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Abstract—In the analysis of drone aerial images, object
detection tasks are particularly challenging, especially in the
presence of complex terrain structures, extreme differences in
target sizes, suboptimal shooting angles, and varying lighting
conditions, all of which exacerbate the difficulty of recognition.
In recent years, the DETR model based on the Transformer
architecture has eliminated traditional post-processing steps
such as NMS(Non-Maximum Suppression), thereby simplifying
the object detection process and improving detection accuracy,
which has garnered widespread attention in the academic
community. However, DETR has limitations such as slow
training convergence, difficulty in query optimization, and high
computational costs, which hinder its application in practical
fields. To address these issues, this paper proposes a new object
detection model called OptiDETR. This model first employs a
more efficient hybrid encoder to replace the traditional Trans-
former encoder. The new encoder significantly enhances feature
processing capabilities through internal and cross-scale feature
interaction and fusion logic. Secondly, an IoU ( Intersection
over Union) aware query selection mechanism is introduced.
This mechanism adds IoU constraints during the training phase
to provide higher-quality initial object queries for the decoder,
significantly improving the decoding performance. Additionally,
the OptiDETR model integrates SW-Block into the DETR de-
coder, leveraging the advantages of Swin Transformer in global
context modeling and feature representation to further enhance
the performance and efficiency of object detection. To tackle
the problem of small object detection, this study innovatively
employs the SAHI algorithm for data augmentation. Through
a series of experiments, It achieved a significant performance
improvement of more than two percentage points in the
mAP (mean Average Precision) metric compared to current
mainstream object detection models. Furthermore, there is a
noticeable reduction in computation and memory consumption,
demonstrating the excellent performance and practical value of
OptiDETR in object detection tasks.

Index Terms—Object detection, UAV Photography, Detection
Transformer, SAHI

I. INTRODUCTION

OBJECT detection in UAV imagery (Unmanned Aerial
Vehicles) is a significant research direction in the

field of computer vision, aiming to automatically identify
and locate specific targets in images or videos captured by
UAVs. This technology finds broad applications in various
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fields, such as military reconnaissance, environmental moni-
toring, agricultural management, urban planning, and disaster
relief[1–3].

However, despite many researchers continually exploring
new methods, achieving effective object detection still faces
a series of challenges.

Firstly, aerial images typically cover large geographic
areas and contain various complex ground structures and
diverse backgrounds, increasing the difficulty of detecting
the target [4]. Secondly, the targets in the images can vary
in size, ranging from large buildings to small vehicles, and
even pedestrians, all of which must be detected accurately
[5]. Finally, constantly changing angles and lighting condi-
tions in UAV-captured images place higher demands on the
robustness of algorithms [6].

Traditional methods include feature extraction, classifier-
based approaches, and sliding window methods. Feature
extraction and classifier-based methods involve the use of
SIFT [7] and SURF [8] combined with SVM (Support Vector
Machine) classifiers [9]. The sliding window method pro-
gressively scans the entire image to locate targets, with region
proposal methods like Selective Search used to generate po-
tential target regions. In recent years, with the advancement
of deep learning technology, the use of CNNs (Convolutional
Neural Networks) such as Faster R-CNN [10], YOLO (You
Only Look Once) [11], and SSD (Single Shot MultiBox
Detector) [12] for end-to-end object detection has become
mainstream.

Each of these methods has its advantages and disadvan-
tages. Fast R-CNN uses region proposals to locate potential
target objects, then performs precise classification and re-
gression within these regions, enhancing accuracy. However,
it is relatively slow and requires separate steps to generate
regional proposals, extract features, and classify them, in-
creasing the complexity of implementation and debugging.
SSD, on the other hand, does not require region proposals,
making it faster. It also uses multiple-scale feature maps
for detection, which helps handle objects of different sizes.
However, using multiple-scale feature maps complicates op-
timization and tuning, and it has lower accuracy for small
object detection. YOLO series models are relatively simple
and fast. However, they have lower accuracy and recall rates
when dealing with small objects, making them prone to
missing detections.

In recent years, the DETR model has introduced the
Transformer architecture and end-to-end training to simplify
traditional detection processes and offer more substantial
global context modeling capabilities. However, it suffers
from slow convergence, high computational costs, and a
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Fig. 1. The Workflow of Workflow of DETR

limited ability to detect small objects. More optimization and
improvements are needed for small object detection.

