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Abstract—In the field of object detection for remote sens-
ing images, especially in applications such as environmental
monitoring and urban planning, significant progress has been
made. This paper addresses the common challenges faced by
traditional object detection methods in remote sensing images,
such as the large number of targets and complex backgrounds,
by proposing a novel network based on YOLOVY. The network
innovatively introduces the C3_CD_CGA module, an enhanced
module based on Cascaded Group Attention, designed to reduce
computational redundancy and increase attention diversity, and
enhances the processing capability of multi-scale information
through the CD module. The C3 module employs deep asym-
metric convolution to mitigate information loss and increase
the receptive field. Additionally, the network integrates DSConv
with the RepNCSPELAN4 module to adaptively focus on and
precisely capture the features of elongated and curved local
structures, such as vehicles. The introduction of the CARAFE
module further improves the spatial resolution of the feature
maps, significantly enhancing performance across various visual
tasks. Experimental results show that the improved YOLOV9
achieves a mean average precision (mAP) of 88% on the SIMD
dataset, which is an improvement of 1.6% compared to the
baseline YOLOvV9 model and 1.5% higher than the state-of-
the-art YOLO-SE model. This model not only achieves more
effective multi-target recognition in complex backgrounds but
also strikes a good balance between accuracy and efficiency.

Index Terms—Attention mechanism, Object detection, Re-
mote sensing images, YOLOVY.

I. INTRODUCTION

N recent years, with the rapid development of remote

sensing technology and the large-scale acquisition of
satellite image data, the application areas of remote sensing
images have continuously expanded [1-4], covering impor-
tant fields such as urban planning, environmental monitoring,
disaster management, and agricultural monitoring. Object
detection technology not only needs to accurately identify
and locate various objects in images but also must address
challenges related to different scales, complex environmen-
tal conditions, and diverse target shapes [5—7]. Traditional
remote sensing object detection methods often rely on man-
ually designed feature extractors and classifiers, which face
limitations in accuracy and generalization when dealing with
large-scale, diverse datasets. With the rise of deep learning,
particularly Convolutional Neural Networks (CNNs), data-
driven end-to-end object detection methods have significantly
improved detection accuracy and efficiency. Among these,
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the You Only Look Once (YOLO) series of models has
gained widespread attention for its real-time processing
capabilities and high accuracy. As an evolved version of
the YOLO series, YOLOV9 further enhances object detec-
tion capabilities in complex scenarios by introducing more
sophisticated network architectures and advanced training
strategies [8]. However, despite its excellent performance
in general visual scenes, YOLOV9 still faces challenges
when applied to specific remote sensing datasets, such as
the Satellite Image Multi-Scale Detection (SIMD) dataset.
Wang et al. introduced a novel method based on Graph
Neural Networks (GNNs) to address the challenges of com-
plex target association and diverse target categories. GNNs
can effectively model the relationships between targets,
thereby improving the accuracy and efficiency of object
detection. By constructing a relational graph between targets,
the model can better understand and utilize the association
information among targets, enhancing its capability to detect
multiple target categories [9].Shen et al. proposed a new op-
timization method focused on handling the issue of multiple
target categories. By introducing a dynamic weight allocation
mechanism, this method automatically adjusts the weights
of each category during training based on the number of
samples and the difficulty of detection for each category.
This balances the training process across categories, thereby
improving the overall performance of the detection model
[10].Xu et al. presented a data augmentation technique for
large-scale category detection that enhances the generaliza-
tion capability and detection accuracy of detectors by gen-
erating diverse target samples using Generative Adversarial
Networks (GANs). This approach is particularly effective for
long-tail distribution detection tasks, as it generates more
samples for minority classes, balancing the data distribution
and significantly improving the model’s ability to detect
minority targets [11].Zhang et al. proposed a method that
combines Generative Adversarial Networks (GANs) with
reinforcement learning to improve object detection. They
utilized GAN generators to create more realistic small tar-
get samples, aiding the detector in better recognizing and
locating small targets. Reinforcement learning was further
employed to optimize the detector, expanding the model’s
receptive field and adapting it to different target categories,
thereby enhancing overall detection performance [12].Liu et
al. explored an object detection method based on multi-
scale feature fusion and dilated convolutional networks in
their research. Dilated convolutional networks expand the
receptive field, enabling the model to capture more con-
textual information, thus improving the detection accuracy
of small targets [13]. Additionally, the multi-scale feature
fusion technique allows the model to handle targets of
different scales simultaneously, enhancing its ability to detect
diverse targets. This method performs excellently in various
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complex scenarios, particularly in detecting small targets and
handling complex backgrounds, where detection results are
significantly improved.

