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Abstract—In this paper, a Mass-Conservative rectangular
nonconforming finite element method is applied for convection-
diffusion problems under anisotropic meshes. In this method, a
modified characteristic finite element scheme with a low order
Crouzeix-Raviart type nonconforming finite element is used. It
is proved that the scheme preserves the mass balance identity
and the scheme is unconditionally stable. The error estimate
in L2-norm with respect to the space, is obtained by use of
some distinct properties of the interpolation operators. The
so-called elliptic projection, which is an indispensable tool in
the convergence analysis of the previous literatures, is replaced
by the mean value technique. Lastly, numerical examples are
provided to confirm the theoretical results.

Index Terms—Mass-conservative, Finite element method,
Nonconforming element, Error estimate.

I. INTRODUCTION

WE consider the convection-diffusion equation operator
ϕ, as shown below. Ω ⊂ R2 denotes an open bounded

domain with the boundary Γ, (0, T ] is the time interval.

Lϕ =
∂ϕ(X, t)

∂t
+u(X, t) ·∇ϕ+(∇·u(X, t))ϕ−ν△ϕ (1)

The parameters appearing in the equation (1) satisfy the
following assumptions.

1) ϕ(X, t) denotes, for example, the concentration of a
possible substance;

2) u(X, t) represents the velocity of the flow, satisfying

|u(X, t)|+ |∇ · u(X, t)| ≤ C, ∀X ∈ Ω,

where C is a constant;
3) ν is a diffusion coefficient, and X = (x, y).
4) ∇ and ∇· denote the gradient and the divergence

operators respectively.
The convection-diffusion problem is a mathematical model

that describes the combined effects of convection and diffu-
sion in a fluid or a substance. It is commonly encountered in
various fields such as fluid dynamics, heat transfer, and mass
transport. In many diffusion processes arising in physical
problems, convection essentially dominates diffusion. It is
natural to seek numerical methods for such problems to
reflect their almost hyperbolic nature.
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The finite element method offers several advantages for
solving convection-dominant diffusion problems, including
its ability of handling complex geometries, adaptivity, and
accuracy. This method has been widely used in various
applications, such as fluid flow simulations, heat transfer
analysis, and pollutant dispersion modeling[1-4]. A lot of
schemes of the finite element method have been developed,
such as the expanded characteristic-mixed finite element
method[5], the staggered discontinuous Galerkin method[6],
the least-squares mixed finite element method [7] and the
modified method of characteristic-Galerkin finite element
(MMOC-Galerkin)[8-10].

The characteristic method is natural from the physical
point of view, since it approximates particle movements. And
it is attractive from the mathematical point of view, since it
symmetrizes the problem[11]. The modified characteristic fi-
nite element method was first formulated for scalar parabolic
equations by J. Douglas and T. F. Russell in 1982. The main
idea is to modify the standard finite element formulation by
incorporating the characteristic variables. This modification
helps to accurately capture the discontinuities and shocks in
the solution. The method combines the advantages of both
finite element method and finite volume method, providing
the robust and accurate solutions for problems with complex
behavior.

For convection-dominated problems, the modified char-
acteristic finite element schemes have much smaller time-
truncation errors than the standard methods. Because the
solution changes more slowly in the characteristic τ direction
than in the t direction. The scheme will permit the use of
larger time step [12].

An important property of the convection-diffusion prob-
lems possess is the mass balance; the mass should be
preserved if there is no source. In the framework of char-
acteristic methods, it it important to maintain this property.
Some schemes have been proposed and studied from this
point [13-14].

An improved characteristic finite element scheme which
preserves the mass balance, is presented[15]. In this method,
the time derivative term and the divergence term are approx-
imated directly. Usually the characteristic method is used to
approximate the material derivative term, i.e., the time deriva-
tive term plus the convection term of non-divergence form.
It is proved that the mass balance is satisfied completely.

However, in the studies mentioned above, only conforming
finite elements were considered, and the regularity assump-
tion or quasi-uniform assumption [16-17] was required on
the meshes in space which is great deficiency in finite
element methods. The nonconforming element method is a
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numerical technique used in finite element analysis to solve
partial differential equations. Unlike conforming methods,
nonconforming methods allow for discontinuous solutions,
and the methods are particularly useful for problems with
singularities or sharp gradients. This method is often used
in mechanics, electromagnetics, and other fields where the
traditional conforming method may not be suitable.

