
Abstract—With the development of artificial intelligence
technology, target detection technology has been widely used in
security monitoring and early warning systems. The purpose is
to improve the efficiency of safe production supervision.
However, the existing target detection frameworks require a
large amount of computational resources to perform. To
address this issue, lightweight deep learning models have
become a research hotspot. This article proposes a lightweight
target detection model. By adjusting the neural network
structure, it significantly reduces computational complexity
while maintaining high-performance detection. Firstly, we
improve the Ferry_Network structure using depthwise
separable convolution. Replace the CBS module in the
Ferry_Network structure with a depthwise separable module.
Then we modify the branch structure of MCN structure.
Introduce depthwise separable convolution into some branches
of the MCN structure. Perform lightweight operations on the
previously improved model to achieve improvements in
parameter reduction. Furthermore, comparative experiments
were conducted. Comparing the lightweight network model
YOLOv7-DSE with the baseline network model and other
excellent object detection models, demonstrating the
effectiveness of the improvements. Finally, ablation
experiments were performed to verify the effects of each
improved module. Proving that the model proposed in this
paper not only has good accuracy and speed but also exhibits
advantages in model size due to its lightweight nature. While
also demonstrating strong robustness.

Index Terms—target detection, safety equipment testing,
lightweight model, Ferry-Network structure, MCN structure.

I. INTRODUCTION
ith the rapid development of deep learning
technology, target detection technology has been

widely used in safety monitoring and early warning systems.
Target detection technology plays a crucial role in multiple
practical applications. In highly dangerous live working
sites, workers must perform important operations such as
checking the electricity and disconnecting it. Wearing
appropriate work safety equipment is a key means of
achieving self-protection in production work. However, due
to the widespread lack of safety awareness among workers.
The complexity of the working environment and the current
safety supervision work not yet meeting standards. The
wearing rate of work safety equipment is low, forming a
vicious cycle. These factors lead to major safety accidents
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and cause significant losses to enterprise property. To
improve the effectiveness of safety supervision, using target
detection technology to assist in achieving safety
supervision has become a low-cost and efficient means.
Object detection is an important field in computer vision.

It identifies and locates specific objects in images or videos.
Traditional machine learning methods have laid the
foundation for object detection. In this period from 2010 to
2014, common methods included the use of feature-based
approaches such as Haar features [1] and HOG features [2].
These were combined with machine learning classifiers such
as Adaboost [3] and SVM [4]. These methods achieved
certain results in specific scenarios. These algorithms have
strong understandability and good interpretability. They
have good generalization performance for tasks with small
amounts of data. However, they require manual design of
appropriate features and may encounter difficulties or
insufficient feature extraction. For complex scenes and large
variations in targets. they have insufficient generalization
ability and weak robustness. For example, Sri-Kaushik
Pavani et al. proposed an extended Haar feature for
examining the human frontal and cardiac regions. The
feature rectangle with the best weight is used for target
detection to maximize its ability to distinguish objects from
clutter. These features maintain the simplicity of traditional
formula evaluation while being more discriminative [5].
Yanwei Pang et al. proposed a cell-based CHOG algorithm
[6]. It only extracts sub-feature vectors. Calculates the
sub-decision values of partial linear classifiers. Reduces the
dimension of traditional block-based gradient direction
histogram (BHOG) feature vectors. Using CHOG as a
feature descriptor, it detects hands, faces, and pedestrians in
videos. Experimental results demonstrate the superiority of
this method [7]. Christos Kyrkou successfully designed and
implemented a flexible parallel hardware architecture based
on AdaBoost algorithm for real-time target detection. This
architecture can efficiently and accurately detect targets, and
has flexibility to handle different input image sizes and
training set formats [7].
Since 2015, with the development of deep learning