The improved YOLOV9 model performs better in handling
multi-scale, multi-category, and complex environment object
detection tasks, while significantly enhancing overall perfor-
mance.

The improved YOLOV9 model proposed in this paper
incorporates the C3_CD_CGA module into its neck network.
The C3 module utilizes multi-scale feature fusion techniques
to enhance the model’s feature extraction capabilities across
different scales, and employs dilated convolutions to expand
the receptive field, thereby capturing more contextual in-
formation. The CGA module optimizes the representation
of multi-scale features through intra-group and inter-group
attention mechanisms, providing feature subsets to different
attention heads, reducing computational redundancy, and
increasing attention diversity. By combining the C3, CD,
and CGA modules [14, 15], the model achieves multi-scale
feature fusion and addresses the challenge of target diversity.

In the backbone network, the DSConv module is combined
with the RepNCSPELAN4 module [16]. The DSConv mod-
ule adopts a multi-view feature fusion strategy to enhance the
focus on features from multiple perspectives, ensuring that
key information from different global shapes is preserved
during the feature fusion process. In the neck network, the
upsampling module is replaced with the CARAFE module
[17], which significantly improves the spatial resolution of
feature maps through adaptive interpolation and reassembly
techniques. The CARAFE module, by leveraging an automat-
ically learned reassembly process, more effectively retains
and reconstructs information within feature maps, capturing
contextual information from different locations. This not only
enhances the model’s performance but also maintains com-
putational efficiency, effectively addressing the challenges
posed by complex environmental conditions. Experimental
results on the SIMD dataset validate the effectiveness of this
approach.The specific contributions are as follows:

The SIMD dataset is characterized by data imbalance
and diverse target categories. An attention module was
designed to address the issue of target diversity, significantly
enhancing overall performance while reducing computational
complexity.

Due to the varying image scales and resolutions, as well
as complex environmental conditions in the SIMD dataset,
a multi-view feature fusion strategy was employed. This ap-
proach significantly improves the spatial resolution of feature
maps and adapts to complex environmental conditions.

II. RELATED WORK

In recent years, YOLOV9, as the latest model in the YOLO
series, has demonstrated powerful performance in handling
aerial imagery through its improved network architecture
and training strategies. YOLOV9 has further enhanced the
model’s detection accuracy, speed, and ability to handle
multi-scale targets by comprehensively optimizing the back-
bone, neck, and head networks. Compared to previous YOLO
models, YOLOV9 exhibits a strong competitive advantage.

Compared to YOLOv3 and YOLOv4, YOLOV9 back-
bone network incorporates a more advanced deep network
structure, combining Cross-Stage Partial Network (CSPNet)

technology with improved residual connections [18]. These
enhancements significantly boost the model’s feature ex-
traction capabilities, enabling it to more effectively capture
diverse image features in complex aerial imagery, particularly
excelling in scenarios involving small targets and detail-rich
scenes. While YOLOVS also adopts the CSP architecture,
YOLOV9 backbone network further advances the richness of
feature representation and processing capabilities, offering
higher detection accuracy.

The neck of YOLOVY incorporates an improved Feature
Pyramid Network (FPN) and Path Aggregation Network
(PANet) [19, 20], significantly enhancing the fusion and
transmission of multi-scale features. This design enables
YOLOV9 to achieve greater precision when handling multi-
scale targets, particularly in aerial imagery, where the size
and shape of objects often vary greatly. The optimization
of the neck network allows YOLOV9 to maintain excellent
detection performance across different scales. Compared to
YOLOv4, YOLOV9 offers more refined multi-scale fusion,
providing better robustness and detection performance in
the presence of complex backgrounds and densely packed
targets.

