
 

Abstract—Unmanned aerial vehicles (UAVs) with sensors are 

cost-effective and powerful image-capture tools. Government, 

industrialists, workers, and researchers extensively deploy 

UAVs for monitoring, mapping, and management tasks in 

various domains to automate operations, optimize production, 

and reduce cost. However, the captured images may have blur 

and noisy effects owing to handling issues, platform limitations, 

camera geometry, and weather effects, requiring image 

processing and analysis. To leverage the significance of UAVs 

integrated with image processing techniques, artificial 

intelligence (AI) techniques are applied, enhancing their 

capabilities. This work endeavors to conduct a comprehensive 

review of recent applications of UAVs with an emphasis on 

image processing techniques, advanced machine learning (ML) 

algorithms, and deep learning (DL) models. From this 

perspective, elemental limitations with recent innovations of 

UAVs are presented. Fundamental procedures of data 

collection, preprocessing and processing steps, and taxonomy of 

ML algorithms are delineated. Applications of image 

processing-based UAVs are explored for agricultural, 

environmental, remote sensing and mapping, and surveillance 

and law enforcement applications. Potential avenues and certain 

limitations of the implemented methodologies are also 

evaluated. Findings validate implementations of image 

processing techniques using ML and DL models, which result in 

reliable and quick results, efficiency, and automation, ultimately 

promoting UAV applications. These results contribute to the 

existing literature and significantly impact the scientific 

community.  

 
Index Terms—Unmanned Aerial Vehicles (UAVs); 

Monitoring; Image Processing; Artificial Intelligence (AI); 

Machine Learning (ML); Deep Learning (DL); Agriculture; 

Environment; Remote Sensing; Surveillance 

 

I. INTRODUCTION 

NMANNED aerial vehicles (UAVs), often acknowledged 

as drones, were recognized as potential armed tools with 

explosive air balloons in 1849 [1]. Gradually, UAVs gained 

popularity with innovations and rapid advancements, owing 

to their availability, cost-effectiveness, easy deployment, and 

high flexibility and mobility. Researchers propose using 

UAVs is more significant than traditional manual methods, 

aircraft, and advanced line robots for inspecting transmission 

lines and ensuring stable and safe power lines [2]. They 

observe manual methods are relatively less efficient because 

of negligence and personnel fatigue; however, line robots 

enhance automation but may have some technical issues like 

climbing, whereas aircraft allow speedy and comprehensive 

detection but are incapable of patrolling at different positions 

and angles.  

Some characteristics of humans, satellites, manned 

aircraft, and UAVs are displayed in Table I, indicating UAVs 

are more advantageous than other methods for imagery in 

various domains. Moreover, UAVs are budget-friendly and 

environmentally friendly, with no or less emissions [3]. Due 

to all these supremacies, a significant increase is noticed in 

their military applications such as aerial surveillance, coastal 

and border protection, search and rescue operations, etc., as 

well as in civilian domains covering forestry and precision 

agriculture, infrastructure inspection and surveillance, 

environmental monitoring, remote sensing and mapping, 

mining, disaster management, parcel delivery, and many 

others. 

 
TABLE I 

COMPARATIVE ANALYSIS OF EMPLOYING HUMAN, SATELLITE, MANNED 

AIRCRAFT, AND UAVS FOR CAPTURING IMAGES  

Specifications Human 

Labor 

Satellite Manned 

Aircraft 

UAVs 

Cost High Too High High Low 

Operating 

mode 

Manual Autonomous Pilot Remote 

control or 

autonomous 

Availability High Poor Moderate High 

Accessibility 

in 

unreachable 

areas 

Very 

Low 

High High High 

Resolution Up to 

meters 

Up to 

1kilometer 

Up to 

100meters 

Up to meters 

Flexibility Less Poor Poor High 

 

UAVs are classified into fixed-wing, rotary-wing, 

flapping-wing, and hybrid UAVs equipped with imaging and 

ranging sensors. The introduction of low-cost and miniature 

imaging sensors magnified the applications of UAVs. The 

extensively used imaging sensors are red-green-blue (RGB), 

multispectral, hyperspectral, thermal, fluorescence imaging, 

light detection, and ranging (LiDAR) [4]. However, payload 

limitations, handling issues, capturing images from a 

distance, camera geometry, lighting and weather effects, and 

other challenges may impact UAVs-captured images. These 

images may contain low quality, noise, blur effects, and other 

obstructions. Therefore, image processing techniques have 

paved the way for applications. 

Image processing techniques convert images into digital 

formats and conduct specific procedures to extract 

appropriate information [5]. However, the proliferation and 

diverse applications of UAVs cause some challenges. They 

collect enormous amounts of data, especially high-resolution 

imagery, and require efficient processing and analyzing 
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techniques and massive storage capacities. Data with high 

accuracy, reliability, and consistency is essential for various 

applications, such as precision agriculture, infrastructure 

inspection, and environmental monitoring. Real-time data 

analysis requires advanced computational and specialized 

algorithms. Implementations of image processing techniques 

for UAV imagery may be complex and require expertise [6]. 

We propose a multifaceted approach to address the 

mentioned challenges and leverage the potential of UAVs 

integrated with image processing techniques. The solution is 

comprised of user-friendly UAV platforms integrated with 

optimized image processing algorithms, artificial intelligence 

(AI) techniques, machine learning (ML), and deep learning 

(DL) models. User-friendly UAV platforms are designed to 

seamlessly integrate their control and image processing 

strengths [7]. Adopting a data collection standard procedure 

before deploying UAVs based on pre-flight preparation, 

efficient mission planning, and appropriate choice of UAV 

platform and sensor allows secure and thriving surveys. In 

addition, preprocessing procedures rectify the effects of 

atmosphere, lens distortion, terrain or platform, low contrast, 

noise, etc., and make them useful for further processing. 

Image preprocessing implements various steps of radiometric 

correction, geometric calibration, geo-referencing and 

orthorectification, image enhancement, and restoration. 

Finally, optimized image processing algorithms are applied 

to handle enormous datasets efficiently and enable real-time 

data analysis. Applications of AI techniques (ML and DL 

algorithms) automate data analysis and recognize patterns 

complementing decision-making processes [8]. 

Comprehensive research has been carried out to develop 

these improved techniques and algorithms for contributing 

valuable insights into various phases, such as image 

enhancement, image generation, image segmentation, object 

detection and recognition, and image classification [9]. 

Several studies validate the applications of k-nearest neighbor 

(KNN), support machine vector (SVM), and random forest 

(RF) for classifying UAV-captured images of different areas 

[10]. Alkhatib et al. [11] analyze DL, neural network (NN), 

and reinforcement learning (RL) for detecting, mapping, and 

forecasting forest fires. This brief review validates the 

integration of UAV-based aerial images, image 

preprocessing and processing techniques, and ML algorithms 

as potential tools. 

A. Related Work 

Numerous studies have explored remarkable results of 

deploying UAVs with image processing techniques for 

modern agriculture [12], agro-environmental monitoring 

[13], urban traffic [14], disaster management [15], different 

domains [16], and plant disease detection [17]. Olson and 

Anderson [12] comprehensively review classifications of 

UAV and remote sensors, image processing techniques, and 

their integration in modern agriculture. This review shows 

that image-processing-based UAVs are significant for 

phenotyping, assessments of yield, and biotic and abiotic 

stress. Eskandari et al. [13] conducted a meta-analysis of 

UAV-obtained images for monitoring the agro-

environmental domain. They validate the implementation of 

ML and statistical models for producing fast and reliable 

results in forestry, agriculture, and grassland mapping. 

Butilă et al. [14] executed a review of applications of 

UAVs to monitor and analyze urban traffic. The conclusions 

drawn after analysis state that advanced image processing 

techniques integrated into UAVs will boost their applications 

and social benefits, such as unpleasant collisions and 

congestion reduction in major urban centers. Nikhil et al. [15] 

analyze the contributions of UAVs furnished with cameras in 

disaster management. This review demonstrates that UAVs, 

image processing, and communication technologies allow 

emergency communication between rescue teams, victims, 

and survivors. Osco et al. [16] explore the integration of UAV 

remote sensing and DL techniques in diverse sub-fields of 

agriculture, environment, and urban areas. This study 

discusses the promising results and the potential of deep 

neural network (DNN) algorithms for processing images 

captured by UAVs. Ali et al. [17] extensively reviewed 

studies that employed image-processing techniques to 

analyze UAV-captured data. The main focus was on disease 

detection in Rosaceae fruits. It discussed diverse 

classifications of imaging sensors and UAVs, ML-based 

models, and recent technologies that address the challenges 

related to disease detection and UAV imagery. 

Analysis of these review articles illustrates most of them 

have discussed traditional models and algorithms, focusing 

on single domains, such as agriculture, urban planning, and 

disaster management, except a few. The novelty of this 

review lies in the UAV applications endowed with the 

advantages of ML and DL approaches for diverse fields. 

B. Motivation and Contributions 

Government, organizations, researchers, and academia are 

embracing advanced technology and systems for timely and 

efficient operations and enhanced production. The motivation 

for this review paper is to promote applications of UAVs 

integrated with the latest image processing techniques as 

potential tools and provide comprehensive knowledge into a 

single platform that will assist researchers, organizations, and 

the government. The leading contributions of this review 

paper are as follows, 

a. Presenting a comprehensive overview of the technical 

limitations, regularity issues, and ethical concerns of 

UAVs along with recent advancements encountering 

these challenges. 

b. Delineating comprehensive knowledge on the workflow 

of processing UAV imagery from data collection to 

processing with advanced AI models and recent versions 

of algorithms. 

c. Exploring the applications of image processing based 

UAVs for agricultural, environmental, remote sensing 

and mapping, and surveillance and law enforcement 

applications. 

d. Outlining the opportunities of the implemented 

methodologies from reputed research papers. 

e. Evaluating challenges that require future considerations. 

