
 

  

Abstract—This study focuses on the development of a mission 

planning and obstacle avoidance algorithm for Unmanned 

Aerial Vehicle (UAV) in Search and Rescue (SAR) operation 

replacing the traditional search and rescue methods that has 

limited rescuers' ability to reach remote and inaccessible areas 

during times of disaster. The study has utilized an autonomous 

search and rescue UAV using Lidar sensors for the development 

of the obstacle avoidance algorithm, potential field method for 

mission planning, and YOLOv3 for human recognition system, 

all of which are implemented in the Robot Operating System 

(ROS) and Gazebo environments. Ardupilot was used to 

navigate through unknown and dynamic environments and 

detect the presence of humans within its vicinity. The virtual 

potential field method is a technique that uses Lidar sensor data 

to model the environment as a potential field. The authors used 

a ROS-Gazebo simulator to test and verify the performance of 

the UAV in a virtual environment. The experimental results of 

the study showed that the UAV located 86.67% of the human 

models and had 83.33% success in completing the mission. 

 
Index Terms—Lidar sensors, mission planning, obstacle 

avoidance, potential field method, ros-gazebo, unmanned aerial 

vehicle. 

I. INTRODUCTION 

earch and rescue (SAR) refers to organized efforts to 

locate and assist people who are in distress or imminent 

danger. SAR operations are often carried out in response to 

natural disasters, such as earthquakes, hurricanes, and floods, 

as well as man-made disasters, such as plane crashes and 

terrorist attacks. In the Philippines, SAR is an important part 

of the country's disaster response efforts, as the country is 

prone to a variety of natural disasters due to its location in the 

Pacific Ring of Fire.  
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Search and rescue operations can be risky for a variety of 

reasons. One reason is that SAR operations are often carried 

out in hazardous environments, such as in the aftermath of 

natural disasters, where there may be debris, collapsed 

structures, and other hazards present. SAR personnel may 

also be at risk of injury or death due to the nature of the rescue 

operation itself, such as when they are working at great 

heights or in unstable or flooded areas. Another is that SAR 

often involves working in time-sensitive situations where 

lives are at stake. This can create pressure to locate and assist 

people in distress quickly, increasing the risk of accidents or 

injuries.  

UAVs, which were previously only used for military 

purposes, are now available for civilian use. Their application 

has expanded rapidly, and they are now being used in industry 

[1], logistics [2], crime scene surveillance [3], precision 

agriculture [4], photography and video filming as a hobby [5], 

and medicine [6]. Recently, UAVs have also been used for 

disaster relief and humanitarian efforts such as search and 

rescue operations, catastrophe prevention, and disaster 

management. With the advancement of technology over the 

past few years, the use of unmanned aerial vehicles (UAVs) 

has become evident in a wide variety of fields. Emergency 

services across the globe have already begun implementing 

UAVs for search and rescue operations in their attempt to 

reduce the time spent surveying a certain area during 

missions.  

UAVs can be used to aid in SAR operations by providing 

a quick and cost-effective way to survey large areas and 

locate people in distress. Despite the UAV technological 

advancements, in terms of exploration and reliability, those 

systems are most often controlled by a trained operator to 

avoid obstructions thus there is a need to deploy UAVs 

equipped with cameras and other sensors to quickly scan an 

area and identify potential hazards, as well as locate people 

who may be trapped or in need of assistance. Existing works 

in autonomous UAV exploration missions focus on a target-

oriented approach to recognize objects of interest in an 

unknown environment and reach them efficiently [7], [8].  

Thus, the paper presents the development of a mission-

planning and obstacle avoidance algorithm utilizing the 

Virtual Potential Field method and the power of LiDAR 

sensor.  
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Object detection system to recognize humans for rescue 

was integrated and was deployed in a simulated environment 

in ROS-Gazebo. 

