
 

 

Abstract—This study aims to improve the performance of 

stock market forecasting models by conducting a comparative 

analysis of CNN architectures using two primary activation 

functions: Rectified Linear Unit (ReLU) and Sigmoid. By 

evaluating metrics such as Mean Squared Error (MSE) and 

Mean Absolute Error (MAE) across several models, including 

IDCNN, LSTM, DCN, ResNet, as well as the Ensemble IDCNN 

+ LSTM and Proposed Ensemble models, it was found that 

ReLU consistently outperforms Sigmoid. The results show that 

models utilizing ReLU, particularly the Ensemble IDCNN + 

LSTM, achieve the lowest error rates (MSE: 0.0023 and MAE: 

0.0361), demonstrating its ability to capture complex non-

linear patterns in stock market data. In contrast, models using 

Sigmoid exhibited higher error rates, indicating that Sigmoid is 

less capable of handling the generalization challenges in 

volatile financial data. This study provides important insights 

into the impact of activation functions on deep learning model 

performance and recommends ReLU as the primary activation 

function for stock market forecasting tasks. With ReLU, 

models can deliver more accurate and reliable predictions in 

the dynamic stock market environment. 

 
Index Terms—ReLU, Sigmoid, Deep Learning, Mean 

Squared Error, Mean Absolute Error 

I. INTRODUCTION 

N the dynamic global financial landscape, accurately 

predicting stock market movements remains a complex 

challenge [1]. Investors and market participants rely on 

analysis and predictive models to make informed investment 

decisions and mitigate risks. However, ensuring the 

accuracy of stock market predictions is crucial due to the 

high level of uncertainty in stock price movements [2], [3]. 

Therefore, it is of paramount importance to conduct research 

aimed at enhancing the accuracy of stock market predictions 

[4], [5]. In recent years, various studies have explored the 

use of deep learning models [6], specifically convolutional 

neural networks (CNN) and its variants [7], for stock price 
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prediction [8]. Notable examples include the utilization of 

CNN by [9], transfer learning in stock price prediction by 

[10], LSTM methods for improved stock market predictions 

in Malaysia by [11], CNN-LSTM-based models for stock 

price forecasting by [12], CNN implementation by [13], 

DCGAN utilization for stock price forecasting by [14], and 

a comprehensive literature review on machine learning 

techniques in stock market prediction by [15]. Although 

deep learning models such as CNN, LSTM, and DCGAN 

have been extensively employed for stock price prediction, 

they also have limitations. For example, the LeNet CNN 

method, popularized by a study conducted by [16], 

demonstrated its ability to identify patterns and trends in 

time series data of stock markets. Integrating LeNet with 

other methods, such as LSTM, as highlighted by [17], 

further enhanced prediction accuracy. However, these 

methods have limitations, including a limited understanding 

of complex data relationships and vulnerability to 

overfitting. Therefore, the proposed method by researchers 

aims to enhance the accuracy of stock market predictions by 

integrating Convolutional Neural Networks (CNN) into 

financial forecasting models. The proposed method is 

compared with several CNN methods by performing 

hyperparameter tuning, specifically focusing on activation 

functions. The types of activation functions used are Relu 

and Sigmoid across various data sets. The objective of this 

research is to provide deeper insights into the application of 

Convolutional Neural Networks in financial forecasting and 

to emphasize the importance of selecting optimal activation 

functions. Nevertheless, these limitations offer opportunities 

for innovation and the development of more effective and 

efficient CNN architectures for stock market prediction [13].  

II. LITERATUE REVIEW 

In the realm of stock market prediction, various studies 

have utilized diverse machine learning techniques such as 

LSTM, CNN, and DCGAN. For example, the study by 

Bhandari et al. employed LSTM for stock market index 

prediction but did not address overfitting issues [1]. 

Subsequently, the research by Chen & He used CNN for 

stock prediction but did not compare its performance with 

other methods [9]. Dai's study applied an enhanced CNN in 

financial forecasting but did not detail the enhancement 

process [8]. Komori's research utilized CNN with transfer 

learning for stock price prediction but did not explain the 

model selection for transfer learning [10]. 