C. Paper Organization 

This review paper is structured into nine sections, as 

indicated in Fig. 1. Section II outlines the adopted 

methodology, and Section III provides insights into 

challenges and recent advances in UAV technology. Section 

IV explains the fundamental procedures of data collection 

and preprocessing steps for UAV imagery. Section V 
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expounds on various image processing techniques, and 

Section VI details AI algorithms and software required for 

processing UAV-generated images. Section VII delineates 

applications of image processing-based UAVs in agriculture, 

environmental monitoring, remote sensing and mapping, and 

surveillance and law enforcement applications. Section VIII 

compares and discusses the opportunities and limitations of 

the analyzed methodologies. Section IX finally summarizes 

the key points, concludes the paper, and defines research 

implications and future research directions. 

 

 
 

 
 

 
Fig. 1.  Paper structure.  

II. REVIEW METHODOLOGY 

A four-step methodology was developed similar to Ali et 

al. [17], which integrated UAV swarms, ML approaches, and 

image processing techniques for reviewing studies on 

monitoring and disease detection in Brassica plants. Initially, 

the objectives were planned. Then, a conceptual framework 

was developed by taking inspiration from Azoulay et al. [18], 

which fused UAVs, ML approaches, and swarms or flocks as 

variables of a conceptual framework to survey ML methods 

for UAV flock management. The developed framework for 

this review illustrates the relationship among the selected 

variables (UAVs, image processing techniques, AI 

techniques), maps out how integrating these variables results 

in various applications and draws coherent conclusions. Fig. 

2 presents the conceptual framework. 

In the next phase, we searched relevant and recent research 

published in the last six years to collect data. The articles were 

retrieved from ScienceDirect, IEEE, IAENG, and Google 

Scholar. Three classified keyword groups were used 

representing the sub-domains to extract relevant research 

articles. The first group contained keywords: "UAV, 

unmanned aerial vehicle, and drones." The second group is 

comprised of terms: "image processing, segmentation, 

classification." The third group had the terms: "artificial 

intelligence, machine learning, and deep learning." The 

Boolean operators "AND" and "OR" were used to create 

combinations of all the groups. Then, relevant articles 
screening was performed, curtailing the selection criteria by 

screening for duplicates and non-English articles, articles 

published before 2019, non-peer review journals, PhD 

dissertations, and books. 

 

 
Fig. 2.  Conceptual framework. 

 

Grey literature based on reports, website blogs, and 

newspaper articles, was also searched and included to 

increase the scope. In the fourth phase, the common topics 

were extracted, analyzed, and summarized from the 

accumulated data, and finally, synthesized and concluded this 

review in manuscript form. The step-wise methodology for 

conducting this review is illustrated in Fig. 3. All the authors 

of this review article searched and participated equally in the 

paper selection process. Disagreements were resolved by 

consensus. 
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Fig. 3.  Stepwise review methodology. 

 

III. CHALLENGES AND RECENT ADVANCES IN UAVS 

UAVs are controlled aerial vehicles capable of performing 

various missions without human intervention, even in 

hazardous areas. Electronic gadgets like sensors and 

microprocessors can remotely operate them. They use 

communication links to establish connectivity with ground 

control systems (GCS) or satellites. They are categorized 

depending on characteristics of their size, payload, battery 

life, coverage range, altitude, and flying principle into fixed, 

rotary-wing, flapping-wing, and hybrid UAVs [4], [19].  

Limitations of certain technical aspects, regularity issues, 

and ethical concerns hinder the applications of UAVs. 

Enhanced battery, proper navigation, obstacle avoidance, and 

low-cost sensors and image processors are challenging 

technical requirements of UAVs. Researchers have addressed 

these limitations to enhance the capabilities and applications 

of UAVs. They are adopting new battery chemistries, for 

instance, Li-ion and lithium-sulfur batteries, and have 

explained their higher energy density [20]. Moreover, 

Panasonic announced that its solid-state batteries will charge 

the batteries in a couple of minutes. These advancements will 

empower UAVs in lighter packages to extend their flight 

times and operational ranges [21]. 

Navigation technologies such as satellites, Doppler, etc., 

strongly affect flight controls. According to Mohsan et al. 

[22], advanced navigation systems employ intelligent 

systems, new inertial systems, and data fusion technology. 

Among these, intelligent navigation systems elevate the UAV 

technology and update their navigation system using 

information technology. On the other hand, a new inertial 

navigation system consumes less energy, modifying the flight 

pliability. Alternatively, navigation systems based on data 

fusion technology ensure expected flight by determining 

flight status. 

Sensors are also prerequisites of UAVs for obstacle 

avoidance, tracking, and localization. Some advanced sensors 

include radar, infrared, and ultrasonic sensors, allowing 

UAVs to avoid obstacles, prevent collisions, and enhance 

maneuverability [23]. Moreover, the global positioning 

system (GPS) is an extensively used onboard sensor for 

navigation, mapping, tracking, localization, and timing. 

Furthermore, researchers also focus on advanced LiDAR 

sensors for monitoring and accumulating altitude data and 

maintaining precise height above ground.  

Another issue is the generation of high-quality data, which 

is highly affected by technical limitations, sensor accuracy 

and resolution, and data processing capabilities [24]. Many 

sensors are expensive and have low resolution. Low-quality 

data acquired from these sensors results in inaccurate 

assessments, impacting decision-making and task outcomes. 

Imaging sensors are continuously advancing in affordability, 

reliability, ease of deployment, resolution, and accuracy. 

Maguire et al. [25] integrate UAV with FLIR Duo Pro R 

(FDPR), a thermzsnal camera, for capturing images of a 

soybean and maize field. This study demonstrates that the 

stability and accuracy of FDPR measurements are enhanced 

by increasing the warm-up, validating its usage for better 

decision-making and management of agricultural systems. 

Besides monitoring altitude, LiDAR accurately and precisely 

captures detailed features of the vegetable fields, enabling 

accurate fertilizer and pesticide applications [26]. 

 
TABLE II 

CONTRIBUTIONS OF ADVANCEMENTS IN UAV TECHNOLOGY- SUMMARY 

Advancements Contributions 

Li-ion battery Provides the highest power, energy density, and 

charge rate, enhancing the battery 

Lithium-Sulphur 

battery 

Provides higher energy density, extending the 

battery 

Solid-state battery Extends flight times and operational ranges 

Intelligent 

navigation system 

Enhances the UAV technology and updates the 

navigation system 

New inertial 

navigation system 

Simplifies the weight and volume and consumes 

less energy for flight flexibility modification 

Navigation system 

with data fusion 

Determines the flight status and ensures a 

regular flight 

Radar, infrared, and 

ultrasonic sensors 

Avoid obstacles, prevent collisions, and 

enhance maneuverability 

GPS sensor Small-sized, budget-friendly, consumes less 

power, and is effective for navigation, mapping, 

tracking, localization, and time 

LiDAR sensor Has high spatial resolution plus accuracy and 

performs well for near-field obstacle tracking 

and precise altitude maintenance 

Thermal infrared 

camera 

Smaller-sized, easy to deploy, consumes less 

power, and works in the dark condition 

Fluorescence 

imaging sensor 

Has optimum sensitivity with accuracy and 

responds rapidly 

Software-based data 

analysis 

Processes without limitations, highly 

customizable, and bears on a one-time cost 

Cloud computing-

based data 

processing 

Bears low initial cost, enables in-field 

processing, quickly processes data, and does not 

require a high-performance computer or 

additional software 

DL model-based 

image processing 

Reduces training time and accelerates 

processing speed and accuracy 

CAAC Restricts flying in densely populated and 

sensitive areas 

Anti-GPS-spoofing 

methods, data 

attestation 

approaches, ML-

based intrusion 

detection systems, 

firewall 

implementations, 

etc. 

Handles vulnerabilities, attacks, and threats to 

security and privacy 

  

UAVs generate large datasets while capturing high-

resolution data such as images and videos that require 

processing and analysis [27]. Researchers evaluate that data 

processing and analysis is complex and time-consuming, 

affecting the accuracy of the generated data and the efficiency 

of the monitoring and detection processes. They implement 

ML and DL models to process captured images. Li et al. [28] 

Step 1
• Planning 

objectives

Step 2
• Developing 

conceptual 
framework

Step 3
• Aggregating 

data

Step 4

• Extracting, 
analyzing, 
and 
synthesizing

data
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propose and provide evidence of the efficacy of the Ric-You 

Only Look Once (Ric-YOLOv5) algorithm to process remote 

sensing images. Another research reduces training time and 

enhances detection speed and accuracy by incorporating 

transfer learning (TL) in Yolov6 [29].  

Subsequently, regularity issues and ethical concerns also 

jeopardize UAV operations. Deploying UAVs is subject to 

laws and regulations in every country. Registration, 

certification, restrictions in certain areas, as well as data 

security and privacy, are the main requirements of regularity 

bodies. In this context, the Civil Aviation Administration of 

China (CAAC) restricts drones from flying in densely 

populated and sensitive areas like airports, police 

checkpoints, no-fly zones, etc. [30]. For storing data, off-the-

shelf software and onsite personal computers are used. 

However, researchers are focusing on infield processing with 
cloud computing. Privacy and security issues of 

vulnerabilities, attacks, and threats for UAVs are extensively 

surveyed in [31]. Anti-GPS-spoofing methods, collaborative 

and software-based data attestation approaches, ML-based 

intrusion detection systems, firewall implementations, etc., 

are the discussed innovative mitigation techniques and 

countermeasures. Table II summarizes the contributions of 

recent advancements in UAV technology, addressing 

challenges. 

IV. FUNDAMENTAL PROCEDURES OF DATA COLLECTION 

AND IMAGE PREPROCESSING 

A. Data Collection Protocol 

Data collection with UAVs necessitates extensive 

planning before the flight. Therefore, a data collection 

protocol with two components of UAV operation and data 

capture is a fundamental procedure for carrying out research 

on UAV applications. According to this protocol, specific 

steps must be followed to capture images with safe flights and 

surveys. Eskandari et al. [13] described these essential phases 

as pre-flight preparation, mission planning, and selection of 

UAV platforms and sensors. After these, UAVs are deployed 
to collect data. 