In the present work, a low order Crouzeix-Raviart type
nonconforming rectangular element, studied in [18-20], is
applied to the convection diffusion problem with the modified
Mass-Conservative Characteristic finite element scheme. In
this method, we will employ anisotropic meshes with fewer
degrees of freedom, which can reflect the anisotropy with a
finer mesh size[21-22].
Hk(Ω) denotes the standard Sobolev space of k-

differential functions in L2(Ω) with the usual norm ∥ · ∥k
and semi-norm |·|k respectively. When k = 0, L2(Ω) denotes
the corresponding space defined on Ω with norm ∥ · ∥.
Y is a Sobolev space, and f(X, t) is smooth function

defined on Ω× [a, b], [a, b] ⊂ [0, T ].
Lp(a, b;Y ) and ∥ f ∥Lp(a,b;Y ) are defined as follows,

Lp(a, b;Y ) = {f :

∫ a

b

∥ f(·, t) ∥pY dt <∞},

∥ f ∥Lp(a,b;Y )= (

∫ a

b

∥ f(·, t) ∥pY dt)
1
p ,

If p = ∞, the integral is replaced by the essential
supremum.

The remainder of this paper is organized as follows. In
Section II, we present the mass-conservative characteristic
finite element scheme and show the mass balance identity.
In Section III, we analyze the stability and prove the con-
vergence. In Section IV, the corresponding optimal error
estimates in L2 norm are derived. In Section V, some
examples are presented to confirm our theoretical analysis.

II. CONSTRUCTION OF A MASS-CONSERVATION FINITE
ELEMENT SCHEME

To describe the important property of the operator L, we
consider the following initial boundary value problem. f
denotes a source term.

(a)
∂ϕ

∂t
+ u(X, t) · ∇ϕ+ (∇ · u(X, t))ϕ

− ν△ϕ = f, in Ω× [0, T ],
(b) ϕ(X, 0) = ϕ0(X), in Ω,
(c) ϕ(X, t) = 0, on Γ× (0, T ).

(2)

The weak form of (2) is as follows: to find ϕ ∈ H1
0 (Ω),

such that

(a) (
∂ϕ

∂t
, v) + (u(X, t) · ∇ϕ, v) + ((∇ · u(X, t))ϕ, v)

+ ν(∇ϕ,∇v) = (f, v), ∀v ∈ H1
0 (Ω),

(b) ϕ(X, 0) = ϕ0(X), ∀X ∈ Ω,
(c) ϕ(X, t) = 0, on Γ × (0, T ).

(3)
The characteristic direction associated with the operator

ϕt + u · ∇ϕ are usually denoted by τ = τ(X, t), where

∂

∂τ
=

1

ψ(X, t)

∂

∂t
+

u

ψ(X, t)
· ∇.

ψ(X, t) = (1 + |u|2) 1
2

However, there are no characteristic schemes which satisfy
the discrete version of the mass balance identity [11]. Our
idea is to apply the characteristic approximation to the term

L0ϕ =
∂ϕ

∂t
+ u(X, t) · ∇ϕ+ (∇ · u(X, t))ϕ. (4)

In the procedure, we consider a time step △t > 0
and approximate the solution at times tn = n△t,∆t =
T/N, n = 0, 1, . . . , N , where N is a positive integer.

Let X : (0, T ) be a solution of the ordinary differential

equation,
dX

dt
= u(X, t).

Subject to an initial condition X(tn) = x, we can get an
approximate value of X at tn−1 by the Euler method,

Xn
1 (x) = x− un(x)△t.

The weak form of (2) is as follows: to find ϕ ∈ H1
0 (Ω),

such that
(a) (L0ϕ, v) + ν(∇ϕ,∇v) = (f, v), ∀v ∈ H1

0 (Ω),
(b) ϕ(X, 0) = ϕ0(X), ∀X ∈ Ω,
(c) ϕ(X, t) = 0, on Γ× (0, T ).

(5)
Let Ω ⊂ R2 be a polygon with boundaries parallelling

to the axes, Th be axis-parallel rectangular meshes of Ω,
which doesn’t need to satisfy the regularity assumption or
quasi-uniform assumption.