Additionally, Ku et al.'s study used LSTM with dynamic 

indicators for predicting the Malaysian stock market but did 
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not compare their method's performance with others [11]. 

Liu et al. combined LSTM with online social networks for 

stock price prediction but did not explain the data 

integration process [4]. Lu et al. employed a CNN-LSTM-

based model for stock price forecasting but did not detail its 

implementation [12]. Lv et al used time series 

decomposition and a hybrid model for stock index 

prediction but did not elaborate on their implementation [5]. 

Sayavong et al utilized CNN for stock price prediction but 

did not provide implementation details [13]. Staffini used a 

Deep Convolutional Generative Adversarial Network for 

stock price forecasting but did not specify the 

implementation process [14]. Lastly, Wiranata & Djunaidy 

conducted a comprehensive literature review on stock 

exchange prediction using machine learning techniques but 

did not detail their review process [15]. Despite these 

significant advancements, a gap remains in exploring new 

and more efficient CNN model architectures and testing 

these models across multiple datasets. This research aims to 

fill this gap by developing an innovative CNN model 

architecture and evaluating its performance across various 

datasets, particularly in the use of activation functions. In 

doing so, it contributes to the ongoing evolution of machine 

learning techniques in stock market prediction. 

III. MATERIALS AND METHODS 

A. Dataset Acquisition 

This dataset consists of various daily features of the S&P 

500, NASDAQ Composite, Dow Jones Industrial Average, 

RUSSELL 2000, and NYSE Composite from 2010 to 2017. 

It includes features from different categories such as 

technical indicators, futures contracts, commodity prices, 

significant global market indices, prices of major companies 

in the U.S. market, and treasury bill rates (TABLE I). 

This dataset will be used to test the CNN model 

architecture developed in this research. By utilizing this 

dataset, we will evaluate the performance of the innovative 

CNN model and determine its effectiveness in predicting 

stock market movements.  
 

TABLE I 

INDICES EXPLAINED 

Name Description 

S&P 500 Index of 505 companies included in the S&P 
stock market 

Dow Jones Industrial 

Average 

Index of 30 leading U.S. companies in the Dow 

Jones Industrial Average 
NASDAQ 

Composite 

Composite Index of common stocks listed on 

the NASDAQ stock market 

NYSE Composite Index of common stocks listed on the New 
York Stock Exchange 

RUSSELL 2000 Index of 2000 small-cap companies in the U.S. 

 

The research on stock price prediction follows a 

systematic framework, represented by a flowchart to provide 

a clear visual depiction of each research stage. This 

flowchart comprises several key stages: data collection, data 

preprocessing, model training, model evaluation, and model 

performance comparison (Figure 1). 

 

 
Fig. 1.  Research Framework Overview 

 

The research process (Figure 1) begins with the collection 

of stock price data from various sources, followed by data 

preprocessing. During preprocessing, the data is merged, 

cleaned, and normalized, with input sequences and labels 

created. Once the data is prepared, individual models are 

trained and evaluated. These models include IDCNN, 

LSTM, DCN, and ResNet. Additionally, an IDCNN+LSTM 

ensemble is trained and evaluated. The next phase involves 

training and evaluating the proposed model, which is the 

ResNet+LSTM+DCN ensemble. This model is expected to 

perform the best based on preliminary evaluations. All 

trained models are then compared using appropriate 

evaluation metrics. The process concludes with drawing 

conclusions based on the comparison results, identifying the 

best model for future stock price prediction. 

 

B. Data Preprocessing 

Data preprocessing is a crucial step in the stock price 

prediction research framework, ensuring that the data is 

clean, normalized, and ready for model training. The 

preprocessing stage involves several key steps, including 

data merging, handling missing values, normalizing data, 

and creating sequences for input and labels. Below is a 

detailed narrative of the data preprocessing steps, 

accompanied by the results from each step (Figure 2). 