II. METHODOLOGY 

In this study, a simulated environment was created using 

ROS-Gazebo to mimic a possible disaster scene. The 

designed Gazebo world for search and rescue UAV 

operations would simulate a realistic environment in which a 

UAV can navigate and perform search and rescue tasks. As 

shown in Fig. 1, the designed world has five (5) people in red 

markers (person to be search and rescue), one(1) home based 

in green mark and various obstacles, such as cars, trees, posts, 

tables, and other objects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 shows the overall system architecture of the study. 

After loading the initial waypoint for the UAV to navigate, 

the flight controller automatically perform the necessary 

commands to control the drone's movement and orientation, 

those commands are passed to the mission planning and 

obstacle avoidance algorithms. These algorithms take into 

account the mission plan and any potential obstacles in the 

environment and adjust the commands accordingly. The 

output of the mission planning and obstacle avoidance 

algorithms is then sent to the GNC which is responsible for 

controlling the drone's movement and ensuring that it stays 

on the correct course. The code will then be passed to the 

simulated actuators, such as motors and servos, which move 

the drone in the virtual environment.  

 

 
 

Fig. 1.  Designed ROS-Gazebo World 
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Fig. 2.  Overall System Architecture 
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A camera is attached to the UAV and was integrated with 

YOLOv3 Object Detection OpenCV to detect humans in the 

virtual environment. The human's location is then determined 

based on the drone's location. The output of the simulation, 

including the sensor data, the commands sent to the actuators, 

and the drone's performance, can be logged and analyzed to 

further evaluate the performance of the algorithms and 

identify any issues or areas for improvement. 

The PX4-SITL multirotor UAV "Iris" MODEL was used 

in simulation experiments as shown in Fig. 3. This multirotor 

UAV has a GPS to determine its position, one 2D LiDAR in 

obstacle avoidance, and a micro air vehicle link (MAVLink) 

to communicate with other entities such as other UAVs, base 

stations, and ground vehicles. The maximum flight time for 

Iris UAV is roughly 20 minutes. The PX4 autopilot and an 

inertial measurement unit (IMU) assist the UAV's flight 

controller in providing velocity and heading. Through the 

MAVLink, the onboard autopilot accepts yaw angle, velocity, 

and position waypoints. MAVROS, an application 

programming interface (API), runs on the companion 

computer and delivers the generated path planning waypoints 

to the UAV's autopilot at a frequency of 2 Hz. Table I shows 

the Iris drone model specifications. 

 

Mission Planning Algorithm 

The mission planning module was implemented using the 

GPS data coordinates to determine the location of the UAV 

and used virtual potential field methods to plan a path for the 

UAV to follow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The virtual potential field is a mathematical model that 

simulates the forces acting on the UAV or vehicle, such as 

attractive forces toward a goal location and repulsive forces 

away from obstacles.  

 

By simulating these forces, the UAV or vehicle can be 

guided toward its goal while avoiding obstacles along the 

way. The distance 𝑑 between the current position and the 

target destination is calculated using (1), wherein 

𝑋 𝑐𝑢𝑟𝑟𝑒𝑛𝑡  and 𝑌𝑐𝑢𝑟𝑟𝑒𝑛𝑡  are X and Y coordinates of the UAV’s 

current position and 𝑋𝑡𝑎𝑟𝑔𝑒𝑡  and 𝑌𝑡𝑎𝑟𝑔𝑒𝑡  are X and Y 

coordinates of the UAV’s next position. 

 

𝑑 =  √(𝑋𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑋𝑡𝑎𝑟𝑔𝑒𝑡)
2

+ (𝑌𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑌𝑡𝑎𝑟𝑔𝑒𝑡)2   (1) 

 

Attraction Vector 𝐴𝑣 was determined using (2). If the 

distance 𝑑 between the UAV and the target is less than 0.65 

with altitude greater than 3 then it will navigate towards next 

destination wherein 𝑡𝑟 is the target position, 𝐶𝑢 is the current 

position of the UAV, 𝑍𝑟  is the zone of attraction and distance 

based on (1).  