In summary, object detection in UAV imagery is a chal-
lenging, yet promising research field. As technology con-
tinues to advance, it is expected to play an increasingly
important role in a wide range of practical applications.

II. RELATED WORK

A. Detection Transformer

DETR (Detection Transformer) is a deep learning model
for object detection tasks, proposed by Facebook AI Re-
search in 2020 [13]. DETR introduces the Transformer
architecture to the object detection domain, achieving a direct
end-to-end mapping from input images to object detection re-
sults, thereby avoiding the complex hand-crafted designs and
multistage processes of traditional object detection methods.

As illustrated in Figure 1, DETR transforms the object
detection problem into a sequence-to-sequence conversion
task. Specifically, DETR views the object detection problem
in an input image as a task of mapping an input sequence
(image features) to an output sequence (object detection
results). This allows DETR to leverage the powerful mod-
eling capabilities of Transformers to perform global context
modeling of both objects and backgrounds within the image.

The overall architecture of DETR comprises two key com-
ponents: an Encoder and a Decoder. The encoder is respon-
sible for converting the input image into a series of feature
vectors, each representing a position in the input image.
Based on these feature vectors, the Decoder incrementally
generates object detection results using the Transformer’s
self-attention mechanism and feedforward neural networks.
DETR employs a special target class, called "no-object," to
represent areas in the image where no objects are present.
Consequently, the Decoder can not only predict the class and
location of objects but also identify background areas in the
image by predicting "no-object" for specific positions.

The advantage of DETR lies in its ability to achieve end-
to-end object detection, eliminating the complex processes
and manual designs inherent in traditional methods. It strikes
a good balance between speed and accuracy, maintaining
high detection precision while achieving faster inference

speeds. DETR has been widely applied in the field of object
detection and has yielded significant results.

B. Swin Transformer

The Swin Transformer, introduced by Microsoft Research
Asia in 2021, is a deep learning model based on the
Transformer architecture that has demonstrated outstanding
performance in computer vision tasks, particularly in image
classification and object detection [14].

A key innovation of the Swin Transformer is introducing
a "local-global" attention mechanism. The model divides the
image into a series of small windows, where features are
extracted within each window using a self-attention mecha-
nism. Subsequently, interactions between windows are facili-
tated through cross-window attention. This design allows the
model to focus on local details and global context, thereby
improving the image’s structural and semantic information
modelling.

Additionally, the Swin Transformer incorporates a hierar-
chical Transformer structure, dividing the entire model into
multiple stages, with each stage containing several groups of
Transformer blocks. This hierarchical structure enhances the
model’s scalability and computational efficiency, enabling it
to handle larger image sizes [15].

The Swin Transformer excels in image classification tasks,
where pre-training on large-scale image datasets allows it
to learn rich image feature representations. Moreover, it
demonstrates strong performance in object detection tasks.
When applied to object detection frameworks, the Swin
Transformer achieves efficient and accurate object localiza-
tion and recognition.

C. Slicing Aided Hyper Inference

The SAHI (Slicing Aided Hyper Inference) algorithm is
a novel method for object detection, particularly well-suited
for addressing the issue of small object detection in high-
resolution images [16]. The advantage of SAHI is that it can
divide large images into multiple smaller slices or fragments.
This way, objects that appear very small in the large image
will occupy a larger proportion and have more relative pixels
in the smaller slices, thereby improving the model’s ability
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Fig. 2. The Overview Structure of OptiDETR

to detect small objects. Moreover, slicing a large image into
multiple segments can reduce the background area in each
segment, minimizing distractions and making it easier for the
model to focus on the small objects to be detected.

When slicing the image, SAHI typically uses a sliding win-
dow strategy, resulting in overlapping regions between the
windows. This prevents objects from being truncated at the
edges due to slicing, thereby maintaining the completeness
and accuracy of the detection results. By carefully designing
the overlap ratio, it ensures that all objects appear fully in
at least one slice. For objects that are divided by the slicing
operation, SAHI identifies these fragments as belonging to
the same object and merges them to restore the object’s
integrity, thus enhancing detection coverage and accuracy.