Let K̂ = [−1, 1] × [−1, 1] be the reference element on
ξ− η plane, the four vertices of K̂ are d̂1 = (−1,−1), d̂2 =
(1,−1), d̂3 = (1, 1) and d̂4 = (−1, 1), and the four edges
are l̂1 = d̂1d̂2, l̂2 = d̂2d̂3, l̂3 = d̂3d̂4 and l̂4 = d̂4d̂1.

For any v̂ ∈ H1(K̂), the finite element is defined
(K̂, P̂ , Σ̂) on K̂ as follows:

Σ̂ = {v̂1, v̂2, v̂3, v̂4, v̂5}, P̂ = span{1, ξ, η, φ(ξ), φ(η)} ,

where
v̂i =

1

|l̂i|

∫
l̂i

v̂ds, i = 1, 2, 3, 4,

v̂5 =
1

|K̂|

∫
K̂

v̂dξdη,

φ(t) =
1

2
(3t2 − 1).

(6)

It can be easily checked that interpolation defined above
is well-posed and the interpolation function Î v̂ can be
expressed as

Î v̂ = v̂5 +
1

2
(v̂2 − v̂4)ξ +

1

2
(v̂3 − v̂1)η

+
1

2
(v̂2 + v̂4 − 2v̂5)φ(ξ) +

1

2
(v̂3 + v̂1 − 2v̂5)φ(η).

(7)

The following important lemma has been proved in [23].
Lemma 2.1 The interpolation operator Î defined by (7) has

the anisotropic interpolation property, i.e. ∀v̂ ∈ H2(K̂), α =
(α1, α2) with |α| = 1, we have

∥D̂α(v̂ − Î v̂)∥0,K̂ ≤ Ĉ|D̂αv̂|1,K̂ . (8)

Let K = [xK −hx, xK +hx]× [yK −hy, yK +hy], hK =
diam(K), ρK = max

S⊂K
diam(S), h = max

K∈Th
hK , lk(k =

1, 2, 3, 4) be the edges of K.
Define the affine mapping F : K̂ −→ K as follows:{

x = xK + hxξ,
y = yK + hyη.
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Then the associated finite element space V h is

V h = {v| v̂|K̂ = v|K ◦ F ∈ P̂ ,∀K ∈ Th,

∫
l

[v]ds = 0},
(9)

where [v] stands for the jump of v across the edge l if l is an
internal edge, and it is equal to v itself if l belongs to ∂Ω.

For any v ∈ H1(Ω), let Π be the associated interpolation
operator on V h, satisfying Π |K= ΠK , ΠK = Î ◦F−1

K , then
we have

∫
lk

(v −Πv)ds = 0, k = 1, 2, 3, 4,∫
K

(v −Πv)dxdy = 0.

The mass-conservative characteristic finite element scheme
is to find ϕnh ⊂ V h, such that, for n = 1, · · · , NT ,

(a) (
ϕnh − ϕn−1

h ◦Xn
1 γ

n

△t
, vh) + (a(X, tn)∇cnh,∇vh)h

= (fn, vh), ∀vh ∈ V h,
(b) ϕ0h = Πϕ0, ∀X ∈ Ω,
(c) ϕh(X, t) = 0, on Γ× (0, T ).

(10)
Where ϕnh = ϕh(t

n),ϕn−1
h ◦Xn

1 is a composition defined
by(ϕn−1

h ◦Xn
1 )(x) = ϕn−1(Xn

1 (x)) and γn is the Jacobian
of the transformation Xn

1 .

γn = det(
∂Xn

1

∂x
) = det(δij −△t∂u

n
i

∂xj
) (11)

Πϕ0 is the finite element interpolation of ϕ0, (u, v)h =∑
K

∫
K

uvdxdy, and fn = f(X, tn).

Theorem 1. Let ϕnh be the solution of (10). Under the
argument similar to [8], it holds that, for m = 1, · · · , NT∫

Ω

ϕmh dx =

∫
Ω

ϕ0hdx+△t
m∑

n=1

∫
Ω

fndx (12)

Proof: Choosing vh = 1 in (10) and multiplying by △t,
we get

(ϕnh, 1)− (ϕn−1
h ◦Xn

1 γ
n, 1) = △t(fn, 1) (13)

By the inverse transformation of Xn
1 , we have∫

Ω

ϕn−1
h ◦Xn

1 γ
ndx =

∫
Ω

ϕn−1
h dx (14)

(ϕnh, 1)− (ϕn−1
h , 1) = △t(fn, 1) (15)

Summing up the equations above from n = 1 until n = m,
we get the theorem.