technology, target detection methods based on deep learning
have emerged. Target detection methods based on
convolutional neural networks CNN（Convolutional Neural
Network [8] have achieved breakthrough progress. Alex
Krizhevsky trained a large-scale deep convolutional neural
network called AlexNet algorithm [9]. AlexNet performed
brilliantly in the ImageNet LSVRC-2012 competition,
achieving a test error rate of 15.3% and surpassing the
second place by 10.9%. His performance won first place.
This neural network has 60 million parameters and 650,000
neurons. It consists of five convolutional layers, some of
which are followed by max pooling layers [10] and three
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fully connected layers [11]. Finally, there is a 1000-way
softmax normalization exponential function [12].
In recent years, target detection technology based on deep

learning has been more widely used in the field of
engineering construction. This has important application
significance in scenarios such as industrial hazardous
environments and construction sites. It can ensure the safety
of worker operations. More and more experts and scholars at
home and abroad have begun to study algorithms for
detecting the wearing of work safety equipment. Currently,
there are generally two types of commonly used methods for
detecting safety helmet algorithms.one based on machine
learning and the other based on deep learning. When
studying machine learning-based methods, firstly,
researchers usually use traditional image feature extraction
methods (such as Haar features, HOG features, and color
features). Then they use classifiers (such as SVM, AdaBoost,
etc.) to judge whether it is a safety helmet or not. Then they
use classifiers such as support vector machines (SVM) and
AdaBoost to train and predict. Pathasu Doungmala et al.
combined Haar feature and Hough transform detection, two
kinds of helmet detection methods. To detect the
phenomenon of not wearing helmets and wearing helmets,
so as to achieve better detection results [13]. A fast color
image safety helmet detection algorithm based on Haar-like
features is proposed to detect helmet regions. A method for
detecting facial features using circular Hough transform is
proposed to determine the type of helmet worn by the
wearer. Miao Jin used SVM, HOG features, and color
features to propose an algorithm for deformable part models.
Gradient histograms are used for feature training. Support
vector machines are used to detect helmets and ultimately
determine whether workers wear helmets or not [14]. Fan
Min et al. used the Vibe algorithm [15] to detect moving
target areas. They combined Haar features with HSV color
space features to extract helmet features. Input them into the
Adaboost algorithm for classification to achieve helmet
recognition.
In addition, various efficient object detection frameworks

such as Faster R-CNN, YOLO, and SSD have been
proposed in recent years. However, these models have
excessive parameters and require substantial computational
resources for execution. This challenge is particularly
pronounced on resource-constrained devices. Such as
mobile devices and embedded systems, which typically have
limited computational capabilities and battery life. In
response to this challenge, lightweight deep learning models
have become an active research area. Aiming to develop
models that are computationally efficient, energy-efficient,
and do not significantly compromise performance. However,
reducing model parameters and computational load often
sacrifices some degree of detection accuracy. Therefore,
how to balance the efficiency and accuracy of lightweight
models becomes a core issue. Given the diversity of safety
equipment for workers and the complexity of industrial
scenarios. Traditional machine learning methods for
detecting safety equipment have limitations in feature design
and lack robustness in complex scenarios. While they
perform well in tasks with small amounts of data and have
good generalization capabilities. They require manual
design of appropriate features, which may lead to difficulties

or inadequacies in feature extraction. In complex scenarios
and situations with significant target variations. They suffer
from insufficient generalization capabilities and weak
robustness. Therefore, this research chooses to adopt a deep
learning-based object detection method to achieve the
detection of workers' safety equipment.
This article improves the baseline network model

