula for Average Precision (AP) is
as follows:

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)

fAP =

∫ 1

0

p(R)dR (10)

mAP =
1

n

n∑
i=1

APi (11)

In this context, TP refers to the count of actual positive
samples that are accurately classified as positive, while FP
indicates the number of actual negative samples that are
mistakenly classified as positive. FN signifies the count of
actual positive samples that are incorrectly labeled as nega-
tive. Here, n represents the total number of defect categories,
and i denotes the number of detections.

D. Experimental Results and Analysis

To assess the effectiveness of the proposed algorithm and
the influence of each enhancement on model performance,
this paper conducts four sets of ablation experiments using
YOLOv8 as the baseline model. The four experimental
groups are designated as YOLOv8-1, YOLOv8-2, YOLOv8-
3, and YOLOv8-4. YOLOv8-1 incorporates the SWC2f
module. YOLOv8-2 combines the SWC2f module with the
ST-Neck structure. YOLOv8-3 integrates the SWC2f module,
the ST-Neck structure, and the WIoU loss function. Finally,
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Fig. 6: SEAM module structure

YOLOv8-4 includes the SWC2f module, the ST-Neck struc-
ture, the WIoU loss function, and the addition of the SEAM
attention mechanism in the Head. The experimental findings
are summarized in Table I.

TABLE I: Results of ablation experiments

Models SWC2f ST-Neck WIoU SEAMHead mAP Params

YOLOv8n × × × × 79.5 3.15
YOLOv8-1 ✓ × × × 82.2 3.18
YOLOv8-2 ✓ ✓ × × 83.1 3.22
YOLOv8-3 ✓ ✓ ✓ × 83.5 3.22
YOLOv8-4 ✓ ✓ ✓ ✓ 84.2 3.03

As depicted in Table 1, the original YOLOv8n model
exhibits a mAP value of 79.5% with a model parameter
count of 3.15M. Introducing the SWC2f module in YOLOv8-
1 yields a mAP value of 82.2% compared to the YOLOv8n
algorithm, marking a 2.7% enhancement over the original
model, and a parameter count of 3.18M. This underscores
the positive impact of the SWC2f module in bolstering
the algorithm’s accuracy. In the case of YOLOv8-2, which
incorporates both the SWC2f module and the ST-Neck
structure simultaneously, achieves a mAP value of 83.1%

compared to YOLOv8n, representing a 3.6% increase over
the original model, with a parameter count of 3.22M. This
indicates that the fusion of these two structures leads to a
more pronounced enhancement in the algorithm’s detection
efficiency, further elevating the detection accuracy. Moving
on to YOLOv8-3, which introduces the SWC2f module,
ST-Neck structure, and WIoU loss function concurrently,
attains a mAP value of 83.5% compared to YOLOv8n, a 4%
improvement over the original model, with a parameter count
of 3.22M. This demonstrates that replacing the CIoU loss
function with the WIoU loss function alongside integrating
the SWC2f module and ST-Neck structure will significantly
boost the algorithm’s detection accuracy. Lastly, by jointly
introducing the SWC2f module, ST-Neck structure, WIoU
loss function, and integrating the SEAM attention mechanism
into the Head, the enhanced algorithm achieves a mAP value
of 84.2%, a 4.7% increase over the original model, with a
parameter count of 3.03M. This highlights that the SEAM
attention mechanism can replace the CIoU loss function
when introduced alongside the SWC2f module and ST-
Neck structure, further enhancing the algorithm’s detection
accuracy. Integrating the SEAM attention mechanism into
the Head section of the detection head further improves the
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algorithm’s detection accuracy. In conclusion, the algorithm
proposed in this paper significantly enhances the defect
detection accuracy of the model, particularly enhancing the
feature extraction capability for small target defects and
improving the detection of defective features in small targets.

A visual comparison of the experimental results between
the enhanced S-YOLOv8 model and the original YOLOv8
model is presented in Fig. 8. In the figure, (a) represents
the outcomes obtained using the original YOLOv8n algo-
rithm for detection, while (b) illustrates the results obtained
using the enhanced S-YOLOv8 algorithm proposed in this
paper. Above each marked box in the figure, the defect
category and the corresponding confidence level are labeled.
The experiments reveal that while the original model can
accurately identify defect categories, it often exhibits low
confidence levels and missed detections. In contrast, the
improved algorithm demonstrates higher detection accuracy
in identifying defective targets. Additionally, the enhanced
model displays an additional marked box for detecting
cracked defects, indicating that the improved algorithm also
exhibits performance enhancements in leakage detection.