III. THE STABILITY OF DISCRETE PROBLEM

Theorem 1. Let ϕnh be the solution of (10). Under the
argument similar to [8], it holds that, for m = 1, · · · , NT ,
there exists a positive constant c, which is independent of h
and △t, such that

∥ ϕh ∥L∞(0,T ;L2) +△t(
m∑

n=1

∥ L0ϕ ∥) 1
2

+ν
1
2△t 1

2 (
m∑

n=1

∥ ∇ϕnh ∥h)
1
2

≤ c ∥ ϕ0h ∥ +c△t 1
2 ∥ f ∥L∞(0,T ;L2) .

(16)

Proof: Choosing vh = ϕnh in (10), we get

(
ϕnh − ϕn−1

h ◦Xn
1 γ

n

△t
, ϕnh) + (a(X, tn)∇ϕnh,∇ϕnh)h

= (fn, ϕnh)
(17)

Let ∥ · ∥h= (
∑
K

| · |21,K)
1
2 , it is a norm in V h.

1

2△t
(∥ ϕnh ∥2 − ∥ ϕn−1

h ◦Xn
1 γ

n ∥2)

+
△t
2

∥ L0ϕ ∥2 +ν ∥ ∇ϕnh ∥2h= (fn, ϕnh).
(18)

By the inverse transformation of Xn
1 (x) , it follows that

∥ ϕn−1
h ◦Xn

1 γ
n ∥2≤ (1 + c△t) ∥ ϕn−1

h ∥2 (19)

Next we estimate the right hand of (17).

(fn, ϕnh) ≤
1

2
∥ ϕnh ∥2 +

1

2
∥ fn ∥2 (20)

From (17)-(20), we have

1

2△t
(∥ ϕnh ∥2 − ∥ ϕn−1

h ∥2) + △t
2

∥ L0ϕ ∥2

+
ν

2
∥ ∇ϕnh ∥2h≤ c ∥ ϕn−1

h ∥2 +
1

2
∥ ϕnh ∥2 +

1

2
∥ fn ∥2 .

(21)
Multiplying (21) by 2△t, and summing from n = 1 to

n = m, we obtain

∥ ϕnh ∥2 +△t2
m∑

n=1

∥ L0ϕ ∥2 +ν△t
m∑

n=1

∥ ∇ϕnh ∥2h

≤ c△t
m∑

n=1

∥ ϕih ∥2 + ∥ ϕ0h ∥2 +c△t ∥ fn ∥2
(22)

By Gronwall’s lemma, it follows that

∥ ϕh ∥L∞(0,T ;L2) +△t(
m∑

n=1

∥ L0ϕ ∥) 1
2

+ν
1
2△t 1

2 (
m∑

n=1

∥ ∇ϕnh ∥h)
1
2

≤ c ∥ ϕ0h ∥ +c△t 1
2 ∥ f ∥L∞(0,T ;L2) .

(23)

The proof is completed.
To get error estimates, we state the following important

lemmas.
Lemma 3.1 Under anisotropic meshes, for any v ∈

H2(Ω), we have

∥ v −Πv ∥≤ Ch2|v|2,
∥ v −Πv ∥h≤ Ch|v|2.

Here and later, the positive C is independent of hK and
hK
ρK

, which may be different in different places.

Proof: The desired result comes from the interpolation
theorem [20].

Lemma 3.2 Under anisotropic meshes, for any c ∈
H1(Ω) and any vh ∈ V h, we have

(∇(c−Πc),∇vh)h = 0, ∀vh ∈ V h.
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Proof: By Green’s formula and the definition of Π , we
get

(∇(c−Πc),∇vh)h =
∑

K∈Th

∫
K

∇(c−Πc)∇vhdxdy

=
∑

K∈Th

∫
∂K

(c−Πc)
∂vh
∂n

ds

−
∑

K∈Th

∫
K
(c−Πc)△vhdxdy.

Note that for any vh ∈ V h,
∂vh
∂n

|∂K and △vh|K are
constants, thus

(∇(c−Πc),∇vh)h = 0.

Here and later, n = (n1, n2) denotes the unit outer norm
on ∂K.

The proof is completed.

Lemma 3.3[19] Under anisotropic meshes, for any u ∈
(H3(Ω) ∩H1

0 (Ω))
2, we have∑

K∈Th

∫
∂K

∂u

∂n
vhds ≤ Ch2|u|3 ∥ vh ∥h, ∀vh ∈ V h.