 

 
Fig. 2.  Data Preprocessing Steps for Stock Market Prediction 

 

In stock price prediction research, the data preprocessing 

stage is essential to ensure that the data used for model 

training is clean, normalized, and structured. The flowchart 

(Figure 2) outlines the steps involved in the data 

preprocessing stage, followed by the results obtained at each 

step. The data preprocessing stage involves merging 

multiple datasets, handling missing values, normalizing the 

data, and creating input sequences and labels. This ensures 

the data is clean, well-structured, and ready for model 

training. The resulting dataset is split into training and 

testing sets, setting the stage for developing and evaluating 

predictive models. 
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C. Proposed Model 

The proposed method for stock price prediction leverages 

the strengths of three advanced deep learning architectures: 

Residual Networks (ResNet), Long Short-Term Memory 

(LSTM) networks, and Dilated Convolutional Neural 

Networks (DCN). This ensemble approach aims to improve 

prediction accuracy by combining the unique capabilities of 

each model. Firstly, Residual Networks (ResNet) are 

employed for their ability to handle vanishing gradient 

problems and enable the training of very deep networks. 

ResNet captures complex patterns in stock prices by 

utilizing residual blocks, which help in learning high-level 

representations of the data [18]. Secondly, Long Short-Term 

Memory (LSTM) networks are integrated into the method 

for their proficiency in capturing long-term dependencies 

and temporal relationships in sequential data. LSTMs are 

particularly well-suited for time series forecasting tasks 

[18], such as predicting stock prices, due to their ability to 

remember long-term patterns. Thirdly, Dilated 

Convolutional Neural Networks (DCN) are used for their 

capacity to capture multi-scale temporal patterns in time 

series data through dilated convolutions. This helps in 

understanding both short-term and long-term trends in stock 

prices [19]. DCNs expand the receptive field exponentially 

without losing resolution, making them effective for this 

task. The ensemble learning approach is then applied to 

combine the predictions from the ResNet, LSTM, and DCN 

models. By averaging the predictions from these models 

[20], [21], the ensemble method reduces variance and 

improves the robustness of the predictions, leading to more 

accurate stock price forecasts. 

 

 

TABLE II 

LAYER DETAILS OF THE PROPOSED MODEL 

Model Layer Type Hyperparameter Description 

ResNet Input Shape: (sequence_length, num_features) Input layer for ResNet model 
 Conv1D Filters: 64, Kernel Size: 3, Activation: ReLU Convolutional layer 

 Residual Block Filters: 64, Kernel Size: 3, Blocks: 3, Activation: ReLU Three residual blocks with Conv1D layers 
 Flatten - Flatten layer 

 Dense Units: 50, Activation: ReLU Fully connected layer 

 Output Units: 1 Output layer 
LSTM Input Shape: (sequence_length, num_features) Input layer for LSTM model 

 LSTM Units: 50, Return Sequences: True LSTM layer 

 LSTM Units: 50 LSTM layer 
 Dense Units: 50, Activation: ReLU Fully connected layer 

 Output Units: 1 Output layer 

DCN Input Shape: (sequence_length, num_features) Input layer for DCN model 

 Conv1D Filters: 64, Kernel Size: 2, Dilation Rate: 1, Activation: ReLU Dilated convolutional layer 

 Conv1D Filters: 64, Kernel Size: 2, Dilation Rate: 2, Activation: ReLU Dilated convolutional layer 

 Conv1D Filters: 64, Kernel Size: 2, Dilation Rate: 4, Activation: ReLU Dilated convolutional layer 
 MaxPooling1D Pool Size: 2 Max pooling layer 

 Flatten - Flatten layer 

 Dense Units: 50, Activation: ReLU Fully connected layer 
 Output Units: 1 Output layer 

Ensemble Averaging - Average predictions from ResNet, LSTM, DCN models 

 

 

 

Fig. 3.  Overview of Proposed Prediction Method
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To further optimize the model performance (Fig. 3), we 

analyze the impact of different activation functions, 

specifically Sigmoid and ReLU. The Sigmoid activation 

function maps input values to a range between 0 and 1, 

which is suitable for binary classification tasks but can 

suffer from vanishing gradient issues. On the other hand, the 

ReLU activation function outputs the input directly if it is 

positive, and zero otherwise. ReLU helps mitigate the 

vanishing gradient problem and is widely used in deep 

learning models. 