The SAHI algorithm significantly enhances the detec-
tion performance of small objects in high-resolution images
through slicing and result fusion. It is applicable to various
scenarios requiring high-precision object detection and can
seamlessly integrate with existing detection models, making
it an auspicious approach [17].

III. METHOD

Although the original DETR eliminates the region pro-
posal generation and post-processing steps of traditional
methods, simplifying the model workflow, it still has issues
with long training times and insufficient accuracy in small
object detection. Our proposed OptiDETR addresses these
shortcomings by improving the backbone network encoder-
decoder, introducing IoU constraints, and utilizing the SAHI
algorithm. These enhancements significantly improve the
accuracy of small object detection.

As shown in Figure 2, the OptiDETR model consists of
four main parts: Backbone, SwinHyperEncoder, IoU Aware
Filter, and SwinDecoder.

A. Backbone

The backbone is an object detection network’s founda-
tional component, extracting feature representations from the
input image. It typically consists of a series of convolutional
and pooling layers, which progressively reduce the size of the
feature maps while increasing the number of channels. The
role of the backbone is to capture low-level and mid-level
features in the image, such as edges, textures, and shapes,
which are crucial for tasks involving object localization and
shape analysis. This study primarily utilizes CSPDarkNet and
ResNet as the backbone networks.

CSPDarknet, as a lightweight neural network model, has
fewer parameters compared to the ResNet network through

the CSPNet (Cross Stage Partial Network) structure, and its
network architecture is more advantageous, improving com-
putational efficiency. Additionally, it exhibits better robust-
ness when handling objects of different scales and types. The
CSPNet structure within it can more effectively propagate
gradient information to all layers of the network, mitigating
the gradient vanishing problem and facilitating the training of
deeper networks. Furthermore, CSPDarknet’s modular design
makes it very easy to expand and adjust. We can flexibly
design and optimize the model according to actual needs by
adding or reducing network layers and adjusting the feature
map partition ratios. Although ResNet’s residual structure
also has some flexibility, its primary way of expansion is
by increasing the number of residual blocks, which lacks
flexibility in feature processing. Therefore, compared to
ResNet, CSPDarkNet is superior as a backbone network.

B. Swin Hyper Encoder

The SwinHyperEncoder is an attention mechanism-based
encoder that plays a crucial role in object detection tasks.
It models long-range dependency relationships between fea-
tures by adopting a hierarchical attention mechanism. The
SwinHyperEncoder divides feature maps into multiple blocks
and performs self-attention calculations within each block to
capture global and local contextual information. This lay-
ered attention encoder enhances the semantic representation
capability of features, enabling the network to better under-
stand the target information within the image. Compared
to the original DETR model’s Eecoder, the Swin Hyper
Encoder introduces several improvements, including hier-
archical structures, local self-attention, and shifted window
mechanisms. These advancements result in significant gains
in computational efficiency, feature representation capability,
and flexibility compared to the encoder in DETR. These
improvements make the Swin Hyper Encoder particularly
effective for small object detection tasks and hold promise for
a wide range of applications. SwinHyperEncoder consists of
three main parts: Patch Embedding, SwinBlock and SCFM.
The following will introduce the composition and function
of each part in detail.

1) Patch Embedding: The structure of Patch Embedding
is illustrated in Figure 3. It segments the image into fixed-
sized image patches using convolutional layers or linear
projection layers. Each image patch is treated as a rectangular
region and features are extracted through average pooling
or convolutional operations. Subsequently, these extracted
features are mapped to a fixed-dimensional vector space via
a fully connected layer or convolutional layer.
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Patch Embedding serves several key purposes. Firstly, it
extracts local features, encoding local structural informa-
tion in the image into vector representations. This aids in
capturing fine-grained information such as textures, edges,
and local shapes. Secondly, by segmenting the image into
blocks, the size of each block is relatively small, significantly
reducing the input dimensionality of the Transformer and
thereby decreasing computational complexity. This enhances
the efficiency of Transformer models in processing large-
scale images. Additionally, Patch Embedding can introduce
positional information. While extracting features from image
blocks, positional information for each block is typically
retained. Through positional encoding, the Transformer’s en-
coder can perceive relationships between different positions.