Lemma 3.4[5] For any η ∈ L2(Ω), let η̄ = η(X −
g(X)△t), where function g and its gradient ∇g are bounded,
then

∥ η − η̄ ∥−1≤ C ∥ η ∥ △t.

IV. ERROR ESTIMATE

Next we show the error estimate.
Let eh = ch −Πc, ρ = Πc− c.
Theorem 2. Let ϕh, ϕ be the solutions of (2) and (10)

respectively, for sufficiently small △t > 0,
△t
O(h)

≤ C,

we have
max

0≤ n≤ N
∥ (ϕh − ϕ)(tn) ∥

≤ Ch2|ϕt|L2(0,T ;H2) + Ch2|ϕ|L∞(0,T ;H3)

+Ch|ϕ|L∞(0,T ;H2) + Ch|ϕ|L∞(0,T ;L2).

(24)

Proof: From (3) and (10), we get the error equation as
follows:

(
enh − en−1

h ◦Xn
1 γ

n

△t
, vh) + ν(∇enh,∇vh)h

+ν(∇(Πϕn − ϕn),∇vh)h +
∑

K∈Th

∫
∂K

ν
∂ϕn

∂n
vhds

= (L0ϕ
n − ϕn − ϕn−1 ◦Xn

1 γ
n

△t
, vh)

−(
ρn − ρn−1 ◦Xn

1 γ
n

△t
, vh), ∀vh ∈ V h.

(25)
Choosing vh = enh in (25) yields

(
enh − en−1

h ◦Xn
1 γ

n

△t
, enh) + ν(∇enh,∇enh)h

+ν(∇(Πϕn − ϕn),∇enh)h +
∑

K∈Th

∫
∂K

ν
∂ϕn

∂n
enhds

= (L0ϕ
n − ϕn − ϕn−1 ◦Xn

1 γ
n

△t
, enh)

−(
ρn − ρn−1 ◦Xn

1 γ
n

△t
, enh), ∀vh ∈ V h.

(26)

Next we estimate the right hand of (26).

∥ L0ϕ
n − ϕn − ϕn−1 ◦Xn

1 γ
n

△t
∥

=∥ ∂ϕ
n

∂t
+ un(X, t) · ∇ϕn + (∇ · un(X, t))ϕn

−ϕ
n − ϕn−1 ◦Xn

1 γ
n

△t
∥

≤∥ ∂ϕ
n

∂t
+ un(X, t) · ∇ϕn − ϕn − ϕn−1 ◦Xn

1

△t
∥

+ ∥ (∇ · un(X, t))ϕn − ϕn−1 ◦Xn
1 (1− γn)

△t
∥

= E1 + E2

(27)
E1 is evaluated with the method in [15], we can get

E1 ≤ c△t ∥ ϕn ∥ (28)

Due to
1− γn

△t
= ∇ · un(X, t) +O(△t),

E2 = ∥ ∇ · un(X, t)(ϕn − ϕn−1 ◦Xn
1 )

+O(△t)ϕn−1 ◦Xn ∥≤ c△t ∥ ϕn ∥ . (29)

The first term on the right hand is estimated as

|(L0ϕ
n − ϕn − ϕn−1 ◦Xn

1 γ
n

△t
, enh)|

≤ C ∥ ϕn ∥2L2(tn−1,tn;L2) △t
2.

(30)

Next, we estimate the second term on the right hand of
(26),

(
ρn − ρn−1 ◦Xn

1 γ
n

△t
, enh)

= (
ρn − ρn−1 ◦Xn

1

△t
, enh) + (

ρn−1 ◦Xn
1 (1− γn)

△t
, enh)

≤ (∥ ρ
n − ρn−1 ◦Xn

1

△t
∥ +c ∥ ρn−1 ◦Xn

1 ∥) ∥ enh ∥

≤ (∥ ρ
n − ρn−1

△t
∥ +c ∥ ρn−1 ∥ +c ∥ ρn−1 ∥h) ∥ enh ∥

≤ C ∥ enh ∥2 +
C

△t
∥ ρt ∥2L2(tn−1,tn;L2)

+C ∥ ρn−1 ∥2 +C ∥ ρn−1 ∥2h .
(31)

Next we estimate the left hand of (26).
Firstly, the first two terms on the left hand of (26) can be

estimated as

(
enh − en−1

h ◦Xn
1 γ

n

△t
, enh) + ν(∇enh,∇enh)h

≥ 1

2△t
[(enh, e

n
h)− (en−1

h ◦Xn
1 γ

n, en−1
h ◦Xn

1 γ
n)]

+ν(∇enh,∇enh)h ≥ 1

2△t
[(enh, e

n
h) + ν ∥ enh ∥2h

−(1 + C△t)(en−1
h , en−1

h )],
(32)

where the inequality ∥ en−1
h ◦Xn

1 γ
n ∥2≤ (1+c△t) ∥ en−1

h ∥2
is used in the last step.