By introducing a self-attention mechanism and optimized
activation functions, YOLOV9 achieves higher levels of
accuracy and speed in object detection. The application
of the self-attention mechanism allows YOLOV9 to more
precisely identify targets in complex scenes, reducing false
positives and missed detections. Additionally, the new loss
function design further optimizes the regression accuracy
of bounding boxes, resulting in more accurate localization
in high-resolution aerial imagery. Compared to the head
network design of YOLOVS, YOLOV9 demonstrates superior
performance in handling complex backgrounds and small tar-
gets, making it more advantageous in practical applications.

III. METHOD INTRODUCTION
A. Modules of the Improved YOLOVY Algorithm

While YOLOV9 can improve classification accuracy by op-
timizing the classification loss function when handling multi-
category targets, its classification performance may decline
when the number of categories is large. This is because the
feature differences between categories are relatively small,
making it challenging for the model to distinguish between
similar categories. Additionally, the YOLOV9 model has
limited ability to detect objects in complex backgrounds,
particularly in the SIMD dataset, where the complex back-
grounds in drone-captured images can easily interfere with
the model’s detection results. Therefore, although YOLOvV9
performs excellently in some scenarios, further improve-
ments and optimizations are still needed to effectively handle
complex and variable drone datasets.

To address these challenges, this paper proposes an en-
hanced structure for YOLOVY. First, the Upsample module
was replaced with the CARAFE module, which introduces
a novel information reorganization mechanism, significantly
improving the spatial resolution of feature maps. Second,
the backbone network integrates the RepNCSPELAN4 and
DSConv modules to form the DSConvRepNCSPELAN4
module, greatly enhancing YOLOVY capability in multi-scale
object detection. This enhancement is particularly effective
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Fig. 1: Overall improved architecture diagram

in accurately identifying and locating targets of different
scales in drone images from the SIMD dataset. Finally,
to improve the accuracy of multi-category object detec-
tion, the integration of the C3_CD_CGA module not only
increases YOLOV9 accuracy in multi-category, multi-scale
object detection but also demonstrates stronger robustness
in complex scenarios, thereby comprehensively improving
YOLOV9 detection performance.

B. C3_CD_CGA

Integrating the C3_CD_CGA module into the neck of
YOLOV9 enhances the capability to capture diverse classes
and multi-scale image features. To ensure the completeness
of information during image processing, the C3_CD_CGA
module incorporates the C3 (Concentrated-Comprehensive
Convolution) module. The C3 module applies dilated con-
volutions to depthwise separable convolutions, as described
in Equation 8, where K¢ denotes the depth-wise convolution
kernel, d represents the dilation rate, and KP” stands for the
1x1 point-wise convolution kernel. The C3 module processes
features through two stages: the first stage is the concen-
tration stage, which utilizes depth-wise separable asymmet-
ric convolutions to capture information from neighboring
pixels, thereby alleviating local information loss caused by
dilated convolutions. The second stage is the comprehen-
sive convolution stage, which employs depth-wise separable
dilated convolutions to expand the receptive field, while
simultaneously using point-wise convolutions to mix channel

information. This approach effectively integrates local and
global information, reducing parameters and computational
complexity while maintaining the model’s performance in
semantic segmentation.

! 2 : 2 : d
Fc,h,w = Fc,h-{-dm,w+dan7m7n
m n

1
Oc’,h,w = ZF(/:,h,wKEQC ( )

The CD convolution in the C3_CD_CGA module uses
depth-wise dilated convolution layers with a dilation rate of
2. This dilation technique expands the receptive field of the
feature map without increasing the number of parameters
and computational complexity, allowing the feature map to
cover a larger input area while maintaining its resolution.
This enables the network to capture richer contextual in-
formation. By combining dilated convolution with the CGA
module, the feature extraction capability is further enhanced,
strengthening the long-range dependencies between features.
This allows the model to achieve a larger receptive field and
better global information integration when processing im-
ages, thereby improving the model’s performance in handling
complex scenes.

