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Abstract— The Internet of Things (IoT) has transformed
various fields, including healthcare, through its branch known
as the Internet of Medical Things (IoMT). IoMT enables
remote healthcare systems and applications, providing critical
and emergency healthcare services in urban areas and
connecting isolated rural communities to healthcare. However,
the interconnection of these critical devices is still needed to
reduce costs effectively. To address this challenge, we propose
an intelligent Intrusion Detection System (IDS) for IoMT
networks, leveraging machine learning technology. We utilize
and compare four classification algorithms to determine the
best IDS model: Random Forest, Decision Tree, Gradient
Boosting, and K-Nearest Neighbors. The performance of the
IDS model is evaluated based on accuracy, precision, F1-Score,
TPR, FPR, TNR, and FNR and validated using 10-fold cross-
validation. Test results show that the IDS model using the
Random Forest algorithm achieves the highest performance,
with an accuracy of 99% on the test data.

Index Terms—Internet of Medical Things (IoMT), Machine
Learning, Intrusion Detection System (IDS), Cyber Threat

[. INTRODUCTION

he Internet of Things (IoT) has revolutionized many

fields, including healthcare, by introducing one of its

branches, known as the Internet of Medical Things
(IoMT). IoMT devices are projected to account for 40% of
the IoT market [1]. Remote healthcare systems and
applications are enabled through the Internet of Medical
Things (IoMT), an automated system facilitating critical and
emergency healthcare services in urban areas. Additionally,
it connects isolated rural communities to various healthcare
services [2], [3]. IoMT has emerged as a strategic priority
for future e-healthcare due to its capability to enhance
patient care and its potential to deliver more reliable clinical
data [4]. IoMT systems allow the remote monitoring of
patients with chronic diseases, thereby enabling timely
diagnostics that can potentially save lives in emergencies
[1], [5], [6], In addition to facilitating rapid medical
responses, IoMT also reduces the cost of healthcare

Manuscript received April 27, 2024; revised January 11, 2025. This
research was supported by the Ministry of Education, Culture, Research,
and Technology of the Republic of Indonesia through the National
Competitive Research Program,

M. Agus Syamsul Arifin is a Senior Lecturer at the Universitas Bina
Insan, Lubuklinggau, Indonesia (corresponding author to provide e-mail:
mas.arifin@univbinsainsan.ac.id; mas.agus1988@gmail.com).

A. Taqwa Martadinata is Lecturer at the Universitas Bina Insan,

Lubuklinggau, Indonesia. (e-mail: tagwa@univbinainsan.ac.id).

treatment [7], [8], [9]. However, the interconnectivity of
critical devices within healthcare systems introduces new
vulnerabilities [10], [11]. Apart from critical devices, [oMT
also connects software applications within the healthcare
systems [12], thus exposing various protocols to
accommodate every service in the healthcare system.

Threats that can occur in the IoMT system include DoS
(Denial of Service), DDoS (Distributed Denial of Service),
spoofing [13], and data theft attacks. In cybersecurity,
attackers aim to steal data and launch attacks that can
disrupt data traffic and devices used in IoMT networks. This
is because IoT/IoMT devices generally have limited
computational resources [14], [15] presenting a security gap
susceptible to disabling communication among devices in
[oT/IoMT networks.

The Intrusion Detection System (IDS), a significant
achievement in information security research, can identify
an intrusion, whether it is presently occurring or has already
taken place [16]. This research aims to propose solutions for
addressing cyber threats within the [oMT system through a
machine-learning approach. The dataset chosen for this
study is the CICIoMT2024 [13] dataset, as it includes
communication data from real devices within the IoMT
network. This selection ensures that the developed Intrus
will be more relevant and reliable in detecting threats to the
[IoMT network. The algorithms to be utilized and compared
in this study include Decision Tree (DT), Random Forest
(RF), Gradient Boosting (GB), and K-Nearest Neighbors
(KNN). This research contributes in several ways:

e We are developing an optimal IDS model for threat
detection in IoMT networks using a machine-learning
approach.

e We provide a comparative analysis of the performance of
various classification algorithms in machine learning to
identify the most effective algorithms for integration into
IDS models in IoMT networks. This includes an in-depth
evaluation and comparison of algorithms such as
Random Forest, Decision Tree, Gradient Boosting, and
K-Nearest Neighbors to determine the most effective
IDS model.

This paper is structured as follows: Section 2 presents the
related work. Section 3 describes the design and
methodology of this research. Sections 4 discuss the
experimental results and provide an analysis. Finally,
Section 5 concludes this research.

II. RELATED WORK

A commonly utilized IoT protocol within the IoMT
system is Message Queueing Telemetry Transport (MQTT)
[17]. In this research, the dataset used also uses the MQTT
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protocol. This protocol is widely adopted due to its
subscriber/publisher model, which ensures lightweight
messaging [10], [18], [19]. The MQTT protocol lacks
integrated security, where messages are transmitted as plain
text within data packets [20] making them vulnerable to
potential cyber-attacks [21]. The integration of critical
healthcare devices with IoT protocols has led to a
progressively open communication system resulting in new
and dangerous vulnerabilities. To address this challenge, a
reliable Intrusion Detection System (IDS) is crucial. An
effective approach to developing such a system is by
leveraging machine learning techniques.