2) SwinBlock: The SwinBlock consists of several struc-
tures, as illustrated in Figure 4. By adjusting the number
of SwinBlocks, the network exhibits good scalability, and its
computational process can be described by Equations (1) and
(2):

Xl = W −MSA(LN(Xl−1)) +Xl−1 (1)

Where X1 represents the output of the current layer l.
The LN(Xl−1) represents Applies Layer Normalization to
the input X1 , which is the output from the previous layer.
The W -MSA(LN(Xl−1))+Xl−1 represents uses a residual
connection by adding the original input Xl−1 to the output
of the W-MSA module. This connection helps to stabilize
training and retain important features from the previous layer.

Xl+1 = MLP(LN(Xl)) +Xl (2)

Where Xl+1 represents the output of the current layer,
which depends on the output of the previous layer,X1. The
LN(Xl) represents This applies Layer Normalization to X1,
normalizing its values to stabilize the input for the next op-
eration. The MLP(LN(Xl)) represents after normalization,
the result is passed through an MLP (Multilayer Perceptron).
This MLP typically consists of a few linear layers with
activation functions like GELU or ReLU in between. This is

Fig. 3. The Workflow of Patch Embedding

part of a Transformer block where the residual connections
help prevent information loss across layers.

The SwinBlock consists of two sub-modules, Window-
based Multi-head Self-Attention and multilayer perceptron.

Window-based W-MSA (Multi-head Self-Attention) is an
attention mechanism in the Swin Transformer model, and
its operation process is illustrated in Figure 5. It divides the
input feature map into non-overlapping image blocks and
computes self-attention within each image block to capture
local dependencies within the image. W-MSA introduces
window-based attention computation, performing attention
calculations only within local windows around each image
block. This windowed design makes attention calculation
more efficient and suitable for processing large-scale images.
W-MSA helps the model to model the image at a fine-grained
level, capturing detailed information within the image blocks.
The MLP module is another component of the Swin Trans-
former block. It consists of two fully connected layers used
for nonlinear transformation and mapping of features within
the image blocks.

3)SCFM (Scale Cross-Feature Fusion Module): As pre-
viously mentioned, the ShiftBlock aims to reduce compu-
tational complexity by dividing the input image into non-
overlapping windows and performing self-attention calcula-
tions within these windows. While the ShiftBlock can reduce
computational complexity, it suffers from insufficient infor-
mation exchange between non-overlapping windows, thus
losing the Transformer’s ability to construct relationships
globally using self-attention. In this context, the role of
SCFM is highlighted. The structure of SCFM, as illustrated
in Figure 6, improves upon the FPN-based structure, aiming
to integrate the effects of features across different scales.
The left side conveys strong localization features from Low-
Level, while the right side conveys strong semantic features
from High-Level. By combining ShiftBlock and SCFM,
both computational complexity is reduced, and information
exchange between different windows is enhanced.

Fig. 4. The Structure of SwinBlock
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Fig. 5. The Workflow of W-MSA

C. IoU Aware Filter

The IoU Aware Filter is a filtering mechanism used for
object detection aimed at screening and adjusting detection
results based on the IoU of candidate boxes. This filter
evaluates the matching degree between candidate boxes and
real targets based on the IoU metric and filters and corrects
detection results accordingly. Its function is to enhance the
accuracy and robustness of object detection by filtering and
adjusting candidate boxes, resulting in more precise and
reliable detection results. Adding the IoU Aware Filter can
incorporate IoU weights into the loss function. Compared to
the original DETR, our model pays more attention to the
overlap of bounding boxes. This optimization of the loss
function allows it to handle overlapping and small objects
better.

D. Swin-Decoder

The DETR decoder possesses a significant characteristic
of modeling global context by decoding the encoder outputs
through self-attention mechanisms, utilizing global context
information for object detection. This enables DETR to
have an advantage in handling relationships and occlusions

between targets, accurately capturing the dependencies be-
tween targets. However, the DETR decoder also has some
limitations. Firstly, the number of generated target boxes
is fixed, which may lead to poor detection performance in
scenes with a large number of targets or densely populated
areas. Secondly, DETR faces challenges in detecting small
targets, as it struggles to capture the detailed information of
small targets, which typically require more fine-grained local
information for accurate detection.