1) Pre-Flight Preparation 

Pre-flight preparation includes undertaking the 

regulations set by the government related to UAV operations. 

Such as obtaining a remote pilot license and acquiring the 

landowner’s permission. Data collection concerning study 

area features and weather conditions is also a prerequisite. 

Data collection must meet privacy and ethical concerns [32]. 
Relatively constant environmental conditions of wind speed, 

sun radiance, and angle must be monitored for deploying the 

UAV to the field site. UAVs fly smoothly and create less 

impact on the captured data, usually in the morning and 

afternoon, as the wind speed is minimal during these 

intervals. Moreover, the clear and cloudless conditions are 

considered ideal weather. This step ensures data collection 
without mistakes.  

2) Mission Planning 

The next step is to plan the mission for safe flight 

operations by considering flight altitude, range, direction, 

path, camera’s interior orientation, etc. Agurob et al. [26] and 

Ahmad et al. [33] operated a mission planner software for 

planning navigation waypoints of a UAV and a personal 

remote sensing system (PRSS) comprised of a quadrotor, 

laptop, and smartphone. In addition, flying at low altitudes 

reduces the field of view, enhances spatial resolution, and 

causes no feature delineation. However, many flight missions 

are essential to cover the entire study area if UAVs fly at low 

heights. Besides flight height, focal length, and sensor pixel 
size are to be regarded in camera settings, as their 

combination influences the ground sampling distance. 

Moreover, firmware on UAVs must be updated, embedded 

equipment must be prepared, adequate battery levels must be 

charged, and controls must be verified to operate correctly. 

Amraoui et al. [34] used DroneDeploy software to initially 

set up mission parameters of flight altitude, number of 
batteries, camera angle, etc., for optimal mission control. 

3) UAV Platform Selection 

The third step is to select the most suitable UAV platform 

according to the mission requirement. UAVs are selected on 

different criteria for diverse applications. Large UAVs are 

extensively deployed for surveillance, and nano or small 

platforms are significant for commercial applications. For 

example, Munawar et al. [35] selected River-map, a small 

UAV, for flood detection. Fixed-wing UAVs are high-

altitude and wide-range drones capable of covering a larger 
field of view. Conversely, rotary-wing UAVs are low-altitude 

and low-medium-range UAVs, competent for capturing 

multi-angular data. Park et al. [36] deployed DJI Mavic Pro, 

a rotary-wing UAV, for acquiring multi-angular data on 

highways. Rotary-wing UAVs can be either single-rotor 

UAVs or multi-rotors, such as tri-copters, quadcopters, 

hexacopters, and octa-copters. Agurob et al. [26] utilized a 

hexacopter for spraying fields. Amraoui et al. [34] and Zhou 

et al. [37] used DJI Phantom 4 Pro for capturing agricultural 

images, and Dabetwao et al. [38] employed DJI Matrice 200 

V2 for clicking building images. Reedha et al. [39] sent 

Starfury, a Pilgrim UAV, for the survey fields. On the other 
hand, Flapping-wing UAVs adopt bird-flying mechanics, 

providing excellent flight efficiency and wind tolerance. 

Hybrid UAVs, commonly referred to as vertical take-off and 

landing (VTOL), possess the energy-saving flying capability 

of fixed-wing UAVs and easy control of rotary-wing UAVs 
for take-off and landing.  

4) Camera or Sensor Preference 

UAV-equipped cameras encompass maximum sampling 

points, capture images with high spatial and temporal 

resolution, and generate images in digital number form. 

Imaging sensors involve ordinary calibrations and can be 

selected on their characteristics, benefiting specific 

applications. For instance, low-cost RGB is extensively used 

in remote sensing to capture visible light and collect multiple 

valuable data. On the other hand, spectral cameras capture 

visible, color infrared (CIR), near-infrared (NIR), red edge 

(RE), as well as short-wave infrared segments of the 
electromagnetic spectrum, which are invisible to the naked 

eye. CIR renders the dominant reflection wavelength in false 

colors. Fluorescence imaging sensors possess a laser light 

source, identifying changes in any activities. Thermal 

cameras capture the infrared segment of the electromagnetic 

spectrum. Some studies have deployed single sensors like 

RGB [34], [37], [40], [41], IR [38], and multispectral [42]. 

Others have employed combined sensors for high-quality 

images, such as multispectral with thermal [43] and RGB 

with multispectral [44]. Fig. 4 displays different UAV 

platforms and their carried imaging sensors, including RGB, 
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multispectral, hyperspectral, fluorescence imaging, thermal 
infrared, and LiDAR. 

 

 
Fig. 4.  Different UAV platforms and imaging sensors/ cameras: (a) Fixed-

wing UAV, (b) rotary-wing UAV, (c) VTOL, (d) RGB camera, (e) 

Multispectral camera, (f) Hyperspectral camera, (g) Thermal camera, (h) 

Fluorescence imaging sensor, (i) LiDAR. 

 

After these four crucial steps, UAVs proceed to the image 
acquisition mission. 

B. Image Preprocessing Techniques 

Images captured using UAVs are vulnerable to corruption, 

noise, inconsistency, and missing data. Poor raw data may 

lead to false predictions. Therefore, pre-processing activities 

are required to improve the dataset’s quality by removing 
distortions, noise, and other effects and assuring expediency 

for further processing. This section delves into preprocessing 

procedures of radiometric correction, geometric corrections, 

geo-referencing and orthorectification, image enhancement, 
and restoration. 

1) Radiometric Correction 

Earth’s surface reflects electromagnetic energy, which 

interferes with atmospheric surface activities. Low-altitude 

UAVs capture images with significant radiometric error. 

Moreover, optical sensor-induced distortions and lighting 

variation add more error. Radiometric calibration refers to 

standardizing the affinity between incoming radiation and 

output generated by sensors at different locations and times. 

Radiometric calibration is employed by utilizing spectral 

targets of comprehended reflectance in the field to adjust 

color, eliminate noise, and remove blur. If radiometric issues 

of tangential and radial distortions or vignetting effects are 
not addressed, then errors will result in feature extraction and 

classification. Bartalan et al. [43] involve radiometric 

calibration to derive absolute reflectance values from the raw 

multispectral bands. Jiang et al. [45] applied a concurrent 

satellite imagery-based correction method to overcome the 

radiometric inconsistency in multiflight UAV images. This 

method followed cross-sensor spectral fitting with fine-

resolution spectral calibration to correct images, yielding 

better consistency, predicting results with the highest 

accuracy, and reducing spectral mismatch across multiple 
sensors. 

2) Geometric calibration 

Geometric calibration corrects and compensates various 

intrinsic parameters, for example focal length, and lens 

distortions (such as barrel or pincushion) of internal optical 

sensors or cameras. These distortions are influenced by the 

sensor position, shooting angle, camera lens, or motion and 

may alter the geometry of the captured object. Liebold et al. 

[46] introduce a bi-radial model to address unusual lens 

distortion patterns of the DJI Mavic Pro camera, providing 

exceptionally adequate precision values with no systematic 

effects and evident improvement at the center of the image. 
Furthermore, by applying geometric calibrations, UAV 

images represent accurate angles, shapes, and distances 

corresponding to the real world. Banerjee et al. [47] first 

apply radiometric calibration addressing illumination issues 

then, geometric correction on hyperspectral images of swamp 

vegetation, improving reflectance spectral quality and 
accuracy. 

3) Geo-referencing and Orthorectification 

Geo-referencing and orthorectification align UAV 

images. Geo-referencing uses ground control points (GCPs) 

and establishes a relationship between UAV images and 

Earth’s coordinate system, aligning with known geographic 

coordinates. On the other hand, orthorectification utilizes 

camera geometry and digital elevation models (DEMs) to 

remove terrain relief and camera perspective distortions, 

ensuring uniform scale and spatial measurements. Islam et al. 

[10] geo-registered the UAV images using GCPs, measured 
by differential GPS [DGPS], geometrically adjusted, and 

converted them into orthoimage, accurately representing the 

earth’s surface. Brunier et al. [44] first corrected the UAV 

images through radiometric calibration and then employed a 

similar procedure integrating DGPS with continuous real-

time kinematic (RTK). Other research [40] and [43] adopted 

RTK with a global navigation satellite system (GNSS) for 

generating the spatial coordinates of GCPs. However, RTK-

GNSS increases positional accuracy but enhances the UAV 

cost. On the other hand, orthorectification is used to remove 

the distortion caused by tilts and terrain effects, creating a 

planimetrically correct image [35]. However, the corrected 
image fails to specify the floodwater depth and requires DEM 

or LiDAR application. The classification accuracy was much 

higher after geo-referencing and orthorectification than the 
standard ones.  

4) Image Enhancement  

The acquired image is manipulated, improving its quality 

in the preprocessing step called image enhancement. It 

highlights significant or hidden details by automatically 

adjusting the brightness and contrast of an image using image 

editing software. Enhancing the brightness or contrast makes 

the images easier to see. This phase has crucial applications 

in remote sensing, vision-based tasks, and surveillance. Wang 

et al. [48] applied an image enhancement approach to 

improve the low illumination quality of images generated for 

reliable pedestrian detection. In this research, a hyperbolic 

tangent curve maps the brightness of the block matching 

using (1), and three-dimensional (3D) filtering approaches 

are used for denoising and sharpening images that enhance 

detection accuracies up to 0.907 and validate it more suitable. 

Fig.5 presents low-illumination images, and the results 

obtained after applying the suggested method. Visualizing 

images is difficult in Fig. 5 (a), whereas Fig. 5 (b) provides 

smoother and sufficient enhancement with less noise. 

𝑇𝑎𝑛ℎ (𝜃) =
1−exp(−2𝜃)

1+exp(−2θ)
      (1) 

Here, the pixel values I (i, j) of the RGB image are assumed 

to be [R(i, j), G(i, j), B(i, j)]. θ=kI (i,j) with a scalar factor, k, 

and its value is defined according to the image brightness. 
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Fig. 5.  Images captured under different illumination conditions and results 

after enhanced illumination: (a) Input images, (b) Results obtained by the 

proposed method. 