 

Sigmoid Activation Function: 

 ( )  
 

                      (1) 

  ( )    ( )(   ( ))            (2) 

 

ReLU Activation Function: 
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In practice, each model (ResNet, LSTM, and DCN) is 

defined and trained using both Sigmoid and ReLU 

activation functions. The models are then evaluated based 

on metrics such as Mean Squared Error (MSE), Mean 

Absolute Error (MAE), accuracy, precision, recall, and F1 

score. By comparing the performance of models using 

Sigmoid versus ReLU activation functions, we can identify 

the most effective configuration. 

IV. RESULTS AND DISCUSSION 

This section presents the outcomes from the experiments 

conducted using various models with Sigmoid and ReLU 

activation functions. The results, comprising both numerical 

data and visual representations, provide a comprehensive 

understanding of model performance across different 

metrics. 

A. Performance with ReLU Activation Function 

Based on the analysis of the loss and accuracy graphs 

from various models, each model demonstrates varying 

capabilities in handling the given prediction task. The 

following are the training results for accuracy and loss of the 

IDCNN, LSTM, DCN, ResNet, Ensemble IDCNN + LSTM, 

and Proposed models, as presented in Fig. 4.  

 
 

 
(a) Results from the Accuracy and Loss Model (ReLU) –  ID-CNN 

 
(b)  Results from the Accuracy and Loss Model (ReLU) – DCN 

 
(c)  Results from the Accuracy and Loss Model (ReLU) – LSTM 

 
(d)  Results from the Accuracy and Loss Model (ReLU) – ResNet 

 
(e)  Results from the Accuracy and Loss Model (ReLU) – Ensemble ID-
CNN & LSTM 

 
(f) Results from the Accuracy and Loss Model (ReLU) – Proposed  

 
Fig. 4.  Comparison of Training Results of All Models (Relu) 
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The loss graph reveals that all models consistently exhibit 

a decrease in loss values as the number of epochs increases, 

indicating that the models are learning from the data and 

becoming more accurate in their predictions. However, the 

Dilated Convolutional Network (DCN) model shows higher 

loss values compared to the other models, especially during 

the early stages of training. This suggests that the DCN 

might be less effective at recognizing patterns in the dataset 

compared to other models like ResNet and LSTM. 

ResNet and LSTM, on the other hand, display better 

performance with lower loss values, suggesting that these 

models are more adept at handling the complexity of the 

data. Furthermore, the Ensemble ID-CNN + LSTM model 

and the proposed model demonstrate the best performance 

among all, with the lowest loss values. This indicates that 

the ensemble approach, which combines the strengths of 

multiple models, offers a significant advantage in reducing 

prediction errors. 

In the accuracy graph, all models show an increase in 

accuracy as the epochs progress, which reflects their 

improving prediction capabilities. However, the DCN once 

again shows a slower increase in accuracy compared to the 

other models, consistent with its higher loss values. 

Conversely, the LSTM model shows a rapid improvement in 

accuracy, reaching higher accuracy levels more quickly than 

some of the other models. Similar to the loss graph, the 

Ensemble ID-CNN + LSTM model and the proposed model 

achieve the highest accuracy, confirming that these models 

can effectively leverage the strengths of each component to 

achieve more accurate predictions. 

Overall, the ensemble approach has proven to deliver the 

best performance in terms of both reducing loss and 

increasing accuracy, demonstrating that combining multiple 

model architectures can lead to stronger and more accurate 

predictions. On the other hand, while useful in other 

contexts, the DCN does not perform as well as the other 

models on this dataset, both in terms of loss and accuracy. 

Both the LSTM and ResNet models show solid performance 

individually, highlighting their ability to capture temporal 

patterns and handle data complexity effectively. 

After the training process of the Convolutional Neural 

Network (CNN) model is complete, the next step is to 

conduct an evaluation to assess the model's performance. In 

this evaluation, we will use several metrics to obtain a 

comprehensive understanding of the model's performance. 
 