To enhance the global integration capability of features,
the CGA (Cascaded Group Attention) module employs a
multi-head self-attention mechanism, allowing for multiple
independent feature interactions. The role of the CGA mod-
ule is to process input features by providing different feature
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splits for each attention head, with each head focusing on
only a portion of the input. The outputs of all heads are
then cascaded together and passed through a linear projec-
tion layer to form the final output, unlike traditional self-
attention mechanisms that provide the same full feature set
to all heads. This approach not only reduces computational
redundancy in multi-head attention but also increases the
diversity of attention by introducing different features to each
attention head.This attention module is shown in Equation
9, where the j attention head performs self-attention on Xj;.
Here, X;; is the j part of the input feature X;, X; is divided
into [X;1, X;2, ..., X;p], where 1 < j < h is the number of
attention heads. The projection layer Wg, WK WY maps
the input features into different subspaces by dividing them
into chunks. Subsequently, a linear layer W/ re-projects the
concatenated output features to match the input dimensions.
This design allows the model to capture features at different
levels, enhancing the interaction between features through
cascading, while improving computational efficiency and the
model’s ability to capture different subsets of features.

Xij = Attn(XijWi?, X”WZIJ(,

XiJrl = Concat[Xij]j:LhWiP

WY
XZJsz ) (2)

In the enhancement of the C3_CD_CGA module within
the YOLOVY9 model, efforts have been made to maximize
the receptive field without significantly increasing the com-
putational burden. Additionally, redundancy issues in multi-
head attention have been addressed to ensure that the model
accurately identifies and distinguishes targets in complex
scenarios. This improvement optimizes the interactions be-
tween channels, thereby enhancing the overall capacity and
efficiency of the model.

| Query Conv ]

| Key Conv ]

reshape

| Concat ]

Conv

Fig. 2: C3_CD_CGA network architecture

C. DSConvRepNCSPELAN4

The SIMD dataset contains many images with complex
environments. In YOLOV9, the RepNCSPELAN4 module
enhances the breadth and depth of feature extraction by
integrating channel attention and multi-scale feature repre-
sentation. The DSConv module, based on dynamic snake
convolution, can adaptively focus on elongated and winding
local features, making it particularly suitable for handling
complex tubular structures. The formula for calculating the
center position coordinates of the DSConv convolution kernel
is given in Equation 5. This module adjusts the shape and
receptive field of the convolution kernel to better adapt to
the geometric structure of the target, thereby enhancing the
model’s ability to perceive fine structures.

Ki = (zi,v:) 3)

The formula for unrolling the standard convolution kernel
along the x-axis is shown in Equation 6, and the formula for
unrolling the standard convolution kernel along the y-axis is
shown in Equation 7, where x; and y; represent the positions
of the convolution kernel in the image coordinates. DySnake
convolution adjusts the offset A at each position through an
iterative strategy, ensuring that the convolution kernel adapts
to the target’s shape.

Ky, — (Tites Yire) = (Ti + 6,40 + Z?C Ay) )
(TicesYioe) = (Ti — Y + 2. Ay)

Kjie = (@jter Yjre) = (@5 + ch Az,y;+c) 5)
! (Tj—csYj—e) = (x5 + 25 Ax,y; —¢)

The DSConvRepNCSPELAN4 module combines the pre-
cise capture capabilities of DSConv for local complex struc-
tures with the multi-scale global feature extraction abilities
of RepNCSPELAN4, enabling YOLOV9 to more accurately
locate and recognize targets in remote sensing image. This
combination significantly enhances the model’s detection
accuracy across different environments and backgrounds,
while maintaining model lightweightness and greatly im-
proving its ability to handle targets of various scales in
complex backgrounds, thereby reducing instances of missed
and false detections.The DSConvRepNCSPELAN4 module
first utilizes DSConv to focus on the key geometric features
of slender targets, and then employs the multi-scale feature
fusion strategy of RepNCSPELAN4 to further enhance the
model’s understanding and detection of the overall shape
of the targets. Initially, the input feature map undergoes
preliminary feature extraction through a convolutional layer,
and then it is split into two parts for parallel processing. One
part passes through the RepNCSPE module, which enhances
feature extraction capabilities, especially for detecting irregu-
lar shapes. The other part goes through the DSConv module,
which is designed to handle complex shapes like tubular
structures by dynamically adjusting convolutional kernels
to better capture key features. Additionally, some feature
maps directly pass through a convolutional layer, providing
additional feature information. Finally, all processed feature
maps are concatenated and passed through a final convolu-
tional layer to produce the output.This integration enables
the model to exhibit higher precision and robustness when
dealing with complex scenes, multiple categories, and multi-
scale targets.
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D. CARAFE