 

𝐴𝑣 = {
𝑡𝑟−𝐶

𝑑
          , 𝑑 < 𝑍𝑟

     0              , 𝑑 ≥ 𝑍𝑟 
                                (2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3.  PX4-SITL multirotor UAV 

  

 
 

Fig. 4.  Mission Planning Pseudocode 

  

TABLE I 

IRIS DRONE MODEL SPECIFICATION 

  

Dimensions Motor to motor dimension: 550mm 

Height 100mm 
Weight Weight (with battery): 1282 grams 

Performance Average flight time: 10-15 minutes 

Payload capacity 400 g (.8 lb) 
Battery 3-cell 11.1 V 3.5 Ah lithium polymer with 

XT-60 type connector 

Weight 262 grams 
Propellers (2) 10 x 4.7 normal-rotation, (2) 10 x 4.7 

reverse-rotation 

Motors AC 2830, 850 kV 
Telemetry/Control Radios available in 915mHz or 433mHz 

Autopilot Next generation 32-bit Pixhawk autopilot 

system with Cortex M4 processor 
GPS uBlox GPS with an integrated magnetometer 

Dimensions Motor to motor dimension: 550mm 
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Once the mission is completed, the UAV lands using the 

land() function. If the distance is less than a predefined zone 

radius, an attraction vector is computed as a unit vector 

pointing towards the target. The attraction vector is then 

transformed to the UAV's frame of reference using a rotation 

matrix. Fig. 4 shows the pseudocode of the mission planning 

function deployed in the UAV. The mission planning 

algorithm updates the UAV’s destination based on the 

attraction vector. It also has a condition loop to correct the 

increment of values and not let the UAV stray off course. 

 

Obstacle Avoidance Algorithm 

Obstacle avoidance module used a LiDAR sensor to scan 

the environment and detect obstacles, and then using a 

repulsive potential field to plan a path for the UAV to follow 

to avoid the obstacles.  

The module starts by iterating through each range 

measurement in the LiDAR sensor data and checks if the 

range is between a threshold distance 𝑑𝑡which is set to 1.5 

and a minimum distance (0.35 m) from the UAV. If the range 

measurement is within this range, the algorithm considers it 

an obstacle and sets the flag "avoid" to 1. Then the algorithm 

calculates the magnitude of the repulsive force (U) using a 

positive scaling factor 𝑘 which is set to 0.2, and the distance 

between the UAV and the obstacle. The magnitude of the 

repulsive force is calculated using (3) , wherein 𝑈 is the 

magnitude of the repulsive force, 𝑘 is a positive scaling factor 

and 𝑑𝑜𝑏𝑠 is the distance between the UAV and obstacle and 

𝑑𝑡 is threshold distance. 

 

𝑈 = −0.5𝑘 (
1

𝑑𝑜𝑏𝑠
−

1

𝑑𝑡
)

2

                                    (3) 

 

The potential field method combines both attractive and 

repulsive forces to guide a UAV toward its goal while 

avoiding obstacles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The attraction force is modeled as a vector that points 

towards the goal, and its magnitude is proportional to the 

distance between the UAV and the goal.  

The closer the UAV is to the goal, the stronger the 

attraction force will be. The overall movement of the UAV is 

determined by the sum of these two forces. The attraction 

force will pull the UAV towards the goal, while the repulsion 

force will push the UAV away from obstacles. By adjusting 

the relative strengths of these two forces, the UAV can be 

made to move toward the goal while avoiding obstacles The 

overall potential field was shown in (4) where in 𝑈𝑞 is the 

overall potential field, 𝑈𝑎𝑡𝑡 is the force of attraction, and 𝑈𝑝 is 

the force of repulsion. 