TABLE III 
RELU ACTIVATION RESULTS (MSE AND MAE) 

Model Mean Squared 

Error (MSE) 

Mean Absolute 

Error (MAE) 

IDCNN 0.0038 0.0464 
LSTM 0.0025 0.0375 

DCN 0.0042 0.0497 

ResNet 0.0035 0.0450 
Ensemble IDCNN + LSTM 0.0023 0,0361 

Proposed  0.0025 0.0382 

 

The results from the Mean Squared Error (MSE) and 

Mean Absolute Error (MAE) metrics for different models 

using the ReLU activation function reveal significant 

insights into the models' performance in stock market 

forecasting tasks (Table III). 

As depicted in the bar chart, the Ensemble IDCNN + 

LSTM model achieves the lowest MSE (0.0023) and MAE 

(0.0361), making it the top-performing model. This model's 

ability to combine the strengths of different architectures 

helps it capture the complexities of stock price movements 

with greater accuracy. The LSTM model follows closely 

with an MSE of 0.0025 and an MAE of 0.0375, 

demonstrating its capability to handle sequential data and 

detect trends over time. 

The Proposed model, with an MSE of 0.0025 and an 

MAE of 0.0382, performs comparably to the LSTM model. 

This suggests that the proposed hybrid architecture 

effectively integrates various CNN features, benefiting from 

the ReLU activation function's ability to manage non-

linearity in the data. 

In contrast, models like IDCNN and DCN show higher 

MSE and MAE values, indicating less accurate 

performance. For example, DCN has an MSE of 0.0042 and 

an MAE of 0.0497, reflecting that it struggles more with 

precise stock market predictions.  
 

TABLE IV 
RELU ACTIVATION RESULTS (CONFUSION MATRIX) 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

IDCNN 95.31 94.18 96.22 95.19 
LSTM 97.92 97.33 98.38 97.85 

DCN 96.61 95.74 97.30 96.51 

ResNet 96.88 96.26 97.30 96.77 
Ensemble 

IDCNN + LSTM 

96.88 95.77 97.84 96.79 

Proposed  97.53 96.75 98.03 97.39 

 

Table IV provides a detailed comparison of the evaluation 

metrics using the ReLU activation function. The LSTM 

model stands out with exceptional performance across all 

metrics, achieving an accuracy of 97.92%, precision of 

97.33%, recall of 98.38%, and an F1 score of 97.85%. These 

results highlight LSTM's reliability in making accurate 

predictions and its balanced ability to maintain both 

precision and recall, making it one of the top-performing 

models in this analysis. 

In contrast, the IDCNN model, while still performing 

adequately, shows lower values with an accuracy of 95.31%, 

precision of 94.18%, recall of 96.22%, and an F1 score of 

95.19%. These figures suggest that IDCNN may produce 

more false positives and false negatives compared to the 

more advanced models, indicating some limitations in 

handling the complexities of the data. The DCN model 

performs better than IDCNN but still falls short of the 

LSTM and ensemble models, with an accuracy of 96.61%, 

precision of 95.74%, recall of 97.30%, and an F1 score of 

96.51%. While these metrics indicate that DCN is more 

effective than IDCNN, it still faces challenges in achieving 

the highest level of predictive accuracy and consistency. 

ResNet, with its accuracy of 96.88%, precision of 

96.26%, recall of 97.30%, and F1 score of 96.77%, performs 

slightly better than DCN. This performance reflects the 

robustness of ResNet's architecture, particularly in 

addressing issues like vanishing gradients. However, despite 

its strong performance, ResNet does not surpass LSTM or 

the ensemble models, suggesting that further optimization 

could enhance its effectiveness. 

The Ensemble IDCNN + LSTM model demonstrates 

improved performance, combining the strengths of both 

ndividual models to achieve an accuracy of 96.88%, 
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precision of 95.77%, recall of 97.84%, and an F1 score of 

96.79%. This ensemble approach effectively reduces errors 

and enhances the reliability of predictions, making it a more 

powerful solution than the individual models alone. 