Due to the presence of a large number of low-resolution
images in the SIMD UAV dataset, we chose to replace
the Upsample module with the CARAFE module. The core
innovation of CARAFE lies in its ability to dynamically
predict the reassembly kernel based on the content of the
input features, and to reassemble the features of local regions
through weighted combinations. Unlike traditional upsam-
pling methods such as bilinear interpolation or transposed
convolution, the reassembly kernel in CARAFE is not fixed,
but is dynamically generated at each location by a content
encoder. The feature reassembly operation in CARAFE is
performed through a weighted summation formula, as shown
in Equation 1. In this formula, for the target position I’
and the square region centered on 1 = (i, j) with a size
of N(Xi,kep) , r = L%J and Wiy (n,m) are reassembly
kernels predicted by the content encoder, which determine
the contribution of each pixel in the local region N (X, kup)
to the upsampled pixel I’. This weighted summation method
ensures that the reassembled feature map better preserves
spatial structure and semantic information.

T T
Xi= > > Win,m) X(i+nj+m) ()
n=—rm=-—r

CARAFE serves as a reassembly operator with a content-
aware kernel. It includes two steps. The first step is to predict
a reassembly kernel based on the content of each target
location, as shown in Equation 2. For a given input feature
map X, CARAFE first predicts the convolution kernel W
for each target location 1’, where v is the kernel prediction
module. The second step is to reassemble the features using
the predicted kernel, as shown in Equation 3, where ¢
is the content-aware reassembly module, and the feature
N(X;, k:up) is reassembled using the convolution kernel W/.

Wr = w (N (Xl7 kencoder)) (7)
Xl/ = ¢(N (Xlakup)ywr) (8

Although CARAFE introduces a mechanism for dynami-
cally generating reassembly kernels, it maintains extremely
high computational efficiency. By incorporating a chan-
nel compressor and a well-designed convolution kernel,
CARAFE achieves significant performance improvements
with minimal computational overhead, making it easy to
integrate into modern neural network architectures. The
computational complexity of CARAFE is described by the
formula in Equation 4, where Cj, represents the number of
channels in the input feature map, C,, is the number of
channels after channel compression, Kencoder and Ky, are
the sizes of the convolution kernels for the content encoder
and reassembly kernel, respectively, and o is the upsampling
factor.

FLOPs =2(Cip, +1)Cpy + 2(Ck?

encoder + 1)02k121,p
+ 20’2]{724,6'1'”

€))

CARAFE is designed with a large receptive field feature
aggregation method that can aggregate contextual informa-
tion over a wide range. This enables the model to better
capture the relationship between local features and global
semantics, resulting in excellent performance in tasks such
as object detection and semantic segmentation.

IV. EXPERIMENTAL DESIGN AND IMPLEMENTATION
A. Dataset Introduction

To validate the effectiveness of the improvements to the
YOLOV9 algorithm, this study utilized the Satellite Imagery
Multi- Vehicle Dataset (SIMD) and an adapted single-channel
deep multi-scale object detection framework, aimed at de-
tecting multi-size/type objects to meet the needs of vehicle
ground perspective. The dataset images were obtained from
various locations across the EU and the United States,
available in public Google Earth satellite imagery. It includes
5,000 images containing a total of 45,096 objects across
15 different vehicle categories, including cars, trucks, buses,
long vehicles, airplanes, ships, and other categories. For
experimental purposes, we divided the images into training
and validation sets in an 8:2 ratio, with 4,000 images in
the training set and 1,000 images in the validation set, all
randomly distributed. There is a significant class imbalance
in the SIMD dataset, with smaller vehicles (such as cars
and trucks) being more prevalent, while larger vehicles (such
as buses, long vehicles, and airplanes) are relatively fewer.
This imbalance may affect the detection performance of the
model, so during the improvement of the YOLOV9 algorithm,
data augmentation techniques were employed to enhance
the model’s performance in the face of class imbalance and
multi-scale object detection, thereby improving the model’s
ability to recognize minority classes.

B. Experimental environment and parameter configuration

The experiments in this study were conducted on a server
equipped with an NVIDIA GeForce RTX 3080Ti graphics
card, which has 10GB of VRAM, effectively supporting the
efficient training of deep learning models. The operating
system was Windows 10, and the main software environment
included CUDA 11.8, Python 3.8.10, and Pytorch 2.0.0. The
model training was set for a total of 300 epochs. To prevent
overfitting, the EarlyStopping strategy was employed with
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a patience value of 50, meaning that if the validation loss
did not show a significant decrease over 50 consecutive
epochs, the training would be terminated early. The batch
size was set to 4. Additionally, the learning rate was set to
0.01 to balance training speed and model convergence. Other
parameters were kept at their default values.