Machine learning is a potent technique for constructing an
IDS model by utilizing datasets to train a model capable of
detecting attacks on computer networks. Some research on
the application of machine learning for IDS models in
detecting cyber threats is conducted by Mas Arifin et al.
[22], this research applies machine learning methods to
detect malicious activities on SCADA networks using the
IEC 60870-5-104 protocol. Research conducted by M. Hilda
et al. [23] uses dual IDS which is built using gradient
boosting and decision tree algorithms to detect threats in
computer networks. In the IoT system, research conducted
by K. Alissa et al. [24] utilized various machine learning
algorithms to construct IDS models, including decision
trees, an XGBoost model, and logistic regression, for
detecting botnet malware attacks within devices on IoT

networks.
TABLE1
COMPARISON WITH OTHER WORK

Ref &

Method Pros. And cons.
(year)

A. NB, DT, The IDS model created has good

Binbusay KNN, MLP, performance. However, this research does

yis et al. SVM not utilize a dedicated dataset for IoMT

[12] networks, raising doubts about the

(2022) reliability of the resulting IDS model.

P. MNB, LR, This research compares many machine

Kulshrest ~LRSGD, learning algorithms to find the best IDS

ha et al. LSVC, DT, model. The best IDS model is generated

[27] EVC, BG, using the Adaptive Boosting algorithm.

(2023) RF, GBC, This research does not use the IoMT

XGB, and  dataset in training the IDS model.
ADB

U. Meta- This paper presents the results of research

Zukaib et  Learning using the meta-learning method to build

al. [28] IDS models with good results in detecting

(2024) interference, the datasets used in this study
are WUSTL-IIOT-2021, IoTID20 and
WUSTL-EHMS-2020 these datasets are
generated from general IoT devices and
TIoMT. However, the devices used in the
IoMT dataset in this research paper have
less diverse types and types of devices
when compared to the dataset used by the
author so that the diversity of data in the
dataset in the author's research is more
varied so that it will produce a more
reliable IDS model because the media for
training the IDS model has more varied
data.

Z.Sunet  PSO- The IDS model created has good

al. [29] AdaBoost performance, However, this research uses

(2024) the NSL KDD dataset to create an IDS
model where this dataset contains general
computer network data, not IoT or even
IoMT networks.

Our RF, GB, DT, The IDS model created has good

Work and KNN performance, uses relevant datasets

(2024) IoMT networks and provides multiclass

classification.

Several methods are employed to secure data and devices
within the IoT system from cyber threats. Research
conducted by A. Almogren et al. [25] uses Fuzzy to prevent
Sybil attacks in IoMT networks. The research of R.
Punithavathi et al. [26] used Crypto Hash to guarantee I[oMT
device data from ransomware attacks. Research conducted
by A. Binbusayyis et al. [12] developed an IDS model using
machine learning algorithms to detect threats in the [oMT
network. They utilized the 2018 BoT-IoT dataset as training
material for the IDS model. Research conducted by P.
Kulshrestha et al. [27], U. Zukaib et al. [28], and Z. Sun et
al. [29] utilize various machine learning algorithms to
develop an IDS model for cyber threat detection, but these
studies do not utilize IoMT datasets in constructing IDS
models.

The IDSs do not perform well when the dataset used is
not relevant, as the traffic characteristics between common
computer networks and IoMT differ. Therefore, in this
research, we will utilize relevant datasets to ensure that the
IDS model constructed is reliable in detecting cyber threats
in the IoMT network. In this study, we use a dataset that
encompasses a broader variety of device types and data
sources. This diversity contributes to the robustness of our
IDS models, enabling them to generalize better across
different IoMT scenarios and detect a wider range of
intrusion activities. Table 1 presents previous research
related to the application of machine learning for IDS and
compares it with our study.

Unlike previous studies such as those by Binbusayis et al.
(2022) and Kulshrestha et al. (2023), our research employs
dedicated IoMT datasets. This ensures that our IDS models
are trained and tested on data that accurately reflects the
unique characteristics and challenges of IoMT
environments, enhancing the reliability and applicability of
our results. Our approach supports multiclass classification,
which is a crucial feature for comprehensive intrusion
detection. This capability allows for more granular and
detailed identification of various intrusion types, as opposed
to the binary classification often employed in other studies.
Our IDS model's performance is validated empirically,
demonstrating superior results in terms of detection
accuracy and false alarm rates. This empirical validation
underscores the practical viability of our proposed approach
in real-world [oMT networks.

[II. DESIGN AND METHOD

A. Proposed Method

In this research, we utilize the CICIoMT2024 dataset [13],
which is designed to realistically represent [oMT devices.
This dataset includes 18 attack scenarios involving 40 IToMT
devices, comprising 25 physical devices and 15 simulated
devices. Figure 1 shows the proposed method to find the
best algorithm for the IDS model.