The main reason for the DETR decoder to adopt Swin-
Block is to leverage the advantages of the Swin Transformer
model to improve object detection performance. The DETR
decoder needs to decode the encoder outputs and utilize
global context information for object detection while intro-
ducing the Shifted Window Partition, which enables cross-
window information exchange. The Swin-Decoder consists
of several SW-Blocks, whose structure is illustrated in Fig-
ure 7, and its computational process can be described by
Equations (3) and (4):

Xl = SW-MSA(LN(Xl−1)) +Xl−1 (3)

Where SW-MSA(LN(Xl−1)) represents SW-MSA is

Fig. 6. The Overview of SCFM
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Shifted Window Multi-Head Self-Attention, an attention
mechanism applied within specific window regions. It cal-
culates attention within shifted windows to capture local
context information. This structure is used in the Swin
Transformer to enhance the learning of local context through
shifted window self-attention while preventing information
loss across layers through residual connections.

Xl+1 = MLP(LN(Xl)) +Xl (4)

The most important attention mechanism module is Swin-
MSA, whose operation process is illustrated in Figure 8. The
previously mentioned SwinBlock can reduce computational
complexity but lacks information exchange between non-
overlapping windows. Therefore, Swin-MSA is introduced
to facilitate information exchange across regions. By trans-
mitting information across regions, the network can better
capture global-level relationships. The key idea of Swin-
MSA is to shift adjacent windows and establish connections
between them, allowing information to flow between differ-
ent windows. Consequently, SwinBlock can establish rela-
tionships between different windows through self-attention

Fig. 7. The Structure of SW-Block

mechanisms, utilizing global context to optimize feature
representations.

Thus, using SW-Block, the DETR decoder can fully utilize
the Swin Transformer model’s ability to model global con-
text and optimize feature representations, thereby improving
object detection performance and effectiveness.

IV. EXPERIMENT

A. Dataset

The VisDrone dataset serves as a widely utilized bench-
mark in computer vision research, aimed at understanding
visual data captured by drones equipped with cameras or
general unmanned aerial vehicles. This dataset is curated
by the AISKYEYE team at Tianjin University’s Machine
Learning and Data Mining Laboratory. The VisDrone2019
dataset comprises 288 video clips, totaling 261,908 frames
and 10,209 static images. These data encompass various
locations from 14 different cities across China, spanning
thousands of kilometers and featuring diverse objects such
as pedestrians, vehicles, and bicycles in urban and rural
environments.

The images and video clips in the VisDrone dataset
originate from various unmanned aerial vehicle platforms,
covering a wide range of scenes, weather conditions, and
lighting conditions. Annotations for over 2.6 million object
bounding boxes have been manually annotated. Additionally,
the dataset provides essential attribute information such as
scene visibility, object categories, and occlusion status.

The VisDrone dataset offers researchers an experimental
platform for conducting various critical computer vision
tasks, including object detection, object tracking, and behav-
ior analysis. By leveraging the VisDrone dataset, researchers
can delve into the fusion of drone vision and computer vision,
driving advancements in applications such as agriculture,
aerial photography, rapid delivery, and surveillance.

B. Evaluation Merits

1) mAP (The mean Average Precision): mAP is a com-
prehensive metric employed in assessing the performance of
object detection models. It calculates a model’s average per-
formance across various classes by computing the precision
and recall for each class. Precision represents the proportion
of samples predicted as positive that are indeed positive,
while recall denotes the proportion of actual positive samples
correctly predicted as positive. Subsequently, precision-recall

Fig. 8. The Workflow of SW-MSA
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curves are plotted for each class, altering prediction confi-
dence thresholds to obtain different precision and recall val-
ues. The AP value(the area under the precision-recall curve
) is computed for each class. To derive AP, interpolation is
performed among precision values at different recall points.
A higher mAP value indicates the model’s superior overall
detection performance. The calculation formula for mAP
involves averaging the AP values across all classes.

2) IoU : IoU is a metric used to evaluate the accuracy
of bounding boxes in object detection. It computes the
ratio of the intersection area between the predicted and
actual bounding boxes to the union area. IoU50 and IoU75
evaluate object detection performance based on different IoU
thresholds. IoU50 represents the evaluation metric using an
IoU threshold 0.5, indicating that a prediction box is correct
when IoU is greater than or equal to 0.5, reflecting a lenient
threshold. IoU75, on the other hand, represents the evaluation
metric using an IoU threshold of 0.75, implying that a
prediction box is deemed correct when IoU is greater than
or equal to 0.75, indicating a stringent threshold.