C. Model evaluation metrics

To evaluate the performance of the YOLOv9-based object
detection model on the SIMD dataset, this study employed
several key metrics, including Precision, Recall, mean Aver-
age Precision (mAP), and F1-score. The definitions of these
metrics are provided in Equation 11. Precision measures the
proportion of correctly predicted positive instances, while
Recall assesses the model’s ability to detect actual positive
samples. To balance Precision and Recall, the Fl-score
was used as a comprehensive metric. Additionally, mean
Average Precision (mAP) was used to evaluate the overall
performance of the model in multi-class detection tasks.

TP

P=_——7
TP+ FP’
TP

T TP+ FN’

P xR
Fl1=2
“PYR

(10)

1 N
mAP = ﬁ;APi.

Through the calculation and analysis of these metrics, we
can comprehensively evaluate the model’s detection perfor-
mance on the SIMD dataset and provide strong data support
for the optimization and improvement of the model.

D. Results and Analysis of the Precision-Recall Curve

The Precision-Recall (P-R) curve in the figure illustrates
the differences in detection performance of the YOLOvV9
model on the SIMD dataset before and after improvements.
The improved YOLOvV9 model shows an increase in the
mean Average Precision (mAP@0.5) across all categories
from 0.864 to 0.880, with significant enhancements in both
detection accuracy and recall. Specifically, the AP value
for the ’pushbacktruck’ category increased from 0.702 to
0.824, while the AP value for the *propeller’ category slightly
decreased from 0.992 to 0.980. However, the AP values for
most categories improved overall. Additionally, the improved

model achieved a better balance between precision and
recall across most categories, with a smoother curve shape,
indicating more stable detection performance across different
thresholds. Particularly for complex targets like the ’fighter’
category, although the AP value remained at 0.995, the
improved curve is more concentrated, reflecting the model’s
enhanced balance between precision and recall. Overall, the
improved YOLOV9 model has effectively enhanced its object
detection performance on the SIMD dataset.

E. Ablation experiments

To verify the impact of each module on the performance
of our proposed improved YOLOvV9 model on the SIMD
dataset, we conducted ablation experiments, with the results
shown in Table 1. In this ablation study, we tested the
C3_CD_CGA module, DSConvRepNCSPELAN4 module,
and CARAFE module separately. By progressively adding
or removing these modules, we were able to observe their
influence on the overall performance of the model. The
experimental results in the table display the Precision, Recall,
and mean Average Precision (mAP) for different combina-
tions of modules.

The results show that the model performs best when all
modules are fully retained, achieving a Precision of 88.5%,
Recall of 86.3%, and mAP of 88.0%. This indicates that
each module plays a crucial role in enhancing the model’s
performance. Further analysis reveals that when no modules
are added, the model’s mAP drops from 88.0% to 86.4%,
using the YOLOV9 model as the baseline, demonstrating that
these modules significantly contribute to improving detection
accuracy. When only the C3_CD_CGA module is added,
the mAP increases slightly to 87.2%, indicating that the
C3_CD_CGA module provides some performance enhance-
ment. Adding only the DSConvRepNCSPEL AN4 module re-
sults in an mAP of 87.4% and a Recall of 86.8%, highlighting
the module’s important role in improving Recall. When both
the C3_CD_CGA and DSConvRepNCSPELAN4 modules
are retained, the model’s mAP reaches 87.6%, showing a
strong synergistic effect between these two modules. Adding
only the CARAFE module results in an mAP of 87.2%, but
when the CARAFE module is added to the model already
containing the C3_CD_CGA and DSConvRepNCSPELAN4
modules, the mAP further improves to 88%, demonstrating
CARAFE’s significant contribution to enhancing accuracy.
Overall, this ablation study clearly illustrates the performance
improvements contributed by each module, validates the
effectiveness of our proposed improved model, and provides
a reference for further optimization research.