After preprocessing, this dataset consists of 19 classes,
namely:  benign, arp spoofing,  ddos mqtt connect,
ddos_mqtt_publish, dos_mgqtt_connect, dos_mgqtt_publish,
malformed_mgqtt, os_scan, ping_sweep, port_scan, vul_scan,
ddos_icmp, ddos _syn, ddos tcp, ddos udp, dos icmp,
dos_syn, dos_tcp, and dos udp. With a more extensive
range of classes, the IDS model will be more precise in
detecting cyber threats on [oMT networks.
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Fig. 1. Proposed method to find the best algorithm for the IDS model in this study

Then we divided the dataset into training data and test
data, with the training data amounting to 7,160,831 (85%)
samples and the test data amounting to 1,254,521 (15%)
samples. The training data was used to train the IDS model
with various predefined algorithms, measure performance,
and perform validation. This split ensures a sufficient
amount of data for training and validation, supporting the
robustness of the evaluation process. The trained IDS model
was then tested to assess its capability to detect cyber threats
using the test data.

B. Classifier Algorithm

This research employs 4 classification algorithms and
compares them to determine the best algorithm for creating
an IDS model. The algorithms used are Decision tree (DT),
Random forest (RF), Gradient boosting (GB), and K-nearest
neighbors (KNN). The classification algorithms used in this
research are commonly employed to model IDS for
detecting cyber threats in the network.

The research conducted by N. Oliveira et al. [30] used a
Random forest algorithm to detect anomalies with an
intelligent IDS model on computer networks. A study
conducted by D. Upadhyay et al. [31] utilized a gradient-
boosting algorithm for feature selection to be used in
constructed an IDS model for a smart grid network. L.
Ahakonye et al. [32] in their research used decision trees
combined with chi-square to build an IDS model to detect
cyber threats in Industrial Internet of Things (IIoT)
networks. G. Liu et al. [33] in their research used the KNN
algorithm to improve the ability of the IDS model to detect
attacks on wireless sensor networks (WSN).

C.IDS model Performance and Validation

To measure the performance of the IDS model, we use the
accuracy, precision, and F-measure (F1-Score) values. The
confusion matrix is represented as true positive (TP), true

negative (TN), false positive (FP), and false negative (FN).
We also measured the True Positive Rate (TPR), False
Positive Rate (FPR), False Negative Rate (FNR), and True
Negative Rate TNR) values. These metrics provide a
detailed understanding of the IDS model's strengths and
weaknesses, allowing for targeted improvements and
optimizations. By thoroughly evaluating these performance
indicators, we ensure that our IDS model not only detects
intrusions effectively but also minimizes false alarms,
thereby enhancing its practical applicability in real-world
IoMT environments. The performance metrics are
determined by Equations (1)—(8).

(TN+TP)
Accuracy = —— 1)
v (TN+TP+EN+FP)
- TP
Precision = - 2)
(TP+FP)

(Precision x Recall)
F1 Measure = 2

(Precision + Recall) 3)

TPR= —2 4)
(TP+FN)

FPR= —0b )
(FP+TN)

FNR= —— (6)
(FN+TP)

TNR= — > _ (7)
(TN+FP)

This rigorous performance evaluation underscores the
robustness and reliability of our proposed IDS model,
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setting a benchmark for future research in securing loMT
networks. Our comprehensive approach, detailed metric
analysis, and advanced machine learning techniques
collectively contribute to the development of a highly
effective intrusion detection system tailored to the unique
challenges of IoMT cybersecurity.

We use cross-validation to validate the created IDS model
and detect overfitting. Cross-validation is commonly
employed in IDS research using machine learning, as seen
in the research by [34] and [35]. In this study, we used 10-
fold to validate that the IDS model is not overfitting [36].
Cross-validation will randomize the samples for each
repetition with the same relative to the number of subsets
[37].

IV. RESULT AND ANALYSIS

In this section, we will discuss the performance and

le6

validation results of the IDS model and then test the IDS
model using test data that is different from the training data
and compare each algorithm used to create the IDS model.

A. Performance of the IDS Model

We measured the performance of each algorithm used to
model the IDS. As mentioned in the previous section, during
the preprocessing process, we split the dataset into training
data and testing data. Figure 2 and Figure 3 below show the
number of classes in the dataset used in this study. These
figures provide a visual representation of the distribution of
normal data and various types of attacks within the dataset.
Understanding the class distribution is crucial for assessing
the effectiveness of the IDS model, as it highlights the
potential challenges in detecting minority class instances,
which often correspond to more sophisticated or less
frequent attack types.

Comparison of Normal and Attacks in the training data
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Comparison of Normal and

Attacks in the testing data

200000 -

195692

182598

175000 - 172397

156416
150000
137553

125000 -

98595 98432

100000 -

Number of classes

75000 -

50000 A

25000 -

p
p
p
p

ddos_icm)
ddos tcp
ddos_syn
ddos_ud
dos_ud
dos_syn
dos_icm

ddos_matt_connect

0
0

SS

Fig. 3. Comparison of normal data and attacks in the test data

22622

8505 8416

3834 3131 1747

]

05 scan

port scan

ping_sweep

dos_mqtt_connect
malformed_matt
arp_spoofing

dos_matt_publish

ddos_matt_publish

Label

Volume 52, Issue 4, April 2025, Pages 901-919



TAENG International Journal of Computer Science

IDS model performance measurement is carried out to see
the model's ability to detect cyber threats in the IoMT
network. In the results obtained, the accuracy of each IDS
model created with each algorithm used in this study shows
good performance. Table 2 shows the IDS model accuracy
comparison for each algorithm for training data. This
comparison highlights the effectiveness of different machine
learning techniques in identifying potential intrusions within
the network.