 

𝑈𝑞 =  𝑈𝑎𝑡𝑡 +  𝑈𝑝                                          (4) 

 

In the potential field method, the waypoint is set as the goal 

or target location and is assigned a high attractive potential. 

The attraction force is then calculated based on the distance 

between the UAV and the waypoint, with the force increasing 

as the UAV gets closer to the waypoint and decreasing as it 

moves farther away. Fig. 5 shows the pseudocode of the 

Obstacle Avoidance function deployed in the UAV. 

 

Virtual Force Method for Local Minimum 

A UAV may get stuck in the local minimum, unable to 

reach the global minimum, which is the optimal path. This 

situation is handled by the free force method using (5) 

wherein 𝜃𝑓 free space orientation, force constant 𝐹𝑐𝑓 and free 

force 𝐹 in (6). 

 

𝐹𝑓 = 𝐹𝑐𝑓  [(cos 𝜃𝑓)𝑒𝑥
+ (sin 𝜃𝑓)𝑒𝑦

]                          (5) 

 

 

𝐹 =  𝐹𝑎𝑡𝑡 +  𝐹𝑟𝑒𝑝 + 𝐹𝑓                                     (6) 

 

 

 

 
 

Fig. 5.  Obstacle Avoidance Pseudocode 
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Fig. 6 shows that in path planning, a local minimum is a 

point on a path where the UAV's movement is restricted, and 

it cannot move to a lower-cost path without first increasing 

the cost. This can happen when the UAV is in an area with a 

concave shape, where the cost function has a lower value than 

its surroundings. In the potential field method, the UAV is 

guided towards the goal or target location by the 𝐹𝑎𝑡𝑡 

attraction force generated by the waypoint, while avoiding 

obstacles by the 𝐹𝑟𝑒𝑝 repulsion force generated by the 

obstacles. However, this can lead to the UAV getting stuck in 

a local minimum, where it cannot move to a lower-cost path 

without first increasing the cost.  To avoid this problem, a free 

space force is added as shown in Fig. 7 to the potential field 

method. The 𝐹𝑓 free space force guides the UAV towards 

areas of the environment that are free of obstacles and have a 

lower potential, thus helping the UAV escape from local 

minima and reach the global minimum, which is the optimal 

path.                            

 

Human Detection using YOLOv3 
YOLO (You Only Look Once) v3 designed by [8] was used for 

human detection. It is a real-time object detection algorithm that can 

be used to detect and classify objects, including people, in images 

and videos as it can detect and track multiple objects in the UAV’s 

field of view. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is a small model that can easily be deployed on the 

UAV’s onboard computer. The YOLOv3 model was 

implemented as a convolutional neural network and was 

evaluated on a PASCAL VOC detection dataset [8]. The 

initial convolutional layers of the network extract feature 

from the image while the fully connected layers predict the 

output probabilities and coordinates. The network 

architecture was inspired by the GoogLeNet model for image 

classification [9]. The network has 24 convolutional layers 

followed by 2 fully connected layers. Instead of the inception 

modules used by GoogLeNet, it simply use 1 × 1 reduction 

layers followed by 3 × 3 convolutional layers, similar to Lin 

et al [10]. The full network is shown in Fig. 8.   

A python script function was created that would 

determine the location of the human when detected based on 

the drone’s current location. The darknet_ros in Github 

repository was used in the implementation. Darknet is an 

open-source neural network framework that runs on CPU and 

GPU. Currently, darknet_ros does not support higher YOLO 

versions other than YOLOv3. Thus, YOLOv3 model was 

considered for human detection module.  

The YOLOv3 is robust to changes in perspective, which 

makes it well-suited to be used on UAVs that move around in 

3D space and can change viewing angles quickly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 8.  The YOLOv3 Network Architecture 

 
 

Fig. 7.  Free Space Vector Ff added in the Obstacle Detection 

 
 

Fig. 6.  Local Minimum Trap Null Resultant Force Case 
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III. RESULTS AND DISCUSSIONS 

The developed mission-planning and obstacle-avoidance 

algorithm based on the Virtual Potential Field method is 

analyzed based on three (3) different test runs. All these 

experiments are run at a maximum speed of 0.5m/s. The 

algorithms are tested individually before integrating it to the 

YOLOv3 human detection system and deployment to the 

UAV model in ROS-Gazebo. 