3) FLOPs (Floating Point Operations) represent the num-
ber of floating-point calculations a model requires during
execution, serving as a crucial metric for assessing the com-
plexity of algorithms or models. In deep learning, FLOPs are
utilized to evaluate a model’s computational demands, aiding
researchers in selecting appropriate models and optimization
strategies. Reducing FLOPs during model optimization helps
lower computational costs and improve the model’s inference
speed.

Both mAP and IoU range from 0 to 1, and they are
expressed in percentage form for the sake of data presentation
consistency.

C. Baseline

To evaluate the performance of the OptiDETR model
proposed in this paper, the experimental section selects a
total of six mainstream image detection networks, namely
PPYOLO, YOLO V4, YOLO V5, DETR-DC5, Anchor-
DETR-DC5, and Efficient-DETR.

In addition to testing the models themselves, a compar-
ison of the backbone components is also necessary. This

paper adopts DarkNet-53, CSPDarkNet, and ResNet-50 as
backbones for comparison. Below are introductions to these
three backbone networks:

1) DarkNet-53: DarkNet-53 serves as the backbone net-
work for YOLOv3, consisting of 53 convolutional layers
and employing residual connections to facilitate training of
deeper networks. It utilizes the Leaky ReLU activation func-
tion to enhance the model’s nonlinear expressive capability.
DarkNet-53 achieves a good balance between computational
efficiency and detection accuracy, suitable for real-time ob-
ject detection tasks.

2) CSPDarkNet: CSPDarkNet, the backbone network for
YOLOv4, is an improvement upon DarkNet-53. Employing
CSP (Cross Stage Partial) connections reduces redundant gra-
dient information flow, enhancing computational efficiency
and accuracy. It strengthens feature extraction capabilities
while maintaining high detection speed, making it suitable
for real-time application scenarios.

3) ResNet-50[18]: ResNet-50 is a residual network com-
prising 50 layers, utilizing skip connections to address the
problem of gradient disappearance in deep networks. It
employs Batch Normalization after each convolutional layer
to stabilize the training process. ResNet-50 is widely applied
in image classification and object detection tasks due to
its efficient feature extraction capability and stable training
performance.

All experimental results are the averages of five trials, with
the optimal results displayed in bold and the next best results
underscored.

D. Training Process

The training process can be divided into two main stages.
Firstly, in Stage 1, the backbone network (ResNet or CSP-
Net) is pretrained using the ImageNet dataset. This pretrain-
ing aims to extract generic features from images through
a large-scale image classification task. Secondly, in Stage
2, end-to-end joint training is conducted, including both
Encoder and Decoder. Encoder training is the primary task
of this stage, followed by IoU-Aware Filter, which selects
the top 100 features with the highest classification scores
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from the encoder output to initialize the target queries for
the decoder. Decoder training is the final step of this stage.

Specific training details include the utilization of the
AdamW optimizer, setting the number of epochs to 80, with
a base learning rate of 0.0001, weight decay of 0.0001,
global gradient clipping norm of 0.1, and linear warmup
steps of 2000. The learning rate scheduling for the backbone
network follows the DETR method. Additionally, the EMA
(Exponential Moving Average) is employed for model pa-
rameter updates with a decay rate of 0.9999. Throughout the
entire training process, various data augmentation techniques
are employed, including random color distortion, expansion,
cropping, flipping, scaling, and SAHI operations, to enhance
the diversity of training data and the robustness of the model.

E. SAHI Feature Enhancement

The SAHI algorithm mentioned earlier belongs to the cat-
egory of data augmentation methods. To address the issue of
detecting small objects, the SAHI algorithm proposes a slice-
based framework during the fine-tuning and inference stages.
This involves segmenting the input image into overlapping
blocks, thereby enlarging the pixel regions of small target
objects. It is applicable to high-quality images such as remote
sensing images and 4K UAV aerial images.

A detailed analysis of the VisDrone dataset, as depicted
in Figure 9, reveals that the dataset comprises 6471 images
and 34320 annotated bounding boxes, with an average image
size of (1020, 1496). The median aspect ratio is 0.0246, and
the median aspect ratio is 0.038. The dataset contains images
with high resolutions and a significant number of small target
objects.