 

5) Image Restoration 

The step that improves the appearance of an image is image 

restoration. It is a crucial step to prevent the degraded image 

from being assigned to a probabilistic or mathematical model. 

Researchers put forward diverse algorithms for image 

restoration based on median filtering, histogram equalization, 

Retinex methods, DL, and hybrid approaches. Ahmad et al. 

[33] applied variable sizing median filtering to restore UAV 

remote sensing images by removing noise effects. Li et al. 

[49] used histogram equalization to repair the low brightness 

and motion deblurring technology for jitter interference. The 

restored images increased the training accuracy and reduced 

time but affected the region extraction, positioning, and 

recognition accuracy. Conversely, DL methods possess 

pattern recognition capabilities and are most suitable for 

revealing massive chunks of missing information and 

removing noise or blur from images. Qiao et al. [50] designed 

a U-Net architecture with a feature loss-enhanced generative 

adversarial network (GAN) for restoring smoke or wildfire 

images. The obtained results are sharper, as illustrated in Fig. 

6. Moreover, the proposed model entirely removes the 

number. This results in getting the prime features in human 

concepts showing good performance. 

 

 
Fig. 6. Results of a loss U-net enhanced GAN. Crapped, predicted, and 

targeted images. 

 

V. IMAGE PROCESSING TECHNIQUES FOR UAV IMAGERY 

Image processing is a method to analyze, improve the 

quality, and remove undesired objects and backgrounds from 

an image. Sometimes, it constructs new images from scratch, 

incorporating various phases, from image acquisition to 

image classification [51]. This sub-section presents insights 

into various image processing steps, including image fusion, 

image segmentation, object detection and recognition, feature 

extraction, image classification, and accuracy assessment and 

validation. 

A. Image Fusion 

Image fusion is an optional step in pre-processing but is 

nevertheless crucial in image processing. In certain cases, 

radiometric correction is inadequate for geology and 

topography research or soil analysis, and then, auxiliary, 

ancillary, or multi-source data is incorporated in the UAV-

captured images, supplying additional attribute information 

and enhancing the image quality. Coupling UAV-spectral 

data with ancillary or auxiliary data reduces UAV sampling 
intensity. Efficient sampling strategies increase further 

details in ancillary or auxiliary datasets under restricted field 

measurements, creating a balance between data acquisition 

and costs. Liu et al. [52] use UAV-LiDAR samples and 

multispectral GF-6 satellite images to conduct extrapolation 

assessment for structural parameters (height, stem density, 

etc.) in Chinese forests. Coupling UAV-captured images with 

auxiliary datasets improves the prediction performance. 

Biney et al. [53] estimate and map soil organic content in 

erosion-prone fields, integrating UAV images with auxiliary 

datasets (indices and terrain attributes). Findings reveal that 

all the datasets detect high and low soil estimation. However, 
merging these three datasets estimates organic content with 

high accuracy and the least prediction error. Li et al. [54] fuse 

infrared and visible light images to improve visibility, 

ultimately improving target detection ability for surveillance 
missions. 

B. Image Segmentation 

This step partitions an image into multiple regions and 

changes its representation into a more simple, meaningful, 

and easily acceptable form. Segmentation allows focusing on 

significant parts, resulting in improved automatic system 

performance. The extensively used approach for image 

segmentation is thresholding, which transforms an image into 

a binary image by representing objects with distinct white and 

black regions. Park et al. [36] implement a mask region-based 

convolutional neural network (Mask R-CNN) to segment 

vehicles and mask those areas for generating vehicle-free 

ortho mosaic of highways. It effectively eliminates unwanted 

vehicles from UAV-captured images. According to Tetila et 

al. [55], the simple linear iterative clustering algorithm 

(SLIC) superpixel algorithm efficiently identifies and 

segments individual pests in soybean leaves, as shown in Fig. 

7. 
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Fig. 7.  SLIC-based image segmentation of soybean leaves. 

 

C. Object Detection and Recognition 

After the image segmentation, this step assigns a label to 

each object. These labels assist users in understanding what 

object has been identified. This step is widely used to process 

images acquired for security and surveillance purposes. CNN 

outputs are bounding boxes depicting the locations and class 

labels for objects. Mittal et al. [56] conducted a survey 

evaluating one-stage and two-stage DL-based algorithms 

contributions for object detection in images captured by low-

altitude UAVs. This review identifies that two-stage detectors 

achieve significant results at a slower speed, having 

advantages over one-stage detectors. Liu et al. [57] utilize 

three models-linear regression (LR) detection model, the 

Harris corner detection (HCD) model, and the DL model 

(faster R-CNN) for maize seedling detection and recognition. 

These methods identify the maize seedlings rapidly with an 

accuracy of 99.9%, 99.78%, and 98.45%. Results indicate the 

supremacy of the LR algorithm and its specific form, Ic, is 

given in (2), 

   𝐼𝑛 = 𝑎 + 𝑏 ∙ 𝐼𝑐 + 𝑐 ∙ 𝐼𝑠 + 𝑑 ∙ 𝐼𝑒                 (2)

      

 
Fig. 8.  Tea bud detection by original YOLO and ST-YOLO. 

 

Here, Ic, Is, and Ie denote the percentage of three 

morphological parameters-the coverage image feature 

percentage, skeleton image feature, and edge image feature. 

Similarly, Wen et al. [58] implement an original YOLO 

model and a Swin transformer-integrated YOLO (ST-YOLO) 

model for identifying tea buds in complex natural 

environments. The original YOLO unnotices two target tea 

buds and imprecisely detects shadow as a target, whereas the 

ST-YOLO detects significantly identifies all the buds 

flawlessly, as displayed in Fig. 8. 

D. Feature Extraction 

The step that extracts features based on color, shape, and 

texture from an area of interest in an image is feature 

extraction. The extracted features are valuable for the 

interpretations of the sample image. Histogram-based 

methods, local binary pattern (LBP), color co-occurrence 

method, gray-level co-occurrence matrix (GLCM), scale-

invariant feature transform (SIFT), and spatial grey-level 

dependence matrix are commonly used methods. CNN 

architectures and ML techniques also give optimal feature 

extraction outcomes. Tetila et al. [55] propose Resnet-50, 

Xception, VGG-16, VGG-19, and Inception-v3 for feature 

extraction in soybean images. Results show that the applied 

DL models outperform traditional methods, using random 

forest (SURF) with the bag-of-visual words approach and 

SIFT. Li et al. [49] implement an edge-grabbing point 

positioning method for extracting disease contour, leaf 

contour, and distribution classification features. The centroid 

extraction formula, given in (3) and (4), is adopted to obtain 

blade edge contour. Fig. 9 shows an original image and 

feature recognition image, depicting the leaf profile with a 

green edge, the first disease edge with a red edge, the second 

disease outline with an orange edge, and the yellow part with 

a pink edge. 

  𝑥𝑜 =
∫ ∫ 𝑥∙𝑓(𝑥,𝑦) 𝑑𝑥 𝑑𝑦

∞
−∞

∞
−∞

∫ ∫ 𝑓(𝑥,𝑦) 𝑑𝑥 𝑑𝑦
∞

−∞
∞

−∞

                         

(3)    𝑦𝑜 =
∫ ∫ 𝑦∙𝑓(𝑥,𝑦) 𝑑𝑥 𝑑𝑦

∞
−∞

∞
−∞

∫ ∫ 𝑓(𝑥,𝑦) 𝑑𝑥 𝑑𝑦
∞

−∞
∞

−∞

                        

(4) 

Here, f(x,y) is the outermost contour image, (xo, yo) denotes 

the center of mass coordinates. First, a coordinate system is 

established using the center of mass, and then, the original 

coordinates are mapped to it. 

 

 
Fig. 9.  Image of diseased grape before and after feature extraction. 

 

E. Image Classification  

In this step, the class of an object to which it belongs is 

identified. The images are classified into different categories 

that supply efficient information to the researchers that they 

can use to enhance their decision-making abilities. ML and 

DL algorithms are mostly employed for remarkable results. 

Reedha et al. [39] apply the visual transformers (ViT) B-16 

model to classify and identify weeds in parsley, beet, and 

spinach images. Findings show that ViT B-16 has more 

potential than ResNet and EfficientNet. Munawar et al. [35] 

employ a Haar cascade classifier for identifying buildings and 
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roads and a CNN-based DNN for predicting flooded and non-

flooded areas with 91% overall accuracy (OA). Researchers 

view a 2D function xa,b of an image and implement a 2D 

convolution function, ya,b, using (5) to determine the output 

image ca,b. Furthermore, the convolutional layer output Oc is 

yielded with a feature map using (6). 

  𝑐𝑎,𝑏 = 𝑥𝑎,𝑏 ∗ 𝑦𝑎,𝑏                               (5)                       

 𝑂𝑐 = ∑ 𝑤𝑖𝑗 ∗ 𝑦𝑖 + 𝑣𝑗
𝑛
𝑖=1                           (6) 

Here, yi is the sum of all neurons’ input values, wij is their 

weights, whereas vj denotes a bias value. Fig. 10 presents the 

classification results, detecting and mapping all the 

significant flooded regions with red highlights. 

 

 
Fig. 10.  Classification output of flooded regions. 

F. Accuracy Assessment and Validation 

This step utilizes ground truth, reference, or validation 

datasets to compare the accuracy of various image processing 

phases, such as classification, object detection, etc. From this 

perspective, samples are collected for training and testing 

data through various sample selection procedures or cross-

validation tuning methods. Bartalan et al. [43] split the 
dataset into 70% training dataset for model building and used 

cross-validation for accuracy control and 30% testing dataset 

for predictions on reference data. Reference [5] split the 

dataset into training 80% and validating/testing 20%, 

ensuring the output reliability and validating the YOLO 
algorithms. 