 

Mission-planning Algorithm results 

Fig. 9-11 shows the actual path navigated by the UAV. UAV 

was first placed at home based (0, 0) in x and y coordinates, 

respectively. 

The mission-planning algorithm was tested on three 

mission paths with and without environmental obstacles, with 

each path tested five (5) times. The first path follows a U-

shaped path to cover the square 15 x 18 meters area with 9 

waypoints (see Fig. 9), star-shaped path with 5 waypoints (see 

Fig. 10) and a set of four-connected line paths with 5 

waypoints (see Fig. 11) respectively.  

There are 5 trials designed to test mission planning 

algorithms without obstacles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The errors were calculated by calculating the difference 

between the initial waypoints and the actual waypoints 

traveled by the UAV.  For testing the mission planner for u-

path without obstacles, the maximum error (error difference 

in the initial waypoint and the actual waypoint readings 

traveled by the UAV) is 5.7% for x coordinates and 

maximum error (error difference in the initial waypoint and 

the actual waypoint readings traveled by the UAV) is 14% 

for y coordinates as shown in Fig. 12.a. 

On the other hand, testing the mission planner for u-path 

with obstacles, the maximum error (error difference in the 

initial waypoint and the actual waypoint readings traveled 

by the UAV) is 9.1% for x coordinates and maximum error 

(error difference in the initial waypoint and the actual 

waypoint readings traveled by the UAV) is 12.7% for y 

coordinates as shown in Fig. 12.b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 10.  The 5 waypoints for star-shaped path 
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Fig. 11.  The 5 waypoints for four-connected line path 
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Fig. 9.  The 9 waypoints for U-path  
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Fig. 12.a Five (5) testing for U-path without obstacles 
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Fig. 13.a shows the testing result of the mission planner for 

star-path without obstacles. The maximum error is 5.4% for 

x coordinates and 4.9% for y coordinates. On the other hand, 

Fig. 13.b for star-path with obstacles, the maximum error is 

10% for x coordinates and 10% for y coordinates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14.a shows the testing result of the mission planner for 

four line path without obstacles. The maximum error is 5.4% 

for x coordinates and 4.9% for y coordinates. On the other 

hand, Fig. 14.b for four line path with obstacles, the 

maximum error is 10% for x coordinates and 10% for y 

coordinates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 12.b  Five (5) testing for U-path with obstacles 
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Fig. 13.a  Five (5) testing for Star-path without obstacles 
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Fig. 13.b  Five (5) testing for Star-path with obstacles 
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Fig. 14.a Five (5) testing for Four line path without obstacles 
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Obstacle Avoidance Algorithm results 

There are 30 test runs to test the obstacle avoidance nodule 

of the study.  All of these test runs are tested with a maximum 

velocity of 0.5 m/s. Fig. 10 shows some trials designed to test 

obstacle avoidance algorithms. It is worth noting that the 

paths are all smooth and follow reasonably efficient paths 

through the obstacle field. The x-axis shows the waypoints 

taken by the drone before reaching the goal. The y-axis 

denotes the distance of the drone to the goal. 

 

Obstacle Avoidance Algorithm Exception 

 There are several scene exceptions considered in the test 

conducted for obstacle avoidance. First is using concave 

obstacles or U-trap as shown in Fig. 16. The UAV did not 

detect the concave trap, leading to continuous moving 

forward without realizing it was trapped. Concave obstacles 

usually result in a local minimum. When the UAV is trapped 

by a concave-shaped obstacle, it will get confused, resulting 

in oscillation or running in a closed loop.  