Therefore, this study improves the data preprocessing
method by employing the SAHI algorithm to address the
issue of small object detection. The SAHI algorithm seg-
ments the input image into overlapping blocks to expand the
pixel regions of small target objects, enhancing the model’s
capability to detect small objects and improving overall
detection performance.

Furthermore, the SAHI algorithm performs well in han-
dling high-quality images. VisDrone dataset images typically
possess high resolutions and abundant detailed information.
The SAHI algorithm effectively utilizes this information to
provide more contextual information, enhancing the accuracy
and robustness of object detection.

Finally, as a data augmentation method, the SAHI algo-
rithm introduces diversity and richness, thereby increasing

the diversity of training data. By segmenting the input image
into multiple overlapping blocks, more training samples
can be generated, augmenting the dataset and enhancing
the model’s generalization ability and robustness, which is
particularly crucial for addressing the issue of small object
detection in the VisDrone dataset.

V. RESULT AND ANALYSIS

A. Object Detection Performance Comparison

When conducting object detection using the VisDrone
dataset, this paper compared with previously mentioned
benchmark models, and the specific results are presented in
Table I. The results demonstrate that the OptiDETR model,
whether paired with ResNet-50 or CSPDarkNet, consistently
achieved optimal or near-optimal results, thus fully showcas-
ing its superiority. Specifically, when the OptiDETR model is
paired with CSPDarkNet as the backbone, compared to other
non-OptiDETR models, it exhibited improvements of 2.89%,
1.67%, and 1.64% in mAP, IoU50, and IoU75, respectively.
Similarly, when the OptiDETR model is paired with ResNet-
50 as the backbone, it demonstrated improvements of 1.16%
and 0.71% in mAP and IoU50, respectively, compared to
other non-OptiDETR models.

Furthermore, the OptiDETR model showed advantages
in terms of parameter count and computational complexity.
When using ResNet-50 as the backbone, the parameter count
was 39.6, and the FLOPs were 128; while when using CSP-
DarkNet as the backbone, the parameter count was 41.5, and
the FLOPs were 130. This indicates that while maintaining
high performance, OptiDETR incurred less computational
and memory overhead.

Among other models, PPYOLO,YOLOv4 and YOLOv5
exhibited relatively good performance but had slightly
higher parameter counts and computational complexities
compared to OptiDETR. DETR-DC5, Anchor-DETR-DC5,
and Efficient-DETR models performed well under specific
network and input size configurations but still could not
surpass the performance of the OptiDETR model.

B. Quantity Experiments of SwinBlock and SW-Block

The experiment involved training for 80 epochs, utilizing
CSPDarkNet as the backbone network, and setting the image
size to 640×640. Such training settings contribute to better
learning of features relevant to object detection tasks and
enhance the model’s performance.

TABLE I
COMPARISON WITH OTHER OBJECT DETECTION NETWORKS

Model Backbone mAP IoU 50 IoU 75 Params(M) FLOPs

PPYOLO DarkNet-53 47.10 68.60 58.31 38.09 109.10
YOLOv4 CSPDarkNet 51.40 69.20 61.00 40.15 123.05

YOLOv5 CSPDarkNet 51.50 71.30 60.61 42.05 118.11

DETR-DC5 ResNet-50 45.40 65.00 55.25 39.12 152.04

Anchor-DETR-DC5 ResNet-50 48.60 67.90 56.35 34.61 136.08

Efficient-DETR ResNet-50 49.90 68.20 58.00 38.21 216.22

OptiDETR ResNet-50 52.10 71.80 59.35 39.60 128.15

OptiDETR CSPDarkNet 53.40 73.00 62.00 41.50 130.34
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TABLE II
COMPARISON OF DIFFERENT SWINBLOCK AND SW-BLOCK

SwinBlock Number SW-Block Number mAP IoU50 IoU75 Params(M) FLOPs

4 4 44.81 64.00 46.78 35.61 101.01
4 6 46.27 65.92 48.77 36.82 107.25

6 4 49.63 68.75 50.19 38.91 119.34

6 6 53.40 71.35 55.80 43.52 130.23

8 6 53.31 72.18 54.13 42.62 160.22

As depicted in Table II, the influence of different combina-
tions of SwinBlocks and SW-Blocks on model performance
is apparent. Specifically, three combinations were considered:
SwinBlock of 6 and SW-Block of 4, SwinBlock of 8 and
SW-Block of 6, and both SwinBlock and SW-Block set to 6.