For evaluating the classification accuracy of models, 

various assessment indices are exploited from a confusion 

matrix (NxN), where N is the number of predicted classes or 

categories. A confusion matrix holds the counts of a true 

negative (TN), true positive (TP), false negative (FN), and 

false positive (FP) [59]. Besides evaluation, these metrics are 

applied to compare and assess the model performance and 

quality. Some classification indices are recall (R), precision 

(P), average precision (AP), mean average precision (mAP), 

F1-score, and overall accuracy (OA). R and P are also called 

producer’s and user’s accuracy, respectively. All these indices 

are for discrete dependent variables representing the category 

or class. Devarajan et al. [60] evaluates that the proposed 

two-stage deep RL model outperforms traditional deep Q-

networks-based intensive learning methods owing to their 

obtained P, R, OA, and F-measure. Conversely, for accuracy 

assessment of regression tasks and measuring error in their 

predicting outputs, mean absolute error (MAE), mean bias 

error (MBE), mean square error (MSE), coefficient of 

determination (R2), and root mean square error (RMSE) are 

used [61]. All these indices are for discrete dependent 

variables representing the category or class. Equation and 

interpretation of the extensively used evaluation indices both 

for classification and regression tasks are listed in Table III. 

 
TABLE III 

 DESCRIPTION OF EVALUATION METRICS 

Performance 

Metrics 

Formulae Interpretation 

Recall (R) 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

R is the algorithm’s ability to 

calculate true positive cases 

Precision (P) 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

P determines the positive 

predicted rate 

Average 

precision (AP) 
∑

𝑃

𝑛
𝑛

 
AP sums up the P-R curve into 

one value denoting the 

average of all precisions 

Mean average 

precision 

(mAP) 

∑
𝐴𝑃

𝑁

𝑁

𝑖=1
 

mAP is the mean of all AP 

values for all categories 

F1-score 2 × 𝑅 × 𝑃

𝑅 + 𝑃
 

F1-score gives the harmonic 

mean of recall and precision 

Overall 

accuracy (OA) 

𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

OA is the ratio of correct 

positive and negative 

predictions to the total sample 

Root mean 

square error 

(RMSE) 
√

1

𝑛
∑ (𝑦𝑖 − 𝑥𝑖)

2
𝑛

𝑖=1
 

RMSE sheds knowledge on 

the prediction model’s short-

term performance 

Coefficient of 

determination 

(R2) 

1 −
∑(𝑥𝑖 − 𝑦𝑖)2

∑(𝑥𝑖 − 𝑥𝑖̅)
2
 

R2 examines the suitability of 

a model with the predicted 

values 

Mean absolute 

error (MAE) 

1

𝑛
∑ |𝑦𝑖 − 𝑥𝑖|

𝑛

𝑖=1
 

MAE determines the mean 

absolute difference between 

the predicted and measured 

values 

Mean bias 

error (MBE) 

1

𝑛
∑ (𝑦𝑖 − 𝑥𝑖)

𝑛

𝑖=1
 

MBE gives details of the 

prediction model’s long-term 

performance 

Mean square 

error (MSE) 

1

𝑛
∑ (𝑦𝑖 − 𝑥𝑖)

2
𝑛

𝑖=1
 

MSE is the mean squared 

difference of the predicted and 

measured values 

Here, n denotes the total data number or observations, N represents the 

number of categories, TP is the true positive instances, TN denotes true 

negative cases, FN stands for negative detections, and FP symbolizes false 

positive instances. yi, xi, and 𝑥𝑖̅ represent predicted, measured, and mean of 

measured values at ith observation. 

VI. ARTIFICIAL INTELLIGENCE TECHNIQUES AND 

SOFTWARE FOR IMAGE PROCESSING 

A. Artificial Intelligence Techniques 

AI algorithms instruct computers how to learn to operate 

unattended and mimic human intelligence [62]. ML is a 

subset of AI that designates a turning point in AI development 

and allows machines to learn independently through ingesting 

enormous data and identifying patterns. Thus, these 

algorithms enable the processes to be fully visible and address 

many complex scenarios. These algorithms are classified into 

traditional learning, RL, DL, and NN [63]. Fig. 11 displays 

the taxonomy of ML algorithms.  

1) Traditional Learning Algorithms 

Traditional learning algorithms are categorized into 

clustering and association algorithms, classification and 

regression algorithms, and dimensionality reduction [64]. 

Clustering and association algorithms constitute k-means, 

fuzzy c-means, frequent pattern (FP) growth, apriori, etc. 

Classification and regression algorithms are linear regression, 

logistic regression, SVMs, decision trees (DT), RF, NN, 

KNN, Naive Bayes, etc. Eskandari et al. [13] explore the 

advantages of using regression and classification algorithms 
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for UAV imagery. This study evaluates that 62% of the 

studies used regression algorithms, whereas 38% applied 

classification algorithms. On the other hand, dimensionality 

reduction algorithms include principal component analysis 

(PCA) and linear discriminant analysis (LDA).  

2) Reinforcement Learning Algorithms 

RL algorithms include Q-learning, deep Q-network 

(DQN), Monte Carlo tree search, and state–action–reward–

state–action (SARSA) [65]. Devarajan et al. [60] implement 

two-stage deep RL models for smart agricultural systems. 

ACO is integrated with DQN to offload various tasks to fog, 

edge, or cloud networking devices in the first stage. Then, a 

deep RL-based DQN model is implemented in the second 

stage for agricultural activity prediction and monitoring. The 

proposed model outperforms in terms of planning success 

rate, path accuracy, and convergence speed. Nguyen et al. 

[66] optimize environmental monitoring using a UAV group 

and exploiting RL with a deep deterministic policy gradient 

(DDPG) algorithm. Findings validate the proposed algorithm 

is effective in sensing data and monitoring. 

 

 
Fig. 11.  Taxonomy of machine learning algorithms. 

 

3) Deep Learning and Neural Networks 

DL is a subset of ML and labels a milestone in the 

evolution of AI techniques. It involves neural networks and 

employs layers of information processing to realize massive, 

unstructured, and interconnected data. It produces better 

results than ML, especially in prediction, object detection, 

and classification tasks [67]. Zualkernan et al. [68] evaluate 

the potential applications of ML and DL approaches in image 

processing for precision agriculture. Findings reveal 

traditional ML and recent DL techniques are optimal choices 

for simple classification, segmentation, and detection 

The group of DL and NN are composed of multilayer 

perceptrons (MLPs), convolutional neural networks (CNNs), 

and generative models like recurrent neural networks 

(RNNs). Other models include YOLO, U-Net, autoencoders, 

ViT, and GANs [69]. Ding and Wang [70] analyze that 

increasing the depth of CNNs affects their performance 

efficiency and suggest the integration of triplet attention 

models for improving mAP in object detection and accuracy 

in image classification. Wen et al. [58] examine incorporating 

a Swin transformer into the YOLO (ST-YOLO) model for tea 

bud detection, significantly surpassing original YOLO 

models with the highest AP value and F1 score. 

B. Image and Data Processing Software and Tools 

Many vendors provide high-cost software and low-cost, 

easy tools over the cloud for image processing. The cloud 

services have limited upload and download bandwidth, 

storage capacity, and output. The UAV-captured images are 
downloaded to computers for further processing. Reference 

[12] delineates the pros and cons of software for on-site 

processing and cloud computing for in-field processing of 

UAV imagery. According to this study, Agisoft Metashape, 

Pix4D Mapper is highly customizable and performs 

processing with no limitations but assumes more time and 

requires a high-performance PC and additional software for 

analysis. Conversely, cloud computing, Drone Deploy, UAV-

IQ, has a simplified user interface, consumes less time, and 

requires no high-performance PC or additional software, but 

has limited processing options, other limitations, and recurs 

monthly or yearly charges. Reference [8] suggests DJI Terra, 
Pix4D, DroneDeploy, Agisoft Metashape, etc., as off-the-

shelf software, whereas OpenDroneMap is open-access 

software for pre-processing UAV images. Similarly, Islam et 

al. [10] prefer Pix4D Mapping software for offline image 

processing. However, focusing only on inputs and software 

results may give rise to uncertain resulting datasets. Thus, 

users must be aware of any change in data collecting method 
or processing parameter affecting the data accuracy. 

AI algorithms can be applied using commercial software 

or open-source software. Reference [8] prefer commercial 

software, like ENVI and eCognition, for object-based image 

analysis and Python, MATLAB, and Caret Package in 

RStudio software for regression algorithms. Python and R are 

open-source, freely available, and may be modified and 

redistributed. Alkhatib et al. [11] propose Python or JavaSript 

Application Program Interfaces (APIs) for enabling data 

processing and visualization. SAS and MATLAB are created 

and maintained by companies. Researchers use MATLAB to 

simulate ML algorithms in [10] and deep transfer learning 

models in [51]. Another reference [5] uses Ultralytics Hubto, 

a groundbreaking platform to deploy YOLOv5, whereas [40] 

implements YOLOv5 using PyTorch. According to reference 

[8], an unprecedented volume, velocity, and variety of data 

can be analyzed by AI algorithms with cloud computing, 

parallel computing, and edge intelligence. Graphics 

Processing Units (GPU), Central Processing Unit (CPU), 

Application-specific integrated circuits (ASICs), and Field-

programmable gate array (FPGA) are some popular edge 

intelligence processors. Bouguettaya et al. [6] analyze 

various studies implementing YOLOv4 and YOLOv5 on 

Tesla V100 GPU, Tesla P100 GPU, and GitHub (open 

source) for object-based crop classification. 

VII. APPLICATIONS OF IMAGE PROCESSING BASED-UAVS IN 

VARIOUS DOMAINS 

A. Agriculture 

UAVs are widely employed for various agricultural tasks, 

such as weed detection, fertilizer spraying, soil water content 

predictions, growth status monitoring, and yield estimation, 

to enhance precision and ensure food security. Detecting 

maturity stages is a crucial task. Zhou et al. [37] suggest 

YOLOv3 to classify strawberry RGB images obtained by 

UAV into immature fruit, flower, and mature fruit classes and 

digital images captured by near-ground camera into seven 
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classes. The images are obtained quickly by UAV, and 

YOLOv3 detects and classifies the images three times faster 

for the dataset obtained at 2m height. Weed causes yield 

damage, affecting the nation’s economy. Ajayi et al. [40] 

apply YOLOv5 for weed and crop classification in UAV–

captured RGB images of farmland in Minna, Nigeria. 