YOLOv7 by reducing the model's parameter count through
optimized depthwise separable convolution. First, the MCN
module in the main network is improved by replacing
ordinary convolution with depthwise separable convolution
modules in the branch of MCN modules. Then, the FN
structure is improved to ensure feature extraction capability
while reducing the model's parameter count and optimizing
the main network structure. Finally, this article describes the
experimental part of this study. This experimental part
compares Faster RCNN algorithms horizontally and
compares YOLOv7, CEAM-YOLOv7, YOLOv7-RAR
vertically. The effectiveness of algorithm improvement is
verified by observing model size, mAP, precision curve,
recall curve, PR curve and other evaluation indicators.
Finally, ablation experiments are conducted by sequentially
freezing improved modules FN-DSC, MCN-DSC, and
MCN-SPD. The purpose is to observe model size and mAP
to prove that the improvement of the algorithm is effective.
It is proved that the model proposed in this paper not only
has good accuracy and speed, but also has the advantage of
lightweight in terms of the number of parameters. it also has
strong robustness. This paper addresses the issue of the large
parameter count in the baseline network model YOLOv7
and proposes improvements to achieve model
lightweighting. The depthwise separable convolution is
optimized. First, the MCN module of the backbone network
is improved by replacing the regular convolutions on the
MCN module branches with depthwise separable
convolution modules. Second, the FN structure is optimized
to ensure feature extraction capability while reducing the
model's parameter count, thereby optimizing the backbone
network structure. Third, the experimental section of this
paper is described, which initially compares the Faster
R-CNN algorithm horizontally. Followed by a vertical
comparison with the baseline models YOLOv7,
CEAM-YOLOv7, and YOLOv7-RAR. The effectiveness of
the algorithm improvements is verified by observing
evaluation metrics. Such as model size, mAP, precision
curves, recall curves, and PR curves. Finally, ablation
experiments were conducted. The improved modules
FN-DSC, MCN-DSC, and MCN-SPD were frozen in
sequence. The effectiveness of the algorithm improvements
was demonstrated by observing the model size and mAP. It
was proven that the model proposed in this paper not only
exhibits good accuracy and speed but also has the advantage
of being lightweight in terms of parameter count.
Additionally, it possesses strong robustness.

II. YOLOV7 MODEL

A. YOLOv7 model structure
The algorithm framework of YOLOv7 is composed of

three parts: input, backbone feature layer and head
prediction layer network. The entire working process of
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Fig.1. Structure of YOLOv7

YOLOv7 can be simplified as follows. Feature extraction,
feature enhancement and prediction of different prior
frames correspond to different scales. The structure of
YOLOv7 model is shown in Fig.1.

III. YOLOV7 BACKBONE NETWORK ARCHITECTURE

The main part of YOLOv7 utilizes a convolutional
neural network composed of a large number of CBS
(Conv2D_BN_Silu) modules. This module is constantly
reused in the network structure of YOLOv7. It is
constructed by a convolutional layer, a BN layer, and an
activation function Silu layer.
The MCN structure comprises four branches, as shown

in Fig.2. The leftmost branch is a CBS module. The second
branch from the left is a CBS module. The rightmost
branch is a series of five CBS modules connected in series.
The second branch from the right is a series of three CBS
modules connected in series. These four branches are then
stacked and undergo feature fusion using another CBS
module. By controlling the gradient path, more features are
learned, enhancing the robustness of the network.
The main part of YOLOv7 also constructs a FN (Ferry

Network) structure for downsampling. The FN structure
comprises two branches, as shown in Fig.3. The upper
branch consists of a stride-2 max pooling layer and a CBS
module connected in series. The lower branch consists of

two CBS modules connected in series. Their filter sizes are
1×1 and 3×3, respectively. The main network constructs a
more dense residual structure. A more dense residual
network can also increase depth to improve accuracy. The
residual network modules inside it use skip connections to
alleviate the problem of gradient vanishing caused by
deeper neural networks.

Fig. 2. Structure of MCN
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Fig. 3. Structure of FN

IV. THE IMPROVED NETWORK MODEL YOLOV7-DSE
Given the complexity of live-work scenarios. It is

important to improve the detection accuracy of safety
equipment. While also reducing the false positive and false
negative rates of network models. Although enhancing
feature extraction capabilities is necessary. It can also
increase the number of parameters and computational
complexity. In the baseline model YOLOv7 algorithm,
there are a large number of 3×3 convolutions. However, as
the network hierarchy deepens, it leads to more parameter
calculations. To improve the feature extraction capabilities
of the network without increasing the number of parameters
and computational complexity. Depthwise separable
convolution is adopted to improve the FN structure and
MCN structure in the backbone part.