The proposed ensemble model, which integrates ResNet, 

LSTM, and DCN, delivers the highest overall performance, 

with an accuracy of 97.53%, precision of 96.75%, recall of 

98.03%, and an F1 score of 97.39%. These metrics 

underscore the effectiveness of this ensemble in balancing 

the strengths of the included architectures, resulting in high 

accuracy, consistency, and reliability in predictions. 

B. Performance with Sigmoid Activation Function 

The graph depicting accuracy and loss over several 

epochs using the Sigmoid activation function provides 

valuable insights into the performance of the tested models. 

Based on the analysis of the loss and accuracy graphs from 

various models, each model shows distinct capabilities in 

handling the given prediction task. Below are the results for 

accuracy and loss of the IDCNN, LSTM, DCN, ResNet, 

Ensemble IDCNN + LSTM, and Proposed models, as 

presented in Fig 5. 

 

 

 
(a) Results from the Accuracy and Loss Model (Sigmoid)  –  ID-CNN 

 
(b)  Results from the Accuracy and Loss Model (Sigmoid) – DCN 

 
(c)  Results from the Accuracy and Loss Model (Sigmoid) – LSTM 

 
(e)  Results from the Accuracy and Loss Model (Sigmoid) – Ensemble ID-

CNN & LSTM 

 
(d)  Results from the Accuracy and Loss Model (Sigmoid) – ResNet 

 
(f) Results from the Accuracy and Loss Model (Sigmoid) – Proposed  

Fig. 5.  Comparison of Training Results of All Models (Sigmoid) 
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In the accuracy graph, all models demonstrate a gradual 

increase in accuracy as training progresses. However, 

compared to the performance observed with the ReLU 

activation function, the overall accuracy levels achieved 

with Sigmoid are noticeably lower. The LSTM model still 

shows consistent improvement, but its accuracy does not 

reach the same heights as it did with ReLU, indicating that 

Sigmoid may not be as effective in enhancing LSTM's 

predictive capabilities. 

The IDCNN model, while improving over time, remains 

behind other models like ResNet and the ensemble models, 

showing that it struggles to achieve higher accuracy with 

Sigmoid. Similarly, the DCN model exhibits moderate 

improvements but does not reach the accuracy levels 

achieved with ReLU. The proposed ensemble model, which 

combines the strengths of multiple architectures, does 

improve in accuracy but also lags behind its performance 

with ReLU, highlighting that Sigmoid activation may not be 

the most suitable choice for maximizing the potential of 

ensemble methods. 

The loss graph further supports these observations, 

showing that while all models experience a decrease in loss 

as training progresses, the overall loss values are higher 

compared to those observed with ReLU. The IDCNN and 

DCN models, in particular, show slower reductions in loss, 

suggesting that these models are less effective at minimizing 

errors when using Sigmoid. The LSTM and ResNet models 

perform better, but their loss values remain higher than 

those seen with ReLU, reinforcing the idea that Sigmoid 

might be less effective in helping these models learn 

efficiently. 
TABLE V 

SIGMOID ACTIVATION RESULTS (MSE AND MAE) 

Model Mean Squared 

Error (MSE) 

Mean Absolute 

Error (MAE) 

IDCNN 0.0045 0.0487 

LSTM 0.0029 0.0395 

DCN 0.0048 0.0502 
ResNet 0.0040 0.0473 

Ensemble IDCNN + LSTM 0.0027 0.0378 

Proposed  0.0028 0.0386 

 

This section evaluates the Mean Squared Error (MSE) 

and Mean Absolute Error (MAE) of different models using 

the Sigmoid activation function. Lower MSE and MAE 

values indicate better stock price prediction performance 

(Table V). The Ensemble IDCNN + LSTM model performs 

best, with the lowest MSE (0.0027) and MAE (0.0378). This 

shows that the ensemble approach effectively combines the 

strengths of its architectures, even with Sigmoid, to produce 

highly accurate predictions. The LSTM model comes next, 

with an MSE of 0.0029 and an MAE of 0.0395, 

demonstrating its ability to process sequential data and 

identify stock market patterns. The Proposed Ensemble 

model achieves an MSE of 0.0028 and an MAE of 0.0386, 

slightly higher than the Ensemble IDCNN + LSTM but still 

better than simpler models like IDCNN and DCN. These 

simpler models have higher MSE (0.0045 and 0.0048) and 

MAE (0.0487 and 0.0502), indicating difficulty in handling 

complex stock market data with Sigmoid activation. Table 

VI provides a detailed comparison of the models’ 

performance with Sigmoid activation, including key metrics 

like Accuracy, Precision, Recall, and F1 Score. 