F. Comparison results of different models

To comprehensively evaluate the performance of our pro-
posed object detection model for remote sensing images
based on YOLOVY, we conducted detailed experiments on
the SIMD dataset. Table 2 summarizes the experimental
results of various models, providing a systematic comparison
of Precision, Recall, Image Size, and mAP. The results show
that our model performs excellently across all metrics, partic-
ularly achieving an mAP of 88.0%, significantly surpassing
the baseline YOLOVY model (86.4%). Compared to other
models such as YOLO-DA, YOLO-SE, and MHLDeT, our
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TABLE I: Ablation experiments

C3_CD_CGA DSConvRepNCSPELAN4 CARAFE Precision/% Recall/% mAP
YOLOV9 - - - 87.8 85.6 86.4
YOLOV9 v - - 87.3 86.3 87.2
YOLOV9 - v - 87.2 86.8 87.4
YOLOV9 - - VA 86.9 85.8 87.2
YOLOV9 - Vv V4 87.2 87.4 87.6
YOLOV9 Vv - V4 87.4 87.5 87.7
YOLOV9 Vv Vv - 88.1 86.5 87.6
YOLOvV9 Vv Vv v 88.5 86.3 88.0
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Fig. 5: Results Comparison

model achieved a Precision of 88.5% and a Recall of 86.3%,
reflecting not only its advantage in recognition accuracy but
also its strong capability in comprehensive object detection.
In contrast, although YOLOVS, YOLOvV10 and YOLOv11 of-
fer faster computational speeds, their mAPs are only 79.3%,
81.1%and 81.0%, respectively, which are significantly lower
than our model, indicating that they may fall short in high-
precision tasks. Overall, our improved model demonstrates
significant accuracy improvements on the SIMD dataset,
laying a solid foundation for future research and applications.

TABLE II: Compare different categories pairwise

Method ImageSize Precision Recall mAP
YOLO-DA 640%640 - - 80.6
YOLO-SE 640%640 83.6 81.9 86.5
MHLDeT 640%640 77.1 82.5 84.7
YOLOvS8 640%640 71.5 71.5 79.3
YOLOv10 640%640 83.7 79.6 81.1
YOLOv11 640*%640 81.1 78.9 81.0
ours 640*640 88.5 86.3 88.0

G. Random Image Detection

In remote sensing image datasets, the detection task is
challenging due to typically small target objects and diverse
categories. From the comparison images, it is evident that
the improved model achieves more precise bounding box
localization in complex backgrounds and dense target sce-
narios. Specifically, the original YOLOV9 model exhibited
missed detections across all images and had noticeable false
detections in the three image. These results indicate that
the improved YOLOvV9 model shows significant performance
enhancement on the SIMD dataset, effectively reducing both
false detections and missed detections. Overall, the detection
accuracy is significantly improved, validating the effective-
ness of our model improvements.

V. CONCLUSION

This paper proposes an improved algorithm based on
YOLOVY, optimized for object detection in remote sens-
ing images. By incorporating the C3_CD_CGA module,
DSConvRepNCSPELAN4 module, and CARAFE module,
we successfully developed a detection model that is better
suited for aerial imagery on the foundation of the YOLOvV9
algorithm. These modules integrate advanced feature ex-
traction, feature grouping, multi-level feature fusion, and

Volume 52, Issue 3, March 2025, Pages 840-847



TAENG International Journal of Computer Science

Google Earth

i1
Google Earth o

contextual information processing techniques, significantly
enhancing the model’s performance in complex backgrounds
and multi-scale target detection. Experimental results on
the SIMD dataset demonstrate a notable improvement in
detection accuracy. The introduction of the C3_CD_CGA
module enables the model to better capture both local and
global features of the targets, achieving multi-class object
detection. Meanwhile, the DSConvRepNCSPELAN4 and
CARAFE modules further improve detection accuracy by
optimizing the convolution and upsampling processes. Ex-
perimental results indicate that the improved YOLOv9 model
achieves a 1.6% increase in mean accuracy on the SIMD
dataset compared to the baseline YOLOvV9 model. However,
the improved YOLOV9 still faces some false positive issues
when dealing with shadow occlusion. Overall, this study
provides new ideas and technical foundations for more effi-
cient object detection models in aerial imagery. Future work
could explore solutions to address shadow occlusion issues
and further achieve model lightweighting while maintaining
detection accuracy.
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