YOLOv5 identifies weeds and classifies images into banana 

trees, sugarcane, pepper, spinach, and weeds. Li et al. [42] 

deploy multiple UAVs of DJI Phantom 4 and XAG P20s are 

deployed with multispectral sensors for spraying pesticides. 

A genetic algorithm (GA) is applied to find the appropriate 

segmentation points, fully consider different pesticide needs 

in each sub-area, and take 90.6% of operation time. 

Bertalan et al. [43] obtain thermal and multispectral images 

for soil water content predictions. Four ML algorithms-elastic 

net (ENR), RF, robust linear model (RLM), and general linear 

model (GLM) are applied. Results indicate that the 

multispectral images give better input, and RF and ENR 

perform better for these images, whereas thermal data is 

acceptable with only RF. Merging the multiple survey data 

improves the model fitting. Estimating yield at ripening 

stages while monitoring the spatial variability encloses more 

significance. Peng et al. [71] propose mask R-CNN to 

segment ear instances and to extract ear phenotypic features 

such as ear size, ear count, and ear anomaly index of wheat. 

ML methods, random forest regression (RFR), support vector 

regression (SVR), and multiple linear regression (MLR) are 

employed for estimating wheat yield. RFR estimates the most 

accurately. 

B. Environmental Monitoring   

UAV imagery has the potential for environmental 

monitoring from the context of monitoring and managing 

forestry, wildlife, and natural disasters. Researchers have 

performed various challenging tasks in these domains while 

using ML and DL algorithms for image processing. For 

instance, forests have diverse kinds of trees, and monitoring 

and identifying tree species are crucial for commercial 

purposes. Amazonian palm trees are mapped at the individual 

tree crown (ITC) level and classified into three species- 

Attalea butyracea (AB), Europe precatoria (EP), Iriartea 

deltoidea (ID) [41]. Researchers incorporate ResNet-18 into 

the DeepLabv3+, identify more ITCs, and map the Euterpe 

precatoria species with the highest accuracy.  

Wildlife monitoring requires effective management, 

regular detection, and population counting. Corcoran et al. 

[72] deploy UAVs assembled with IR sensors for automatic 

koala detection in Eucalypt forests. Thermal images 

distinguish animal heat signatures, although these signatures 

are partially covered with a canopy. Faster R-CNN and 

YOLO are applied for detection, reducing duplicate 

detections. The applied methods are less invasive and more 

reliable and yield more accuracy in detection than manual 

methods. Another reference [73] employs modified faster R-

CNN to identify kiangs that further support wild animal 

conservation. Results reveal that the proposed model 

accelerates manual verification 25 times for the 

semiautomatic survey and yields a higher F1 score for an 

automatic survey.  

UAV imagery is also reliable and practical for emergency 

responses in disaster. Munawar et al. [35] capture RGB 

images using UAVs for detecting floods. The Haar cascade 

classifier is used to identify landmarks (roads and buildings). 

CNN surpasses ML algorithms like SVM and RF and 

efficiently classifies the images of non-flooded and flooded 

regions. Hashemi-Beni and Gebrehiwot [74] also focus on 

mapping flood extent to support recovery activities. UAV-

based and manned aerial-based RGB and LiDAR data are 

obtained in this study, where flooded areas are extracted 

using the fully convolutional network (FCN)-8s model. The 

extent of flooded regions, visible and covered by vegetation, 

is estimated using the region growing (RG) method. The 

applied strategies address the occlusion issue. 

C. Remote Sensing and Mapping 

UAV-based remote sensing is extensively used for 

topography, cartography, and urban planning. It assists in 

mapping land with its topography and cartography, mapping 

unreachable areas, identifying infrastructure damages, and 

managing and planning the fuel break. Mapping inaccessible 

regions like intertidal mudflats is possible with remote 

sensing. Brunier et al. [44] deploy UAVs equipped with RGB 

and multispectral cameras to address the similarity issues of 

geomorphic features. The proposed solution combines high 

spatial resolution with geomorphic mapping and RF classifier 

for mapping mudflats on the France Atlantic coast. RF 

classified images into eight classes based on an index and, 

after the segmentation phase, classified them into five 

geomorphic units. Results show the added value of 

combining topographic with radiometric data. 

Mapping the land image with its topography is performed 

to produce cartographic documents. Klapa et al. [75] employ 

UAVs to acquire details to chart maps of rural regions. The 

Vector Support Machine (VSM) algorithm is used for pixel-

based and object-based classification, enhancing the 

effectiveness of occurrence range and types of all the 

topographic objects and classifying the images into high, 

medium, low, and ground vegetation. Later, the cloud point 

is processed while generating class boundaries along with 

contours that enable the presentation of an appropriate 

thematic layer. 

Identifying heat loss and structural damage in existing 

buildings improves urban planning. Dabetwar et al. [38] 

capture infrared (IR) images of real-world buildings in a lab 

environment using a UAV. Various DL algorithms, namely 

VGG16, CNN, transfer learning VGG16 (TL-VGG16), and 

transfer learning InceptionV3 (TL-InceptionV3), are applied 

to classify the heat loss damage. These applied algorithms 

identify heat loss, window seal damage, and wall damage 

with higher accuracies. Fuel break management and planning 

are integral for protecting infrastructure, forests, and human 

lives. Rodríguez-Puerta et al. [76] acquire UAV-based very 

high-density LiDAR and RGB data, satellite-based 

multispectral data, and airborne laser scanning (ALS)-based 

low-density LiDAR data to plan wildland-urban interface fuel 

break. The fractal net evolution approach (FNEA) is applied 

for multiresolution segmentation. Variable selection using 

random forest (VSURF) is used for feature selection. ML 

algorithms RF, linear and radial SVM (SVML) and (SVMR), 

and artificial neural network (ANN) are applied to classify 

five fuel-area types. SVML and SVMR achieve the highest 

accuracy, followed by ANN and RF integrating multispectral 
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data with LiDAR, reducing the errors. 

D. Surveillance and Law Enforcement 

In recent years, law enforcement agencies operated UAVs 

for surveillance tasks, such as border patrol, dangerous object 

detection, crowd monitoring, vehicle tracking, and crime 

scene analysis. With insufficient staff and increased societal 

risks, UAVs are extensively deployed for monitoring and 

computerized image/video surveillance. However, individual 

or object identification is difficult in crowded areas videos. 

Therefore, most researchers focus on UAV imagery. Lie et al. 

[54] proposed the fusion of multiple sensors, infrared and 

visible light, Zedboard (ARM + FPGA) accelerator, and the 

application of thermal shot detector / CNN for UAV 

surveillance operations. The adopted methodology improved 

target detection ability and computing performance with 

reduced energy/frame. Matthew et al. [62] model a UAV 

system empowered with in infrared camera, modeled with 

CNN, and embedded with an IoT framework to detect 

humans within the Nigerian forest region. This work 

revolutionizes search and rescue missions, security 

surveillance, and extraditing terrorists by Nigerian security 

forces. Besides security surveillance, UAVs exploit law 

enforcement to detect prohibited activities, such as illegal 

fishing prevention. Prayudi et al. [77] present a UAV-based 

surveillance system to conserve the fishes and environment. 

MobileNetV2 and ResNet50 achieve higher accuracy, but 

ResNet50 glimpses much earlier in detecting and locating 

vessels carrying out fishing, making surveillance more 

effortless and the applied SIFT and KNN for hull plate 

classification. This study efficiently identifies illegal vessels, 

reducing unlawful fishing activities.  

UAV imagery assists investigators in documenting and 

analyzing the crime scene. Srivastava et al. [78] suggest UAV 

imagery and implement different transfer learning models 

VGG16, VGG19, InceptionV3, DenseNet201, 

ResNet101V2, MobileNet, and NASNetLarge with LSTM 

architectures for detecting and identifying faces of 

individuals incriminated in violence. The proposed LSTM 

model outperforms and achieves the highest accuracy in 

feature extraction, whereas a CNN model with residual 

blocks gave the best accuracy in individual face 

identification. Another example of crowd monitoring is in the 

context of ensuring health measures during a pandemic 

situation. Masmoudi et al. [79] prefer using UAVs to observe 

crowd activities and generate alerts while detecting 

anomalies. In this regard, images are captured and analyzed 

using a scaled YOLOv4 approach, efficiently detecting and 

locating people. Then, a bounding box correction process is 

implemented to evaluate distances among them. Finally, a 

reliable and energy-efficient trajectory is provided using 2-

Opt, genetic algorithm (GA), and ant colony optimization 

(ACO) algorithms to optimize path and inspect clusters 

violating restrictions, among which 2-Opt outperforms in 

terms of execution time and cost. This proposed framework 

requires improvement as it is prone to inaccuracies and errors. 

VIII. COMPARISON AND DISCUSSION 

This manuscript analyzes recent advancements in UAV 

technology and implementations of image processing and AI 

algorithms to improve the quality of images captured by 

UAVs. This study initially discusses UAVs contrary to 

human labor, satellite, and manned aircraft. Judging the 

differences demonstrates UAVs are cost-effective, highly 

flexible, and stable, give a higher degree of automation at 

various tasks, work autonomously at different speeds, 

positions, and angles, are accessible to unreachable areas, and 

capture high-resolution images. As UAVs overcome the 

shortcomings of these traditional methods, which entails the 

replacement of these methods with UAVs. Assessing current 

review studies on the state-of-the-art applications of UAVs 

reveals some similarities and correspondingly dissimilarities 

in purposes, data collection, image processing steps, and 

applied models. Significant research and reviews are 

conducted on agriculture, environmental monitoring, remote 

sensing and mapping, and surveillance. 