TABLEII
IDS MODEL ACCURACY COMPARISON FOR EACH ALGORITHM ON
TRAINING DATA
Classifier Accuracy
Random Forest (RF) 99,8%
Decision Tree (DT) 100%
Gradient Boosting (GB) 99,3%
K Nearest Neighbors (KNN) 99,1%

The high accuracy rates across various algorithms indicate
that the models are well-tuned and capable of discerning
between normal and malicious activities with a high degree
of precision. This is critical for the practical deployment of
IDS in [oMT environments, where the timely and accurate
detection of threats is paramount.

Table 3 shows the IDS model performance using the
Random Forest algorithm, while Table 4 shows the IDS
model performance using the Decision tree for training data.
Table 5 shows the IDS model performance using the
Gradient Boosting algorithm, while Table 6 shows the IDS
model performance using K-Nearest neighbors for training
data. These tables provide a detailed comparative analysis of
how each algorithm performs in terms of detecting
intrusions within the [oMT network.

TABLE III
IDS MODEL PERFORMACE USING RANDOM FOREST ALGORITHM ON TRAINING DATA
Class Precision F1-Score TPR FPR FNR TNR
benign 1.00 1.00 1.00 0.00 0.00 1.00
arp_spoofing 1.00 1.00 1.00 0.00 0.00 1.00
ddos_mqtt connect 1.00 1.00 1.00 0.00 0.00 1.00
ddos_mgqtt_publish 1.00 1.00 1.00 0.00 0.00 1.00
dos_mqtt_connect 1.00 1.00 1.00 0.00 0.00 1.00
dos_mqtt_publish 1.00 1.00 1.00 0.00 0.00 1.00
malformed mgqtt 1.00 1.00 1.00 0.00 0.00 1.00
0s_scan 1.00 1.00 1.00 0.00 0.00 1.00
ping_sweep 1.00 1.00 1.00 0.00 0.00 1.00
port_scan 1.00 1.00 1.00 0.00 0.00 1.00
vul_scan 1.00 1.00 1.00 0.00 0.00 1.00
ddos_icmp 1.00 1.00 1.00 0.00 0.00 1.00
ddos_syn 1.00 1.00 1.00 0.00 0.00 1.00
ddos_tcp 1.00 1.00 1.00 0.00 0.00 1.00
ddos_udp 1.00 1.00 1.00 0.00 0.00 1.00
dos_icmp 1.00 1.00 1.00 0.00 0.00 1.00
dos_syn 1.00 1.00 1.00 0.00 0.00 1.00
dos_tcp 1.00 1.00 1.00 0.00 0.00 1.00
dos_udp 1.00 1.00 1.00 0.00 0.00 1.00
TABLE IV
IDS MODEL PERFORMACE USING DECISION TREE ALGORITHM ON TRAINING DATA
Class Precision F1-Score TPR FPR FNR TNR
benign 1.00 1.00 1.00 0.00 0.00 1.00
arp_spoofing 1.00 1.00 1.00 0.00 0.00 1.00
ddos_mqtt connect 1.00 1.00 1.00 0.00 0.00 1.00
ddos_mgqtt_publish 1.00 1.00 1.00 0.00 0.00 1.00
dos_mqtt_connect 1.00 1.00 1.00 0.00 0.00 1.00
dos_mqtt_publish 1.00 1.00 1.00 0.00 0.00 1.00
malformed mgqtt 1.00 1.00 1.00 0.00 0.00 1.00
0s_scan 1.00 1.00 1.00 0.00 0.00 1.00
ping_sweep 1.00 1.00 1.00 0.00 0.00 1.00
port_scan 1.00 1.00 1.00 0.00 0.00 1.00
vul_scan 1.00 1.00 1.00 0.00 0.00 1.00
ddos_icmp 1.00 1.00 1.00 0.00 0.00 1.00
ddos_syn 1.00 1.00 1.00 0.00 0.00 1.00
ddos_tcp 1.00 1.00 1.00 0.00 0.00 1.00
ddos_udp 1.00 1.00 1.00 0.00 0.00 1.00
dos_icmp 1.00 1.00 1.00 0.00 0.00 1.00
dos_syn 1.00 1.00 1.00 0.00 0.00 1.00
dos_tcp 1.00 1.00 1.00 0.00 0.00 1.00
dos_udp 1.00 1.00 1.00 0.00 0.00 1.00
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TABLEV
IDS MODEL PERFORMACE USING GRADIENT BOOSTING ALGORITHM ON TRAINING DATA
Class Precision F1-Score TPR FPR FNR TNR
benign 0.97 0.98 0.98 0.00 0.02 0.99
arp_spoofing 0.80 0.79 0.78 0.00 0.22 0.99
ddos_mqtt connect 1.00 1.00 1.00 0.00 0.00 1.00
ddos_mgqtt_publish 1.00 1.00 1.00 0.00 0.00 1.00
dos_mqtt_connect 1.00 1.00 1.00 0.00 0.00 1.00
dos_mqtt_publish 0.99 1.00 1.00 0.00 0.00 1.00
malformed mqtt 0.85 0.80 0.76 0.00 0.24 0.99
0s_scan 0.87 0.68 0.55 0.00 0.45 0.99
ping_sweep 0.68 0.47 0.35 0.00 0.65 0.99
port_scan 091 0.94 0.94 0.00 0.04 0.99
vul_scan 0.67 0.56 0.48 0.00 0.52 0.99
ddos_icmp 1.00 1.00 1.00 0.00 0.00 1.00
ddos_syn 1.00 1.00 1.00 0.00 0.00 1.00
ddos_tcp 1.00 1.00 1.00 0.00 0.00 1.00
ddos_udp 1.00 1.00 1.00 0.00 0.00 1.00
dos_icmp 1.00 1.00 1.00 0.00 0.00 1.00
dos_syn 1.00 1.00 1.00 0.00 0.00 1.00
dos_tcp 1.00 1.00 1.00 0.00 0.00 1.00
dos_udp 1.00 1.00 1.00 0.00 0.00 1.00
TABLE VI
IDS MODEL PERFORMACE USING K-NEAREST NEIGHBORS ALGORITHM ON TRAINING DATA
Class Precision F1-Score TPR FPR FNR TNR
benign 1.00 1.00 1.00 0.00 0.00 1.00
arp_spoofing 1.00 1.00 1.00 0.00 0.00 1.00
ddos_mgqtt connect 1.00 1.00 1.00 0.00 0.00 1.00
ddos_mgqtt_publish 1.00 1.00 1.00 0.00 0.00 1.00
dos_mqtt_connect 1.00 1.00 1.00 0.00 0.00 1.00
dos_mqtt_publish 1.00 1.00 1.00 0.00 0.00 1.00
malformed mgqtt 1.00 1.00 1.00 0.00 0.00 1.00
0s_scan 1.00 1.00 1.00 0.00 0.00 1.00
ping_sweep 1.00 1.00 1.00 0.00 0.00 1.00
port_scan 1.00 1.00 1.00 0.00 0.00 1.00
vul_scan 1.00 1.00 1.00 0.00 0.00 1.00
ddos_icmp 1.00 1.00 1.00 0.00 0.00 1.00
ddos_syn 1.00 1.00 1.00 0.00 0.00 1.00
ddos_tcp 1.00 1.00 1.00 0.00 0.00 1.00
ddos_udp 1.00 1.00 1.00 0.00 0.00 1.00
dos_icmp 1.00 1.00 1.00 0.00 0.00 1.00
dos_syn 1.00 1.00 1.00 0.00 0.00 1.00
dos_tcp 1.00 1.00 1.00 0.00 0.00 1.00
dos_udp 1.00 1.00 1.00 0.00 0.00 1.00