The table depicts the average accuracy of each type of
defect before and after the algorithm improvement (Table II).
Specifically, the average accuracy of cracking-type defects
has increased by 22.1%, inclusions-type defects by 0.4%,
plaque-type defects by 2.4%, pitting surface-type defects
by 4%, rolling oxidized skin-type defects remain almost
unchanged, and scratches-type defects have seen an improve-
ment of 3.5%.

After comparison, the S-YOLOv8 algorithm proposed in
this paper effectively enhances the average detection ac-
curacy of various types of defects, with the most notable

（a）YOLOv8n Algorithm Detection Effect

（b）S-YOLOv8 Algorithm Detection Effect

Fig. 8: Comparison chart for visualization of experimental
results

improvement observed in the cracking class of defects. This
highlights the efficacy of the enhanced algorithm in detecting
defects in small targets.

The algorithm proposed in this paper has been compared
with current mainstream models such as SSD, YOLOv5n,
YOLOv7, CenterNet[20], YOLOv8n, MT-YOLOv5, DCN-
YOLOv5, MCB-FAH-YOLOv8[15]. In comparative exper-
iments as depicted in Table 3. Following the analysis, the
mAP value of the algorithm in this paper exhibited an 11%
improvement over the SSD algorithm, a 13% enhancement
over the YOLOv5n algorithm, an 8.7% increase compared to
the YOLOv7 algorithm, a 9.7% rise compared to the Cen-
terNet algorithm, a 4.7% boost compared to the YOLOv8n
algorithm, a 2.4% advancement compared to the MCB-FAH-
YOLOv8 algorithm, a 1.8% progress compared to the MT-
YOLOv5 algorithm, and a 7.1% progress compared to the
DCN-YOLOv8n algorithm. In comparison to other main-
stream algorithms, S-YOLOv8 displayed a significant en-
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TABLE II: Average accuracy of each type of defect before
and after algorithm improvement

Defect type YOLOv8n S-YOLOv8

Cr 63.3 81.3
In 68.4 68.8
Pa 95.6 98
Ps 95.5 99.5
Rs 71.7 71.4
Sc 82.5 86

hancement in detection accuracy, accompanied by a notable
reduction in parameter quantity. In conclusion, S-YOLOv8
showcases superior detection performance when contrasted
with other models.

TABLE III: Comparison of algorithms

Models mAP FPS Params

SSD 73.2 47.8 26.29
YOLOv5n 71.2 163.9 1.77
YOLOv7 75.5 42.4 36.51
CenterNet 74.5 37.4 32.67
YOLOv8n 79.5 137 3.15

MCB-FAH-YOLOv8 81.8 101 6.06
MT-YOLOv5 82.4 65.4 29.7

DCD-YOLOv8n 77.1 188 2.5
S-YOLOv8 84.2 138 3.03

IV. CONCLUSION

A novel approach based on S-YOLOv8 is introduced to
tackle the issue of steel surface defect detection. This method
builds upon the original YOLOv8n model, incorporating a
shift-wise operator in the backbone network, which signifi-
cantly decreases both the parameter count and the computa-
tional complexity of convolution operations. Additionally, the
SF-Neck framework integrates the Scale Sequence Feature
Fusion (SSFF) module and the Triple Feature Encoder (TFE)
module within the head network. The multiscale feature
mapping extracted from the backbone is combined in the
Path-Aggregation Network (PANet) structure, enhancing the
model’s capability to extract multiscale information. The
WIoU loss function is utilized to accelerate convergence and
improve accuracy. Moreover, the SEAM occlusion attention
module is implemented to bolster the detection head of
the YOLOv8 algorithm, effectively addressing the challenge
of defect occlusion. The NEU-DET strip surface defect
dataset is employed for ablation experiments and comparative
analyses. Experimental results reveal that the mAP value

of the S-YOLOv8 algorithm reaches 84.2%, representing a
4.7% improvement over the original YOLOv8n algorithm.
The effectiveness and feasibility of the proposed algorithm
are confirmed, leading to a reduction in instances of leakage
and misdetection during defect identification. Future research
may focus on further optimizing the model to minimize the
number of parameters, enhance detection speed, and maintain
accuracy.
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