 

Another scene exception is that the potential field method 

can be vulnerable to "long-wall traps," where the UAV 

encounters a long, straight obstacle (e.g. wall) that it cannot 

pass. This is because the potential field method can create a 

force that is too strong for the UAV to overcome, trapping it 

in the same place. 

The results of the search and drone system are shown in 

Table II. The authors counted the humans detected using the 

YOLO v3 camera. Flight time is the drone’s flight time from 

take-off to landing and is shown in the SITL console. Humans 

detected by the system is the number of humans detected in 

the path given. Success Rate is used to identify if the drone 

has finished its flight from takeoff to landing. The percentage 

 
 

Fig. 14.b  Five (5) testing for Four line path with obstacles 
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TABLE II 
YOLOV3 HUMAN DETECTION PERFORMANCE  

No. of Test Flight 

Time 

Expected 

Humans 

Detected 

Actual 

Humans 

Detected 

Mission 

Success 

Status 

U-path 

1 3:17 5 5 Completed 

2 2:57 5 5 Completed 

3 3:14 5 5 Completed 

4 2:55 5 5 Completed 

5 3:11 5 5 Completed 

Star path 

1 4:31 5 6 Completed 

2 4:54 5 6 Completed 

3 4:44 5 7 Completed 

4 4:26 5 6 Completed 

5 4:20 5 6 Completed 

Four -connected line path 

1 2:38 5 4 Completed 

2 2:47 5 4 Completed 

3 2:45 5 4 Completed 

4 3:16 5 4 Completed 

5 3:06 5 4 Completed 
 

 

 
 

Fig. 16.  UAV movements in Concave / U-trap 

 
 

Fig. 15.  Test runs for obstacle avoidance. 

 
 

Fig. 17.  UAV movements in long wall trap 
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of human detection varies on the path followed by the UAV. 

The U-path has 5 out of 5 or 100% result in human detection 

as the U plan path covers all areas.   

A total of 6 out of 5 or 80% of people were picked up by 

the star path. Human detection redundancy occurs as the 

UAV passed again to the same spot. The UAV can only detect 

four humans in the environment along the star route because 

the last human was not covered by the path it had taken.   

The four-connected line path detected 4 out of 5 or 80% 

of the humans. This occurred because the undetected human 

in the tests was not covered by the path taken by the drone.  

The UAV following the U path mission, took 3 minutes 

and 6 seconds to complete its mission, for the star route the 

UAV took 4 minutes and 35 seconds and the four-connected 

line path took only 2 minutes and 54 seconds. Considering 

the segments and obstacles, the star route has the longest 

completion time because the UAV has to cover all the 5 

segments with intersections and the obstacles in the area 

whereas, the four-connected line path has the shortest 

completion time because it will only cover 4 segments and 

the same obstacles. 

IV. CONCLUSION 

A well-planned and optimized mission path can reduce the 

overall time required to complete a task, while a poorly 

planned path can result in longer completion times due to 

increased travel time and inefficiencies. A well-designed 

obstacle avoidance system can ensure that the drone 

successfully navigates through the mission path without 

crashing into any obstacles. This, in turn, can improve the 

success rate of completing the mission and increase the 

efficiency of the UAV in SAR operations. The percentage 

error in mission planning with and without obstacles is less 

than 5% in all the test runs conducted. The YOLO v3 that was 

incorporated in the UAV’s camera has detected humans 

depending on its path taken. The U-path has 100% results of 

human detection as it covers all the points of interest without 

redundancy. A total of 80% of detected humans were picked 

up by the star path. Inconsistencies occur because of the 

repeating detection that happened as it took the star path.  The 

four-connected line path detected 80% of the humans. This 

happened because the undetected human in the four-

connected lines is out of the UAV’s path. Lastly, regardless 

of the obstacles present in the virtual environment, the 

implemented mission planning assures that the UAV could 

complete its mission. 
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