Firstly, the combination where SwinBlock and SW-Block
are set to 6 is observed. According to the data performance,
this combination achieved the highest values for performance
metrics, with mAP, IoU50, and IoU75 reaching 53.40, 71.35,
and 55.80, respectively. This indicates the capability of this
combination to accurately detect more targets in object de-
tection tasks with higher overlap. Secondly, when SwinBlock
is set to 8 and SW-Block to 6, there is a slight decrease in
model performance, with mAP at 53.31, IoU50 at 72.18, and
IoU75 at 54.13. This suggests that for this particular task or
dataset, this combination might not adequately capture the
features and contextual information of the targets, resulting
in a performance decline.

Achieving optimal mAP in object detection tasks related
to drone imagery enables more accurate identification and
localization of small objects, even when they are embedded
within complex and cluttered backgrounds. This enhanced
capability ensures that the model can effectively detect these
objects with a high degree of confidence, significantly boost-
ing its robustness in real-world applications. Furthermore,
when the model achieves superior performance across a
wide range of IoU thresholds, it indicates that it maintains
a consistent and reliable detection performance in diverse
and challenging scenarios, ranging from simple to highly
complex scenes and backgrounds. This consistency demon-
strates the model’s strong generalization capabilities, making
it adaptable to various environments and conditions.

Excelling at an IoU threshold of 75

C. Ablation Experiment

This paper contrasts the results with and without the
utilization of SCFM, as depicted in Table III. SCFM, a
method derived from FPN architecture enhancements, aims
to integrate the effects of features across different scales.
Experimental findings demonstrate that the introduction of
SCFM not only enhances performance but also improves

computational efficiency. SCFM facilitates information ex-
change between different windows by conveying strong
localization features from the bottom up and strong semantic
features from the top down. Such feature fusion contributes
to enhancing accuracy and robustness in object detection.

This paper similarly contrasts the results with and without
the utilization of SAHI, as presented in Table IV. According
to the comparative results, it is evident that the performance
of object detection slightly improves when SAHI is em-
ployed. Specifically, mAP increases from 52.91 to 53.18,
IoU50 rises from 70.52 to 71.37, and IoU75 enhances from
52.05 to 54.53, representing improvements of 0.27%, 0.85%,
and 2.48%, respectively. To some extent, this outcome
demonstrates the positive impact of SAHI on object detection
tasks, aiding the model in better learning and adaptation to
complex scenarios.

VI. CONCLUSIONS

This paper examines the common challenges in image
recognition and proposes a model specifically designed for
UAV image recognition based on DETR, termed OptiDETR.
OptiDETR introduces an efficient hybrid encoder to replace
the original Transformer encoder, enabling efficient process-
ing of features at different scales. The decoder’s initialization
scheme for object queries is crucial for detection perfor-
mance. OptiDETR employs IoU-aware query selection to
enhance performance further, incorporating IoU constraints
during training. Additionally, this study introduces the SW-
Block in the DETR decoder, leveraging the Swin Trans-
former model’s capability for global context modeling and
optimized feature representation.

Experimental results indicate that the OptiDETR model
performs superiorly on the VisDrone dataset compared to
other mainstream image recognition models, establishing
it as a new baseline for UAV image recognition. Finally,
the various submodules of the OptiDETR model can be
easily integrated into other models, offering new avenues for
research in related fields. This study improves the robustness
and performance of object detection systems and lays the
groundwork for future research and applications.

TABLE III
COMPARISON OF SCFM

Input_Size Epoch mAP IoU50 IoU75 Params(M) FLOPs

Without SCFM 640 80 51.20 68.91 49.62 39.32 126.05

With SCFM 640 80 53.41 71.37 54.24 42.28 136.19
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TABLE IV
COMPARISON OF SAHI

Input_Size Epoch mAP IoU50 IoU75

Without SAHI 640 80 52.91 70.52 52.05

With SAHI 640 80 53.18 71.37 54.53
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