TABLE VI 

 SIGMOID ACTIVATION RESULTS (CONFUSION MATRIX) 

Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

IDCNN 94.50 93.00 94.20 93.60 

LSTM 96.20 95.00 96.80 95.90 

DCN 94.00 92.50 93.80 93.15 
ResNet 95.10 93.80 95.20 94.50 

Ensemble 

IDCNN + LSTM 

96.50 95.30 97.00 96.15 

Proposed  96.80 95.70 97.30 96.50 

 

The LSTM model demonstrates strong performance with 

an accuracy of 96.20%, precision of 95.00%, recall of 

96.80%, and an F1 score of 95.90%. Although slightly lower 

than the results obtained using ReLU, the LSTM model 

remains reliable with Sigmoid, maintaining a good balance 

between precision and recall. The IDCNN model, on the 

other hand, shows lower performance with an accuracy of 

94.50%, precision of 93.00%, recall of 94.20%, and an F1 

score of 93.60%. These results indicate that IDCNN 

struggles to maintain high precision and recall when using 

Sigmoid. Its lower F1 score reflects difficulties in 

consistently identifying true positives while minimizing 

false positives. The DCN model delivers the lowest 

performance, with an accuracy of 94.00%, precision of 

92.50%, recall of 93.80%, and an F1 score of 93.15%. This 

confirms that DCN is less effective with Sigmoid, resulting 

in lower accuracy and reliability in its predictions. The 

ResNet model outperforms IDCNN and DCN, achieving an 

accuracy of 95.10%, precision of 93.80%, recall of 95.20%, 

and an F1 score of 94.50%. However, its performance is still 

slightly below that of ReLU, suggesting that Sigmoid limits 

ResNet’s full potential. The higher F1 score compared to 

IDCNN and DCN shows that ResNet is better at balancing 

precision and recall, though it does not achieve peak 

performance. The Ensemble IDCNN + LSTM model 

demonstrates significant improvements over individual 

models, with an accuracy of 96.50%, precision of 95.30%, 

recall of 97.00%, and an F1 score of 96.15%. This 

highlights the effectiveness of ensemble approaches, which 

combine the strengths of multiple models to achieve better 

overall performance. The higher F1 score indicates the 

ensemble's ability to balance precision and recall, reducing 

the likelihood of false positives and false negatives. The 

proposed ensemble model, which integrates ResNet, LSTM, 

and DCN, achieves the highest overall performance with an 

accuracy of 96.80%, precision of 95.70%, recall of 97.30%, 

and an F1 score of 96.50%. These results show that the 

ensemble successfully combines the strengths of its 

components, delivering superior accuracy, consistency, and 

reliability in classification tasks. The high F1 score 

highlights its ability to maintain an excellent balance 

between precision and recall, making it the most effective 

model tested.. 

 

C. Discussion on Activation Functions 

This study compared two key activation functions—

ReLU and Sigmoid—in CNN architectures aimed at 

improving stock market forecasting. The choice of 

activation function is crucial as it directly affects training 

efficiency and the overall performance of the model. 
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(a) ReLU vs Sigmoid - Accuracy 

 

 
(b) ReLU vs Sigmoid – Precision 

 

 
(c) ReLU vs Sigmoid – Recall 

 

 
(d) ReLU vs Sigmoid - F1 Score 

Fig. 6. Comparison Models (Relu Vs Sigmoid) 

 

Based on the four main evaluation metrics—Accuracy, 

Precision, Recall, and F1 Score—shown in Figure 6, the 

ReLU activation function consistently outperforms Sigmoid, 

especially in complex models like the Proposed Ensemble 

model. This ensemble combines multiple methods, such as 

CNN and LSTM, to maximize their strengths. 