Based on the performance results of the IDS (Intrusion
Detection System) model evaluated on the training data
using various algorithms the Random Forest algorithm
demonstrates perfect performance across all classes with
Precision, F1-Score, TPR (True Positive Rate), FPR (False
Positive Rate), FNR (False Negative Rate), and TNR (True
Negative Rate) all achieving values of 1.00 or 100%. This
indicates that the model accurately detects all types of
attacks and benign data without any errors. Similar to
Random Forest, the Decision Tree algorithm also exhibits
perfect performance across all classes with Precision, F1-
Score, TPR, FPR, FNR, and TNR all scoring 1.00. This
demonstrates that the model is highly effective in
identifying all types of attacks and benign data.

For the Gradient Boosting algorithm, the model
performance varies slightly among the classes. Several
classes such as benign, ddos_mqtt connect,
ddos_mqtt publish, dos mqtt connect, dos mgqtt publish,
ddos_icmp, ddos syn, ddos tcp, ddos udp, dos icmp,
dos syn, dos tcp, and dos udp maintain perfect
performance. However, some classes like arp spoofing,
malformed mgqtt, os_scan, ping_sweep, and vul_scan show
variations with lower Precision, and F1-Score values,

indicating some detection errors. The K-Nearest Neighbors
algorithm demonstrates perfect performance across all
classes with Precision, F1-Score, TPR, FPR, FNR, and TNR
all achieving values of 1.00. This indicates that the model is
also highly effective in detecting all types of attacks and
benign data. Overall, the IDS model exhibits excellent
performance on the training data with minor variations
observed in the Gradient Boosting algorithm. The Random
Forest, Decision Tree, and K-Nearest Neighbors algorithms
show perfect performance across all classes.

The performance of each model trained using the training
data in this study is shown in the confusion matrix. Figure 4
presents the confusion matrix for the Random Forest
algorithm, illustrating its ability to correctly classify normal
and attack data points. Figures 5 and 6 display the confusion
matrices for the Decision Tree and Gradient Boosting
algorithms, respectively, highlighting their classification
performance and the distribution of true positives, true
negatives, false positives, and false negatives. Figure 7
shows the confusion matrix results for the K-Nearest
Neighbors algorithm, further detailing its effectiveness in
distinguishing between normal and attack data.
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Fig. 7. Confusion Matrix for K-Nearest neighbors Algorithm on Training Data
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Fig. 8. Comparison of Cross-Validation Results for Each Algorithm

The results of measuring the performance of the IDS
model can show that the Gradient Boosting algorithm
achieves lower results compared to IDS models with other
algorithms. To validate the IDS model, we perform cross-
validation to ensure that the IDS model created does not
have overfitting. We used 10-fold cross-validation to

validate the generated IDS model. Figure 8 shows the graph
of IDS model validation results for each algorithm used. The
result of cross-validation indicates that there is no
overfitting in the IDS model created, this indicates that the
IDS model built is valid.
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B. Testing the IDS Model

In this study, we tested the IDS model that had been built
using the test data that had been separated previously. To
ensure relevant testing, the test data was split during the
preprocessing of the dataset. Table 7 shows the IDS model
accuracy comparison for each algorithm for training data.