Grasping the current technological UAV status, enhanced 

batteries, navigation systems with data fusion and 

intelligence, and modified obstacle avoidance sensors and 

imaging and ranging sensors are observed to improve 

maneuverability, flight timings, and flight safety, capture 

high-resolution images, and improve classification accuracy. 

Cloud-computing-based infield data storage and processing 

improve the acquired data quality without any high-

performance computer or additional software. UAVs 

consolidated with such features are advanced technological 

devices with a bright future. Moreover, the potency of 

national and authority regulatory laws and data security 

systems boost UAV usage, making a breakthrough in the 

automation of detection, monitoring, mapping, and other 

tasks. 

Researchers adopt proper protocols for safe operations 

and efficient data collection. From this context, initially, they 

make pre-flight preparations, such as observing rules and 

regulations, collecting weather, and studying area features. 

Most studies deploy UAVs in constant environmental 

conditions, usually daytime. Another step of this protocol is 

to plan the mission. Researchers plan flight parameters, plot 

paths using mission planner software, and update embedded 
equipment prior to the mission. Researchers deploy UAVs at 

high flight heights to cover large study areas and low flying 

heights to reduce atmospheric effects. The following steps are 

the appropriate platform and sensor selections according to 

the mission. For this, the authors focus on rotary-wing UAVs 

in most research, as they can capture multi-angular images 

for better analysis. Fixed-wing UAVs have been deployed in 

fewer studies, whereas hybrid and flapping-wing UAVs are 

not covered in this review. This observation aligns with the 

analysis conducted by [12] for agriculture applications. Most 

studies propose RGB sensors due to their cost-effectiveness 
and ability to collect comprehensive, valuable data. Some 
deploy combined sensors to obtain high-quality images. 

After the fundamental data collection procedure, UAVs are 

deployed to acquire images of respective missions. However, 

flying at different altitudes, tilts, and terrains causes some 

distortion levels, and environmental factors of fog, smoke, or 

pollution may lead to noisy effects in the images. Hence, 

distortion and noise must be removed from images to infer 

meaningful insights through image preprocessing and 

processing techniques. For preprocessing images, researchers 

implement different steps. Radiometric correction is 

preferred for rectifying atmospheric interference and sensor-
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induced distortions and deriving absolute reflectance values. 

The following preprocessing step is geometric calibration, 

adjusting distortion caused by internal sensors or camera 

orientation. Researchers implement geometric calibrations to 

ensure accurate angles, shapes, and distance representation of 

captured objects in images. 

Geo-referencing and orthorectification are other mosty 

discussed preprocessing phases. Researchers extensively 

perform geo-referencing to align images using GCPs and 

GPS data (especially RTK) and orthorectification to remove 

terrain-induced distortion using DEMs and LiDAR. This step 

ensures spatial accuracy and uniform scale in the images. The 

subsequent discussed steps are image enhancement and 

image restoration. The visual quality of images is enhanced 

by adjusting brightness, contrast, and sharpness and applying 

filters. Moreover, images are restored by abstracting blur 

effects and noise using filtering, histogram equalization, DL 

models, and hybrid approaches. In comparison, DL models 

show good performance and produce sharper images. All 

these steps improve the quality of UAV-captured images of 

canopies, disaster sites, etc.  

High spatial and temporal resolution images generated by 

UAVs then undergo image processing measures- image 

fusing, various region segmenting, label assigning, feature 

extracting, classifying them into distinct groups, and finally, 

estimating the accuracy and validating the model. In the 

image fusion step, researchers are observed incorporating 

auxiliary datasets or ancillary data into UAV images or 

merging multiple datasets in certain cases to provide 

supplemental attribute data, improving accuracy and 

prediction performance. Subsequently, images are segmented 

into regions using thresholding and Mask-RCNN. Table IV 
summarizes the segmentation performance of analyzed AI 

techniques involved in various studies. According to this 

table, Mask R-CNN achieves a high AP for segmenting 

vehicles from single images and F1-score for segmenting 

images captured for estimating yield. Moreover, other 

methods do not employ the discussed metrics but efficiently 

perform semantic and intertidal mudflat segmentation, 

refining classification and mapping accuracy. Furthermore, 

comparing this table, this research realizes that all the 

techniques achieve outstanding metrics in segmentation 
tasks. 

The ensuing image processing step is object detection and 

recognition, assigning bounding boxes to label and locate 

objects for better understanding. Table V summarizes the 

performance of AI-based object detection, revealing 

improved DCNN architectures of Mask R-CNN and YOLO, 

showing remarkable performance for fire blight detection in 

apples, seedling number estimation, tea bud identification, 

and wildlife monitoring. Mask R-CNN with ResNet-101 

backbone gives the highest, whereas Retina Net renders the 

most nominal performance. Smaller-sized YOLO models 

have a faster detection time average than other models. 

However, the linear regression and Harris corner detection 
models deliver the highest accuracy. Scrutinizing Table V, 

both ML and DL models are noticed to be applied and yield 

outstanding results with less training time, speedy 
procedures, high-throughput, and more stable models. 

Feature extraction is evaluated as a step to identify key 

characteristics based on color, shape, and texture for valuable 

analysis. Studies focused on CNN architectures and ML 

techniques extract features with optimal outcomes. Another 

evaluated step is classification, which organizes different 

image regions into their predefined classes. Table VI 

showcases the performance of AI techniques implemented for 
classification. This table demonstrates CNN, TL incorporated 

VGG16, and InceptionV3 significantly surpass. SVMR, 

SVML, ANN, RG, and FCN-8s with RG also achieve higher 

classification accuracy. Moreover, valuable observation 

evaluates that the CNN models outperform when TL is 

introduced, increasing training time raises classification 

accuracy, YOLO performs thrice faster, and ML algorithms 
also exhibit good performance. 

The last step of image processing is accuracy assessment 

and evaluation. This step compares reference or ground data 

with classification results, examining the accuracy of image 

processing and analysis. Various evaluation metrics, such as 

P, R, OA, and F1-score, are widely used to assess the model 

performance and quality. Comparatively, R2 and RMSE are 

less used for measuring errors in predicting outputs in some 

studies. After implementing different image processing 

techniques, the images become more meaningful, easy to 

visualize and understand, and supply efficient details, 

enhancing a user’s decision-making abilities. 

Analyzing AI techniques in the considered research papers, 

advanced DL algorithms are regarded as capable of 

classifying without employing image enhancement and 

restoration phases. ML techniques are observed to add value 

to image processing tasks, whereas DL tackles massive data 

and performs complex computations. RF is the most applied 

ML technique, whereas YOLO is commonly used as a DL 

technique. YOLO is capable of identifying the most 

undersized objects quickly. The highest accuracies are 

achieved by CNN backbones, especially when TL is 

incorporated. These works validate the better performance of 

DL models over ML techniques. UAVs are widely deployed 

for monitoring and managing complex tasks. Researchers 

mostly use off-the-shelf software, such as Pix4D, 

DroneDeploy, and Agisoft Metashape, to process UAV 

images. Moreover, MATLAB is an extensively adopted tool 

for AI-enabled data processing, followed by Python, GPU-

based edge intelligence, and cloud computing. 

  
TABLE IV 

SEGMENTATION PERFORMANCE OF ANALYZED TECHNIQUES-SUMMARY 

Purpose Applied 

Methods 

AP F1-Score 

Vehicle-free 

ortho mosaic 

[36] 

Mask R-CNN 97.03 - 

Tree detection 

and species 

classification 

[41] 

SIFT and 

ResNet-18 with 

DeepLabv3+ 

- - 

Pesticide 

spraying [42] 

GA - - 

Intertidal 

mudflat 

mapping [44] 

SIFT and RF - - 

Yield 

estimation [71] 

Mask R-CNN - 0.87 

Wildland-urban 

interface fuel 

break planning 

[76] 

FNEA - - 
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TABLE V 

SEGMENTATION PERFORMANCE OF ANALYZED TECHNIQUES-SUMMARY 

Time P R Remarks 

2.1 - - Segments vehicles and masks the 

segmented regions from single images 

- - - Outperforms semantic segmentation, 

benefitting classification  

4.83 - - GA gives more reasonable partition 

segmentation and performs well for 

practical operation in less operating time 

- - - Segments intertidal mudflat into 

geomorphic units, refining the mapping 

accuracy 

- 0.86 0.89 Shows high performance, whereas 

combined ear features yield the most 

accurate results 

- - - Small segments have less spectral details, 

whereas larger segments give enough 

details 

Here, AP denotes average precision, P denotes precision, and R denotes 

recall. Mask R-CNN is a mask region-based convolutional neural network, 

SIFT is a scale-invariant feature transform, GA is a genetic algorithm, RF is 

a random forest, and FNEA is a fractal net evolution approach. 