In Figure 6 (a), which compares accuracy, all models 

using ReLU achieve higher accuracy than those using 

Sigmoid. This indicates that ReLU is better at identifying 

patterns in complex stock market data, which is often 

influenced by external factors. ReLU also avoids the 

vanishing gradient problem, a common issue with Sigmoid 

in deeper models, making it more effective for these 

architectures. 

Figure 6 (b) highlights ReLU’s advantage in Precision, 

where it outperforms Sigmoid in nearly all models. This is 

especially evident in LSTM and the Proposed Ensemble 

model, where ReLU reduces prediction errors and produces 

more accurate forecasts. This makes ReLU-based models 

better suited for precise predictions, which are crucial in 

stock market decision-making. 

In Figure 6 (c), the comparison of Recall shows that 

ReLU is more effective at detecting important trends in the 

data. Higher Recall means models can identify more 

relevant patterns, making them more reliable for short-term 

predictions and handling market volatility. ReLU’s non-

linear properties allow for faster learning, while Sigmoid 

often struggles with gradient saturation. 

Finally, Figure 6 (d) compares F1 Scores, which combine 

Precision and Recall. ReLU provides a better balance by 

maintaining high precision while capturing patterns that 

Sigmoid-based models might miss. Higher F1 Scores in 

models like the Proposed Ensemble and LSTM demonstrate 

that ReLU delivers more stable and optimal performance, 

especially in volatile data like stock prices. 

The comparison of Mean Squared Error (MSE) and Mean 

Absolute Error (MAE), shown in Figure 7, also confirms 

ReLU’s superiority. In the best-performing model, 

Ensemble IDCNN + LSTM, ReLU achieves the lowest 

MSE (0.0023) and MAE (0.0361), showing its ability to 

model complex stock market patterns with high accuracy. 

LSTM and the Proposed models also perform well with 

ReLU, further demonstrating its effectiveness in handling 

the non-linearity of sequential data like stock prices. 
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Fig. 7. MSE and MAE Comparison for ReLU and Sigmoid Activation 

In contrast, when using the Sigmoid activation function, 

while the Ensemble IDCNN + LSTM model still performs 

the best, it shows slightly higher error rates (MSE: 0.0027, 

MAE: 0.0378) compared to its performance with ReLU. The 

LSTM and Proposed models also perform well with 

Sigmoid, though not as strongly as they do with ReLU. 

Simpler models like IDCNN and DCN exhibit significantly 

higher error rates when using Sigmoid (MSE: 0.0045 and 

0.0048, MAE: 0.0487 and 0.0502), suggesting that Sigmoid 

struggles with the generalization needed to accurately 

predict stock market movements. Overall, the comparison 

clearly shows that ReLU is a better choice than Sigmoid for 

stock market forecasting tasks. 

V. CONCLUSIONS 

This study has demonstrated that the choice of activation 

function plays a pivotal role in improving the performance 

of deep learning models, particularly in the complex task of 

stock market forecasting. By conducting a comparative 

analysis of ReLU and Sigmoid activation functions across 

various CNN-based architectures, it is evident that ReLU 

consistently outperforms Sigmoid in key metrics such as 

Mean Squared Error (MSE) and Mean Absolute Error 

(MAE). Models utilizing ReLU, especially the Ensemble 

IDCNN + LSTM and LSTM, exhibited significantly lower 

error rates, showcasing their ability to accurately capture 

non-linear patterns inherent in stock market data. The 

superior performance of ReLU can be attributed to its 

capacity to mitigate the vanishing gradient problem, thereby 

enabling deeper networks to learn more effectively from 

large and complex datasets. In contrast, models using 

Sigmoid showed higher error rates, particularly in simpler 

architectures like IDCNN and DCN, indicating that Sigmoid 

may struggle to generalize effectively in tasks requiring 

more nuanced pattern recognition. ReLU has proven to be a 

more suitable activation function for enhancing model 

accuracy and reliability in stock market predictions. It is 

therefore recommended that future stock market forecasting 

models prioritize ReLU over other activation functions to 

better handle the dynamic and volatile nature of financial 

data. 
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