TABLE VII
IDS MODEL ACCURACY COMPARISON FOR EACH ALGORITHM ON TESTING
DATA
Classifier Accuracy
Random Forest (RF) 99%
Decision Tree (DT) 78%
Gradient Boosting (GB) 78%
K Nearest Neighbors (KNN) 98%

Based on Table 7, the comparison of IDS model accuracy
for each algorithm on the testing data shows that Random

Forest (RF) achieved the highest accuracy at 99%, followed
by K-Nearest Neighbors (KNN) with 98%. Meanwhile,
Decision Tree (DT) and Gradient Boosting (GB) both
achieved an accuracy of 78%. These results indicate that the
Random Forest and KNN algorithms outperform Decision
Tree and Gradient Boosting in identifying patterns in the test
data. Further analysis of the performance of each algorithm
can be found in the following tables, where Tables 8 to 11
present the IDS model performance for specific algorithms
on the test data.

Table 8 shows the IDS model performance using the
Random Forest algorithm, while Table 9 shows the IDS
model performance using the Decision tree for testing data.
Table 10 shows the IDS model performance using the
Gradient Boosting algorithm, while Table 11 shows the IDS
model performance using K-Nearest neighbors for testing
data.

TABLE VIII
IDS MODEL PERFORMACE USING RANDOM FOREST ALGORITHM ON TESTING DATA
Class Precision F1-Score TPR FPR FNR TNR
benign 0.97 0.98 0.98 0.00 0.02 0.99
arp_spoofing 0.72 0.77 0.84 0.00 0.17 0.99
ddos_mqtt connect 1.00 1.00 1.00 0.00 0.00 1.00
ddos_mgqtt_publish 1.00 0.84 0.72 0.00 0.28 1.00
dos_mqtt_connect 1.00 1.00 0.99 0.00 0.00 1.00
dos_mqtt_publish 0.78 0.88 1.00 0.00 0.00 0.99
malformed mgqtt 1.00 0.92 0.00 0.85 0.15 1.00
0s_scan 0.86 0.75 0.66 0.00 0.34 0.99
ping_sweep 0.97 0.84 0.75 0.00 0.25 1.00
port_scan 0.95 0.97 0.99 0.00 0.01 0.99
vul_scan 0.86 0.43 0.28 0.00 0.72 1.00
ddos_icmp 1.00 1.00 1.00 0.00 0.00 1.00
ddos_syn 1.00 1.00 0.99 0.00 0.00 1.00
ddos_tcp 1.00 1.00 0.99 0.00 0.00 1.00
ddos_udp 1.00 1.00 0.99 0.00 0.00 0.99
dos_icmp 1.00 1.00 0.99 0.00 0.00 1.00
dos_syn 1.00 1.00 0.99 0.00 0.00 1.00
dos_tcp 1.00 1.00 0.99 0.00 0.00 1.00
dos_udp 1.00 1.00 0.99 0.00 0.00 1.00
TABLE IX
IDS MODEL PERFORMACE USING DECISION TREE ALGORITHM ON TESTING DATA
Class Precision F1-Score TPR FPR FNR TNR
benign 0.98 0.97 0.95 0.00 0.05 0.99
arp_spoofing 0.56 0.67 0.82 0.00 0.19 0.99
ddos_mqtt connect 1.00 1.00 1.00 0.00 0.00 1.00
ddos_mgqtt_publish 1.00 1.00 0.99 0.00 0.00 1.00
dos_mqtt_connect 1.00 1.00 0.99 0.00 0.00 1.00
dos_mqtt_publish 1.00 1.00 0.99 0.00 0.00 1.00
malformed mgqtt 0.93 0.90 0.88 0.00 0.12 0.99
0s_scan 0.81 0.75 0.69 0.00 0.31 0.99
ping_sweep 0.82 0.82 0.81 0.00 0.19 1.00
port_scan 0.93 0.95 0.97 0.00 0.03 0.99
vul_scan 0.76 0.66 0.59 0.00 0.41 0.99
ddos_icmp 0.60 0.75 0.99 0.00 0.00 0.88
ddos_syn 1.00 1.00 0.99 0.00 0.00 1.00
ddos_tcp 1.00 1.00 1.00 0.00 0.00 1.00
ddos_udp 0.99 0.28 0.16 0.00 0.84 0.99
dos_icmp 0.42 0.59 0.99 0.12 0.00 0.88
dos_syn 1.00 1.00 0.99 0.00 0.00 1.00
dos_tcp 1.00 1.00 0.99 0.00 0.00 1.00
dos_udp 1.00 0.05 0.024 0.00 0.98 1.00
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TABLE X
IDS MODEL PERFORMACE USING GRADIENT BOOSTING ALGORITHM ON TESTING DATA
Class Precision F1-Score TPR FPR FNR TNR
benign 0.96 0.96 0.97 0.00 0.03 0.99
arp_spoofing 0.46 0.56 0.72 0.00 0.28 0.99
ddos_mqtt connect 1.00 1.00 1.00 0.00 0.00 1.00
ddos_mgqtt_publish 1.00 0.93 0.87 0.00 0.13 1.00
dos_mqtt_connect 1.00 1.00 1.00 0.00 0.00 1.00
dos_mqtt_publish 0.89 0.94 1.00 0.00 0.00 1.00
malformed mqtt 0.92 0.82 0.74 0.00 0.26 0.99
0s_scan 0.83 0.87 0.57 0.00 0.43 0.99
ping_sweep 0.43 0.45 0.43 0.00 0.57 0.99
port_scan 0.92 0.95 0.97 0.00 0.03 0.99
vul_scan 0.58 0.35 0.25 0.00 0.75 0.99
ddos_icmp 0.60 0.75 0.99 0.12 0.00 0.88
ddos_syn 1.00 1.00 1.00 0.00 0.00 1.00
ddos_tcp 1.00 1.00 1.00 0.00 0.00 1.00
ddos_udp 0.99 0.29 0.17 0.00 0.83 1.00
dos_icmp 0.42 0.59 0.99 0.12 0.00 0.88
dos_syn 1.00 1.00 1.00 0.00 0.00 1.00
dos_tcp 1.00 1.00 1.00 0.00 0.00 1.00
dos_udp 1.00 0.05 0.02 0.00 0.98 1.00
TABLE XI
IDS MODEL PERFORMACE USING K-NEAREST NEIGHBORS ALGORITHM ON TESTING DATA
Class Precision F1-Score TPR FPR FNR TNR
benign 0.95 0.94 0.93 0.00 0.07 0.99
arp_spoofing 0.38 0.47 0.61 0.00 0.39 0.99
ddos_mqtt connect 0.98 0.99 0.99 0.00 0.00 0.99
ddos_mgqtt_publish 0.81 0.41 0.28 0.00 0.72 0.99
dos_mqtt_connect 1.00 1.00 0.99 0.00 0.00 0.99
dos_mqtt_publish 0.57 0.71 0.93 0.00 0.07 0.99
malformed mgqtt 0.69 0.66 0.64 0.00 0.36 0.99
0s_scan 0.75 0.67 0.60 0.00 0.40 0.99
ping_sweep 0.70 0.60 0.53 0.00 0.47 1.00
port_scan 0.91 0.92 0.94 0.00 0.06 0.99
vul_scan 0.79 0.62 0.94 0.00 0.06 0.99
ddos_icmp 1.00 1.00 0.99 0.00 0.00 0.99
ddos_syn 0.99 0.99 0.99 0.00 0.00 0.99
ddos_tcp 1.00 0.99 0.98 0.00 0.02 0.99
ddos_udp 1.00 1.00 0.99 0.00 0.00 0.99
dos_icmp 1.00 1.00 0.99 0.00 0.00 0.99
dos_syn 1.00 1.00 0.99 0.00 0.00 0.99
dos_tcp 1.00 0.99 0.99 0.00 0.00 0.99
dos_udp 1.00 1.00 0.99 0.00 0.00 0.99