By Lemma 3.2, the third term of (26) is evaluated as

ν(∇(Πϕn − ϕn),∇enh)h = 0 (33)

The last one can be estimated as

|
∑

K∈Th

∫
∂K

ν
∂ϕn

∂n
enhds| ≤ Ch2|ϕn|3 ∥ enh ∥h . (34)
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From (27)-(34), we have

1

2△t
[(enh, e

n
h)− (1 + C△t)(en−1

h , en−1
h )] + ν ∥ enh ∥2h

≤ Ch2|ϕn|3 ∥ enh ∥h +C△t2 ∥ ϕ ∥2L2(tn−1,tn;L2)

+C ∥ enh ∥2 +
C

△t
∥ ρt ∥2L2(tn−1,tn;L2)

+C ∥ ρn−1 ∥2h +C ∥ ρn−1 ∥2 .
(35)

Multiplying (35) by 2△t, and summing the above inequal-
ity from 1 to N , we obtain

∥ enh ∥2
≤ C△t ∥ ρ ∥2h +C ∥ ρt ∥2L2(0,T ;L2)

+C△t ∥ ρ ∥2L∞(0,T ;L2) +Ch
4△t|ϕ|2L∞(0,T ;H3)

+C△t3|ϕ|2L∞(0,T ;L2) + C△t
n∑

i=1

∥ eih ∥2 .

(36)

By Gronwall’s lemma, it follows that

∥ enh ∥≤
Ch2△t 1

2 |ϕ|L∞(0,T ;H3) + Ch△t 1
2 |ϕ|L∞(0,T ;H2)

+C△t 1
2 ∥ ρ ∥L∞(0,T ;L2) +C ∥ ρt ∥L2(0,T ;L2)

+C△t 3
2 |ϕ|L∞(0,T ;L2).

(37)

Note that ϕnh − ϕn = enh + ρn, by (37), Lemma 3.1 and
the triangle inequality, we complete the proof.

V. NUMERICAL EXAMPLE

In order to investigate the numerical behavior of the
element of this paper, we will give some numerical results
to confirm our theoretical analysis.

(a) ϕt + ϕx + ϕy − ν
∂2ϕ

∂x2
− ν

∂2ϕ

∂y2
= f(x, y, t),

(b) ϕ(x, y, 0) = (1− e−x(1−x)/ϵ)(1− e−y(1−y)/ϵ),
(c) ϕ(x, y, t) = 0,

(38)
where Ω = [0, 1] × [0, 1], ν = 0.02, and the right

hand term f(x, y, t) is taken such that c(x, y, t) = e−t(1 −
e−x(1−x)/ϵ)(1− e−y(1−y)/ϵ) is the exact solution. ϵ denotes
the singular perturbation parameter, when ϵ = 0.05, the exact
solution exhibits four boundary layers.

We subdivide the boundary of Ω parallel to x-axis into n
parts by the following two different ways. Mesh 1:square
meshes; (illustrated by the Fig.1.) Mesh 2: anisotropic
meshes, n+1 points: (1 − cos(iπ/n))/2, i=0, 1, ..., n and
the same intervals along y-axis. (illustrated by the Fig.2.)

We approximate the integral
∫
K

ϕn−1
h ◦Xn

1 ψhγ
ndx by the

same numerical integration formula in [24].
For different space mesh size h, we give the following

numerical results with the rectangular nonconforming finite
element,(see Tables I and II), and conforming finite ele-
ment,(see Tables II and IV).

Numerical results show that our method is of first-order
accuracy for ϕ in L2-norm, which is consistent with theoret-
ical analysis.