A. Depth Separable Convolution
Deep separable convolution and spatial separable

convolution are different.and it often referred to as
"separable convolution" in deep learning frameworks such
as TensorFlow and Keras. This includes channelwise
convolution, which performs spatial convolution
independently on each channel of the input.and point wise
convolution, which projects the output channels of the
depthwise convolution to a new channel space. Depthwise
separable convolution is typically implemented in nonlinear
situations. Due to its characteristic of two-dimensional
convolution operations. The mapping of cross-channel
correlation and spatial correlation in the feature maps of
convolutional neural networks can be fully decoupled.
The steps of depthwise separable convolution are as

follows:
(1) Perform channelwise convolution (depthwise

Convolution). It uses filters to perform separate
convolution operations on each channel of the input feature
map. Generating a set of depthwise convolutional feature
maps. This step only performs convolution operations on
each input channel without expanding the filters. The
depthwise separable step is illustrated in Fig.4.

Fig. 4. Schematic Diagram of Depthwise Convolution

(2) Point wise Convolution: It uses 1x1 filters to
perform convolution operations on the depthwise
convolutional feature maps. The features between channels
are linearly combined to generate the final output feature
map. This step can be viewed as a traditional fully
connected layer operation. However, only the convolution
operation is performed on the channels, and no convolution
operation is performed on the positions. The Point wise
Convolution has two functions. First, it allows the
depthwise separable convolution to freely change the
number of channels. Second, it fuses the feature maps
output by the channelwise convolution. The steps of Point
wise Convolution are illustrated in Fig. 5.

Fig. 5. Schematic Diagram of Pointwise Convolution

To demonstrate the superiority of the improvement. It is
necessary to calculate and compare the parameter count and
computational cost of ordinary convolution and depthwise
separable convolution. We can draw clear conclusions. W
represents the width of the filter, H represents its height. Cin
represents the number of input channels, and Cout represents
the number of output channels. The parameter P can be
expressed as formula (1):

outin CCHWP  （1）

W’ represents the width of the input image. H’ represents
the height of the input image. and the computational cost C
can be expressed as formula (2):

outin CCHHWWHWC  )1()1( （2）

When taking an input image with three channels and a
size of 5×5. Aiming to get a feature map of size 3×3×4.
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The ordinary convolution requires a filter of size 3×3×3×4.
The number of parameters Pcon in its convolution layer can
be calculated as 108. The computational cost Ccon in its
convolution layer can be calculated as 972. If we want to
get the same feature map of size 3×3×4. The depthwise
separable convolution performs channelwise convolution
on the input image with three channels through a 3×3 filter.
And then uses a 1×1 filter to combine different channels
for pointwise convolution, getting a new set of output
feature maps. The number of parameters PDSC used by
depthwise separable convolution can be calculated using
formula (1), and the result is 39. The computational cost
CDSC used by its convolution layer can be calculated using
formula (2), and the result is 351.
Through the calculation of parameters and computational

cost. we find that when getting feature maps of the same
size. The number of parameters and computational cost
used by depthwise separable convolution are about
one-third of those used by ordinary convolution. Therefore,
under the condition of ensuring unchanged detection effect.
Using depthwise separable convolution can reduce the
computational cost of neural networks. The experimental
part of this chapter will analyze the specific improvement
brought by improving depthwise separable convolution for
the model.

B. Improve the Ferry_ Network Structure
The FN structure is mainly used for downsampling

features in the main trunk. With two branches: one is the
pooling branch, and the other is the convolution branch. By
applying depthwise separable convolution to the second
CBS's 3×3 convolution in the convolution branch of the FN
structure. We can reduce the network depth and structural
parameters, thus reducing the computational cost of the
model and achieving lightweight. The improved structure
of the FN-DSC module is shown in Fig.6.