Overall, the performance of the four algorithms shows
their respective strengths and weaknesses in detecting
threats in the Internet of Medical Things (IoMT) network.
Random Forest algorithm on testing data demonstrates high
performance with excellent F1 scores for most classes. For
instance, the benign class achieves an F1-Score of 0.98,
while classes ddos_icmp, ddos_syn, ddos_tcp, and dos_icmp
all achieve an F1-Score of 1.00. However, some classes like
vul scan show lower performance with an F1-Score of 0.43.
The decision Tree algorithm shows good performance,
especially for the benign class with an F1-Score of 0.97 and
the ddos icmp class with an F1-Score of 0.75. However,
there are some classes with poorer performance such as
ddos_udp with an F1-Score of 0.28 and dos_udp with an F1-
Score of 0.05.

Gradient Boosting demonstrates high performance for
several classes with F1-Scores of 1.00 for classes like
ddos mgqtt connect and ddos_syn. However, some classes
like ping_sweep show lower F1-Scores at 0.45 and vul scan
with an F1-Score of 0.35. K-Nearest Neighbors algorithm
on testing data shows varied results with some classes like

ddos_icmp, ddos_syn, ddos_tcp, and dos_icmp achieving an
F1-Score of 1.00, while ddos_mqtt_publish only achieves an
F1-Score of 0.41. On the testing data, Random Forest and
Gradient Boosting tend to provide better results in terms of
consistency and accuracy across various threat classes,
while Decision Tree and K-Nearest Neighbors exhibit more
varied results depending on the type of threat encountered.

Figure 9 shows the confusion matrix of the Random Forest
algorithm for testing data. Figures 10 and 11 show the
results of the confusion matrix for the Decision Tree and
gradient-boosting algorithms for testing data. Figures 12
display the results of the confusion matrix for the K-Nearest
Neighbors algorithm for testing data.