Tables I-IV show the results which are in agreement with
our investigation in section 4. From the comparison of the
errors on the two different meshes, we can see that mesh 2 is
in all cases more accurate than mesh 1 in L2 norm. On square
mesh, the results in the boundary region is not very good,
because the solution vary significantly near the boundary,

Fig. 1. Square Meshes

Fig. 2. Anisotropic Meshes

while Mesh 2 use anisotropic meshes with a finer mesh size
in the direction of the rapid variation of the solution, so the
results are more accurate.

We can see that the solution vary significantly near the
boundary. By concentrating mesh elements in regions where
more detail is required, an anisotropic mesh can reduce
numerical errors and improve the solution’s accuracy without
a significant increase in the total number of elements. For
more smaller ϵ, the mesh is more fitted to solving the
equation.

VI. CONCLUSION

We have presented a new mass-conservative characteristic
finite element scheme with the anisotropic nonconforming
rectangular finite element. The scheme is unconditionally
stable. For the problems with significant convection, the ap-
proximation of nonconforming finite element is appropriate.
The nonconforming finite element has the practical advantage
that each degree of freedom belongs to at most two ele-
ments, which may result in cheap local communication. The
anisotropic interpolation operator combined with the mean
value method is used instead of the elliptic projection in
the previous literature, which has the practical difficulties in
solving simultaneous equations. We have proved the stability
and convergence of the scheme in this paper.

The results obtained in this paper are also valid for the
rotated Q1 element on square meshes. From the structure of

the element, we can see that, for all vh ∈ V h,
∂vh
∂n

|∂K and
△vh|K are constants on square meshes, thus vh satisfies the
Lemma 3.2.

IAENG International Journal of Computer Science

Volume 52, Issue 3, March 2025, Pages 667-672

 
______________________________________________________________________________________ 



TABLE I
APPROXIMATION RESULTS OF ANISOTROPIC MESHES ||ϕ− ϕh||0,Ω

n\t 0.09566 0.19131 0.28697 0.38262 0.47828

8 0.397081 0.457982 0.562342 0.632980 0.695785

16 0.009454 0.015134 0.016199 0.029779 0.031230

32 0.005452 0.013123 0.017457 0.023817 0.026771

n\t 0.57394 0.66960 0.76526 0.86092 0.95658

8 0.745678 0.783452 0.852190 0.897345 0.937651

16 0.033416 0.043598 0.047934 0.053493 0.074387

32 0.032323 0.035378 0.042387 0.046328 0.054523

TABLE II
CONVERGENCE ORDER OF ANISOTROPIC MESHES FOR ||ϕ− ϕh||0,Ω

n\t 0.09566 0.19131 0.28697 0.38262 0.47828

8 \ \ \ \ \
16 1.005119 1.26745 1.07111 0.68612 0.99684

32 1.010721 1.19911 0.87712 0.89294 1.05107

n\t 0.57394 0.66960 0.76526 0.86092 0.95658

8 \ \ \ \ \
16 0.78777 0.95634 0.98865 0.79364 0.963413

32 0.88785 1.04634 1.02012 0.87354 1.055369

TABLE III
APPROXIMATION RESULTS OF SQUARE MESHES ||ϕ− ϕh||0,Ω

n\t 0.09566 0.19131 0.28697 0.38262 0.47828

8 1.845061 2.111789 2.524345 2.78345 2.790834

16 1.23494 1.245134 1.262349 1.287227 1.293113

32 1.080112 1.083278 1.087345 1.093713 1.096518

n\t 0.57394 0.66960 0.76526 0.86092 0.95658

8 2.799958 3.030202 3.12356 3.234489 3.237337

16 1.303416 1.304353 1.304399 1.305265 1.307876

32 1.103789 1.103888 1.10487 0.104632 0.105452

TABLE IV
CONVERGENCE ORDER OF SQUARE MESHES FOR ||ϕ− ϕh||0,Ω

n\t 0.09566 0.19131 0.28697 0.38262 0.47828

8 \ \ \ \ \
16 0.051192 0.045452 0.01233 0.01524 0.067856

32 0.690231 0.566698 0.508441 0.528554 0.505056

n\t 0.57394 0.66960 0.76526 0.86092 0.95658

8 \ \ \ \ \
16 0.076787 0.054356 0.15478 0.153546 0.378887

32 0.794245 0.780486 0.790901 0.786888 0.801223

In the forthcoming paper, we will present a corresponding
scheme of nonconforming characteristic mixed finite element
for the convection-diffusion problems.
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