Fig. 6. Structure of FN-DSC Module

C. Improved the Multi _Concat_ Network Structure
(1) Improved network model MCN-SPD

In the MCN structure used in the head network of YOLOv7,
3x3 convolutions are used. This can cause the loss of some
target features when the network model focuses on target
features. An improvement is made to the space-to-depth
non-stride convolution. First, the Multi_Concat_Network
structure of the head network is improved. A
space-to-depth non-stride convolution is proposed. And it is
applied to the MCN structure. The 3x3 convolution after
the Concat module is replaced. An additional
space-to-depth non-stride convolution is added. Finally, the
MCN-SPD module is obtained. Because YOLOv7 uses 5
convolutional layers of step size 2 in the backbone to
downsample the feature map with a factor of 25. And two
convolutional layers of step size 2 are used in the neck.
There is a cascade layer after each step convolution in the
neck of YOLOv7, so this does not affect the SPD's
approach. It only keeps the space-to-depth non-stride
convolution between convolutions. This method used in the
paper retains all the image features. The structure of the
improved MCN-SPD is shown in Fig.7.

Fig.7.Improved Module MCN-SPD

(2) Improved MCN-DSC
In Part II, the MCN structure is mainly composed of four

branches connected in parallel. Each branch uses a CBS
module composed of convolution, batch normalization
function, and activation function. The number of CBS
modules on each branch is different, which is used for
feature extraction of different sizes. After stacking, the four
branches pass through a CBS module for feature fusion,
which is used for downsampling features in the main trunk.
This part improves depthwise separable convolution and
applies it to the MCN structure in the backbone network.
As shown in Fig.8. In the right two branches, multiple
stacked CBS modules cause an increase in the number of
parameters and computational cost. In the improvement,
the structure of convolution-batch normalization
function-activation function is not changed. The optimized
depthwise separable convolution is replaced with ordinary
convolution. The improved MCN-DSC module structure is
shown in Fig.8.
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Fig.8. Struceture of MCN-DSC Module

In the baseline model YOLOv7, the role of MCN is to
extract and fuse features. This structure is continuously
reused in the model. By applying MCN-DSC to the
backbone network, the model achieves the effect of

optimizing the network structure.

D. Improved network model YOLOv7-DSE (Depthwise
Space-to-depth Efficiency)
The overall improved and optimized YOLOv7-DSE is

used to detect worker safety equipment. The backbone
network part has optimized the MCN-DSC module and the
FN-DSC module. Improving depthwise separable
convolution has made it partially lightweight, reducing the
number of parameters and the computational cost of the
network model. In the head network part, the MCN-SPD
has been optimized. Improving spatial-depth non-stride
convolution has allowed the capture of image information
without losing any image features. It has improved the
detection effect of small targets and optimized the loss
function. A new regression box loss calculation method,
EIoU, has been used. A new penalty term has been added to
limit the target anchor box and localization anchor box.
This makes the model's prediction box positioning more
accurate in complex scenes, increasing the robustness of the
network model. The improved YOLOv7-DSE structure is
shown in Fig.9.

Fig.9. Struceture of YOLOv7-DSE
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TABLE I
Comparison Experiment Results

Models F1 Miss rate mAP Model size
YOLOv4 0.74 0.06% 72.94% 103.2MB
YOLOv5 0.74 0.06% 75.75% 101.6MB
YOLOv7 0.80 0.05% 79.75% 94.1MB

YOLOv7-DSE 0.84 0.04% 82.39% 72.9MB
CEAM-YOLOv7 0.81 0.04% 80.44% 96.4MB
YOLOv7-RAR 0.79 0.05% 79.86% 84.3MB

V. EXPERIMENTAL DESIGN AND RESULT ANALYSIS

A. Experimental Environment
The experimental equipment includes a NVIDIA

GeForce GTX3070 graphics card with 8GB memory. An
Intel Core i7-10700F CPU, and a Windows 10 Professional
operating system with 16.0GB RAM. These are used for
comparative experiments of object detection algorithms.
Multiple object detection algorithms use the PyTorch 1.8.0
framework based on Python 3.6 in this experimental
environment. The language compiler is PyCharm 2022.3.2,
and the GPU acceleration libraries used for training are
CUDA 11.1 and cudnn 8.0.4.