Based on the results of testing the IDS model in detecting
cyber threats on the testing data, the IDS model with the
Random Forest algorithm performs the best compared to
IDS models using other algorithms. There is a decrease in
accuracy and performance in the IDS model's ability to
detect cyber threats, with the most significant decrease
observed in the IDS model using the Decision Tree
algorithm.
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Fig. 9. Confusion Matrix for Random Forest Algorithm on Testing Data
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Fig. 11. Confusion Matrix for Gradient Boosting Algorithm on Testing Data
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Fig. 12. Confusion Matrix for K-Nearest Neighbors Algorithm on Testing Data
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V.CONCLUSION AND FUTURE WORK

Our research not only addresses the limitations observed
in previous studies but also introduces novel features that
enhance the effectiveness and reliability of IDS in [oMT
networks. These advancements contribute to ongoing efforts
to secure [oMT environments, ensuring they remain resilient
against increasingly sophisticated cyber threats.

The experimental results show that the Random Forest
algorithm performs the best in detecting cyber threats on IoT
networks. The IDS model employing the Random Forest
algorithm demonstrates consistent performance on both
training and test data. On the training data, it achieves an
accuracy of 99.8%, the second highest after the IDS model
using the Decision Tree algorithm, which achieves 100%
validation through cross-validation, indicating no overfitting
in the model.

Tests conducted on the IDS model using the Random
Forest algorithm on test data yield superior results compared
to the other IDS models in this study, achieving an accuracy
of 99%. These findings underscore the viability of using
machine learning to develop IDS models for detecting cyber
threats on IoMT networks.

Our future work will involve creating an IoMT dataset
that includes encrypted normal communication data. This is
because the CICIoMT2024 dataset lacks encrypted data for
normal communication, leaving open the possibility for
attackers to alter the data. Additionally, the dataset lacks
scenarios involving attackers manipulating messages. Figure
13 below displays normal communication within the
unencrypted CICIoMT dataset.

Frame 8330: 255 bytes on wire (2040 bits), 255 bytes captured (2040 bits)

Ethernet II, Src: IntelCor _cb:17:60 (00:27:10:cb:17:60), Dst: e6:aa:ed:09:fc:8a (e6:aa:e4:09:fc:8a)
Internet Protocol Version 4, Src: 192.168.137.250, Dst: 192.168.137.170

Transmission Control Protocol, Src Port: 1883, Dst Port: 61660, Seq: 472, Ack: 348, Len: 189

1Q Telemetry Transport Protocol, Publish Message

Header Flags: 0x30, Message Type: Publish Message, QoS Level: At most once delivery (Fire and Forget)
Msg Len: 20
~loniclength 15
Topic: heart_rate_data
Message: 313931

MQ Telemetry Transport Protocol, Publish Message

Header Flags: 0x30, Message Type: Publish Message, QoS Level: At most once delivery (Fire and Forget)
lsg Len: 20

Topic.length: 16

Topic: temperature_data
Message: 3336

M) Telemetry Transport Protocol, Publish Message

> Header Flags: 0x30, Message Type: Publish Message, QoS Level: At most once delivery (Fire and Forget)
Msg Len: 20

Topic Length: 15

Topic: heart_rate_data
Moccape:

1MQ Telemetry Transport Protocol, Publish Message
> Header Flags: 0x30, Message Type: Publish Message, QoS Level: At most once delivery (Fire and Forget)

Msg Len: 21
Topic Length: 17
6 aa e4 09 fc 8a 00 27 10 cb 17 60 08 00 45 02 TR
00 f1 31 b0 40 00 40 06 73 5 0 a8 89 fa 0 a8 1.0-0- s_
89 aa 07 5b 10 dc 8c d4 95 3c e7 9f b5 7a 80 18 [ <z
00 40 83 4b 00 00 01 01 08 0a 60 84 70 38 e3 cb |-@-K p8
2b 01 30 14 00 Of 68 65 61 72 74 5f 72 61 74 65 |+0---he art_rate
5f 64 61 74 61 31 39 31 30 14 00 10 74 65 6d 70 |_datal9l 0- - -temp
6572 61 74 75 72 65 5f 64 61 74 61 33 36 30 14 |erature_ data360
070 00 6f heart_ rate_da]
080 @ 323232301500 11 6f 78 79 67 65 6e 5 6¢ EZZZO oxygen_l
65 76 65 6¢ 5F 64 61 74 61 38 36 30 15 00 11 6f |evel dat a860-- -0
78 79 67 65 6e 5F 6c 65 76 65 6c 5f 64 61 74 61 |xygen_le vel data
37 3530 14 00 10 74 65 6d 70 65 72 61 74 75 72 |750- - -te mperatur
65 5f 64 61 74 61 33 38 30 0f 00 Oc 61 69 72 66 |e_data3d 0---airf
6c 6f 77 5f 64 61 74 61 3130 11 00 0d 70 75 6¢c |low_data 10---pul
73 65 5f 6f 78 5f 64 61 74 61 38 30 30 11 00 0d |se_ox_da ta800
70 75 6c 73 65 5f 6f 78 5f 64 61 74 61 37 33 pulse_ox _data73

Fig. 13. The unencrypted data on CICIoMT2024 dataset.

Encrypting normal communication in the [oMT network
will create a dataset with more diverse features, making it a
robust training resource for IDS models to effectively detect
cyber threats in loMT networks.
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