 

TABLE VI 

OBJECT DETECTION PERFORMANCE OF ARTIFICIAL INTELLIGENCE 

TECHNIQUES (SUMMARY) 

Purpose Applied 

Method 

AP Accuracy F1-Score R-

Squared 

High-

density, 

small target 

object 

detection 

[29] 

Improved 

YOLOv6 

59.7

3 

- - - 

Fire blight 

detection 

[51] 

Mask R-

CNN with 

ResNet-50 

and 

ResNet-

101 

- - ResNet-

50: 91.63 

ResNet-

101: 

91.96 

- 

Seedling 

number 

estimation 

[57] 

HCD, LR, 

and faster 

R-CNN 

- CD: 99.78 Seedling 

number 

estimatio

n [57] 

HCD, LR, 

and faster 

R-CNN 

Tea buds’ 

identificatio

n [58] 

ST-YOLO 86.2 - 88 - 

Wildlife 

detection 

and 

monitoring 

[72] 

DCNN - - - - 

Wildlife 

detection 

[73] 

Modified 

faster R-

CNN 

- - 90 - 

 

 

TABLE VII 

OBJECT DETECTION PERFORMANCE OF ARTIFICIAL INTELLIGENCE 

TECHNIQUES (SUMMARY) 

RMSE Time P R Remarks 

- - - - Effectively 

detects objects 

with higher 

accuracy and 

less training 

time 

- - ResNet-50: 

91.23 

ResNet-

101: 92.79 

ResNet-50: 

92.04 

ResNet-

101:  

91.15 

Efficiently 

detects fire 

blight and 

segments 

infected apple 

canopies in a 

complex 

environment 

HCD: 

RMSE-3.78 

- - - All methods are 

high-throughput 

and fast, but 

rRMSE-

16.17 

LR: RMSE-

2.11 

rRMSE-9.05 

Faster R-

CNN: 

RMSE-1.38 

rRMSE-5.94 

among them, 

the LR model 

and faster R-

CNN are more 

stable 

 

- 21.29  - - ST-YOLO 

outperforms 

with reduced 

size, whereas 

original YOLO 

misses targets 

because of 

lighting 

conditions 

Testing data: 

1.9272 

 

136 North site: 

60-71 

South site: 

43–58 

- Distinguishes 

animal heat 

signatures with 

more accuracy 

- 26 0.85 0.96 Accelerates the 

manual 

verification and 

provides 

accurate and 

inexpensive 

surveys 

Here, AP denotes average precision, R-squared denotes coefficient of 

determination, RMSE denotes root mean square error, P denotes precision, 

and R denotes recall. Mask R-CNN is a mask region-based convolutional 

neural network, HCD is Harris corner detection, LR is linear regression, ST-

YOLO is a Swin transformer-you only look once, and DCNN is Faster 

RCNN and YOLO. 

 

TABLE VIII 

CLASSIFICATION PERFORMANCE OF STATE-OF-THE-ART MODELS-

SUMMARY. 

Applied Method AP mAP Accuracy F1-score 

Haar cascade 

classifier and 

CNN [35] 

- - 91 0.93 

YOLOv3 [37] UAV: 

0.93 

Digital 

camera: 

0.94 

UAV: 

0.88 

Digital 

camera: 

0.89  

- - 

VGG16, CNN, 

TL-VGG16, and 

TL-InceptionV3 

[38] 

- - CNN: 100 

VGG16: 32 

TL-VGG16: 

96 

TL- 

InceptionV3: 

100 

- 

YOLOv5 [40] 0.823 - 0.671 0.752 

SIFT and 

ResNet-18 with 

DeepLabv3+ 

[41] 

- - AB: 78.6 ± 

5.5 

EP: 98.6 ± 

1.4 

ID: 96.6 ± 

3.4 

- 

SIFT and 

geomorphic-

based RF [44] 

- - 93.12 - 

RFR, SVR, and 

MLR [71] 

- - - - 

FCN-8s with RG 

[74] 

- - Scenario 1: 

88.4 

Scenario 2: 

92.4 

 

- 

RF, SVML, 

SVMR, and 

ANN [76] 

- - Training 

data  

SVMR: 

94.04 

SVML: 

94.46 

- 
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RF: 90.66 

ANN: 91.35 

Testing data  

SVMR: 

91.18 

SVML: 

90.44 

ANN: 91.91 

RF: 91.80 

 

 

TABLE IX 

CLASSIFICATION PERFORMANCE OF STATE-OF-THE-ART MODELS-

SUMMARY. 

R-Squared RMSE P R Remarks 

- - 0.92 0.95 Shows high 

computational 

speed, extracts 

landmarks under 

varying scale, 

lighting, and 

color, and 

classifies quickly 

and accurately 

- - - - YOLO performs 

three times faster 

and better 

- - - - CNN and TL-

InceptionV3 

outperform 

smaller datasets, 

illustrating TL 

improves 

efficiency 

- - - - Identifies even 

smaller objects, 

whereas an 

increase in 

training time 

increases 

classification 

accuracy till 600 

epochs 

- - - - Detects and 

classifies at less 

computational 

cost, successfully 

detects closer 

trees, and 

produces 

accurate maps 

- - - - Proves to be a 

user-friendly 

method, maps 

soft-bottom 

intertidal regions 

with extra value, 

whereas 

geomorphic-

based 

classification 

shows higher 

accuracy 

RFR: 0.86 

SVR: 0.85 

MLR: 0.83 

RFR: 

17.53 

SVR: 

18.93 

MLR: 

22.78 

- - RFR estimates 

the best yield 

estimation 

- - - - This integrated 

approach 

efficiently 

identifies floods 

in both hidden 

and visible areas 

- - - - Data integration 

reduces 

classification 

time, and most of 

the algorithms 

surpass 90% 

Here, AP denotes average precision, mAP denotes mean average precision, 

R-squared denotes coefficient of determination, RMSE denotes root mean 

square error, P denotes precision, and R denotes recall. CNN is a 

convolutional neural network, YOLO is you only look once, UAV is an 

unmanned aerial vehicle, CNN is convolutional neural network, TL-VGG16 

is transfer learning VGG16, TL-InceptionV3 is transfer learning 

InceptionV3, SIFT is scale-invariant feature transform, AB is Attalea 

butyracea, EP is Europe precatoria, ID is Iriartea deltoidea, RF is the random 

forest, RFR is random forest regression, SVR is support vector regression, 

and MLR is multiple linear regression, FCN is fully convolutional network, 

RG is region growing, SVML is linear support machine vector, SVMR is 

radial support machine vector, and ANN is artificial neural network. 

 

From an application perspective, most of the analyzed 

research articles are based on agriculture studies, followed by 

environmental monitoring, remote sensing, and mapping. 
These observations are similar to the results of [13]. DL and 

neural networks are implemented for crop classification, 

plant maturity stages, weed detection, tree species 

identification, wildlife detection and conservation, flood 

detection and extent mapping, heat loss and structural damage 

identification, target detection, search and rescue missions, 

and crime scene analysis. On the other hand, classification 

and regression algorithms are applied for soil water content 

predictions, yield estimations, mudflats mapping, and map 

charting. A few studies implement both traditional learning 

and DL models. In the case of flood detection, ML yields less 
performance than CNN. Conversely, in the context of fuel 

break management and planning, ML outperforms the 

applied ANN model. Moreover, in some studies based on 

illegal fishing prevention and crowd monitoring, ML and DL 

are involved in different tasks. All the examined research 

demonstrates the efficiency and potential of AI techniques for 

processing UAV images for precision agriculture, 

environmental monitoring, remote sensing and mapping, and 

surveillance. 

The above findings can be summarized as (1) UAVs- 

obtained data raises the recognition accuracy. (2) Researchers 

have extensively deployed rotary-wing UAVs and budget-

friendly RGB cameras. The multispectral camera provides 

added value, whereas LiDAR analyzes the depth of flooded 

water. (3) Geo-referencing and orthorectification are widely 

implemented preprocessing steps. (4) Image segmentation 

and feature extraction steps are extensively considered in 

various studies to improve the classification accuracy. 

Moreover, image fusion and object detection are also 

employed to supplement additional attribute data and identify 

and classify different species and objects, respectively. (5) AI 

models take a reasonable time to process images from scratch 

and then to segment regions, extract features, and classify 

images. These processed images allow better analysis for 

instigating response plans for emergencies, enhancing 

accuracy and precision. Contrarily, other techniques consume 

more time (weeks or months) for planning an immediate 

response. 

IX. CONCLUSION 

UAVs have acquired remarkable attention from 

researchers. Innovations are modifying several aspects of 

UAVs, expanding their applications in various domains. The 

main objective of this paper is to promote their applications 

while integrating image processing techniques and AI 

algorithms. In this context, an overview of UAV technology 
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is presented while conceptualizing its elementary concepts, 

modified components such as the battery, navigation system, 

proximity, optical avoidance sensors, imaging and ranging 

sensors, and image processors. A protocol for efficient data 

collection is presented. Image preprocessing phases of 

correcting images through radiometric and geometric 

calibration, geo-referencing and orthorectification, image 

enhancement, and restoration are elaborated. Image 

processing techniques, such as image fusion, feature 

extraction, segmentation, object detection, classification, and 

accuracy assessment and validation, are explained in detail. 

ML and DL models and image and data processing software 

and tools are discussed. Their applications are explored in 

agriculture, showing the aid of the proposed solution in 

precision agriculture and yield optimization. Their usage for 

environment monitoring illustrates their capabilities for 

forestry, wildlife, and natural disaster assessment and 

management. Similarly, UAV-based remote sensing and 

mapping contribute to topography, cartography, and urban 

planning. Moreover, UAV-enabled surveillance is significant 

for search and rescue missions, security surveillance, crowd 

monitoring, and crime scene analysis, benefiting law 

enforcement agencies. Besides many opportunities, certain 

constraints still hinder performance and applications. These 

challenges include technical limitations, regularity issues, 

data quality challenges, data processing issues, and training 

and expertise requirements, necessitating future 

considerations and development to refine their efficiency, 

safety, and accuracy. The proposed multifaceted approach 

promotes automation, sustainability, and effectiveness in 

various domains. 

The limitations of this review include a lack of software 

application, methodology based on statistical techniques, and 

exploration of case studies from the real world. However, the 

developed conceptual design (integrating UAVs, image 

processing techniques, and AI) efficiently analyzes and 

interprets sources (research papers), interlinking and 

strengthening the theoretical framework (core theories are 

UAV, image processing, and AI) and creating a robust review 

paper. This review has substantial implications for 

researchers, scholars, and the scientific community. It 

enriches their knowledge by synthesizing recent research, 

providing valuable and comprehensive insights, and 

advancing theoretical understanding. Moreover, it addresses 

the societal and ethical implications of using UAVs and AI 

algorithms in a responsible manner. This work informs 

engineers, developers, and the government about the 

significance and limitations of UAV applications, which may 

lead to further development in UAV platforms, sensors, 

techniques, and effective policies. 

For future research, we will consider other conceivable 

areas, such as applications in energy and utilities, cultural 

heritage, construction, and mining operations. Furthermore, 

LiDAR sensors and multiple UAVs offer potential avenues 

for future exploration.        
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