B. Experimental Design
In this paper, the equipment_dataset is used as the

training and validation dataset. The training iteration is set
to 100 epochs, and the ratio of the training set to the
validation set is 8:2. A horizontal comparative experiment
is conducted by comparing the improved YOLOv7-DSE
with YOLOv4 and YOLOv5. Three vertical comparative
experiments are designed by comparing the improved
YOLOv7-DSE with YOLOv7, CEAM-YOLOv7, and
YOLOv7-RAR, which are three object detection algorithms
that perform well in industrial settings. Finally, to verify the
effectiveness of improvements made to each part of the
network model. A set of ablation experiments is designed
to demonstrate the effectiveness of each optimization
module.

C. Experimental Results and Analysis
The comparative experimental results are shown in Table

I.
(1) Model size comparison
The improved YOLOV7-DSE was compared with the

YOLOv7 algorithm, YOLOv4 algorithm, YOLOv5
algorithm, CEAM-YOLOv7 algorithm and YOLOV7-RAR
algorithm in terms of model size.
By optimizing and improving depthwise separable

convolution, the model size of the improved model has
been reduced. The experimental results are shown in Fig.10.
The model size of the baseline network model YOLOv7
algorithm is 94.1MB. While the model sizes of YOLOv4,
YOLOv5, CEAM-YOLOv7, and YOLOv7-RAR are
103.2MB, 101.6MB, 96.4MB, and 84.3MB, respectively.
The model size of the optimized YOLOv7-DSE algorithm
is only 72.9MB, which is a reduction of 22.4% compared to
the original baseline network model YOLOv7.

Demonstrating that the model has achieved lightweight
results.

Fig.10. Model Size Comparison Diagram

（2）Precision ratio comparison
Compare the accuracy of the improved YOLOV7-DSE

algorithm with that of YOLOv7 algorithm. Fig.11. shows
the comparison of precision of YOLOv7 object detection
algorithm and the proposed YOLOv7-DSE worker
operation safety equipment detection algorithm with
confidence. Confidence is a decimal between 0 and 1.
Representing the accuracy of all detection results that are
less than the confidence level when all equipment under
this confidence level are considered operation safety
equipment. At the same time, connecting the precision of
all confidence levels can clearly show the change of
precision with confidence. The black line chart in Figure 10
shows that when the confidence threshold is 0.5, the
accuracy rate of YOLOv7 algorithm to detect all categories
is 86.23%. The red line chart shows that when the
confidence threshold is 0.5, the accuracy of the improved
YOLOv7-DSE algorithm to detect all categories is 90.41%.
From the experimental results in Fig.11. It can be

observed that as the confidence threshold increases, the
overall accuracy of the YOLOv7 algorithm continues to
improve. This means that as the criteria for identifying
workers' safety equipment become stricter. The algorithm is
more capable of locating areas where safety equipment is
present. When the confidence threshold is set to 0.5. The
accuracies for the two scenarios are 86.23% and 90.41%
respectively. This indicates that when the algorithm
determines there is a 50% probability of safety equipment
being present in a region of the image. It classifies that
region as containing safety equipment. The improved
YOLOv7-DSE algorithm in this paper can correctly
identify 4.18 times per 100 frames compared to the baseline
model.
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Fig.11. Comparison of Precision Experiment

(3) Recall rate comparison
The recall rate of the improved YOLOV7-DSE and

YOLOv7 algorithm was compared. Fig.12. shows the
Recall rate of YOLOv7 object detection algorithm and the
YOLOV7-DSE worker safety equipment detection
algorithm proposed in this study. Image contrast that
changes as confidence increases. Changes in recall rates
can be observed. The black line chart in Fig.12. shows that
when the confidence threshold is 0.5, the recall rate of all
categories detected by YOLOv7 algorithm is 90.38%. The
red line chart in Fig.12. shows that when the confidence
threshold is 0.5, the recall rate of all categories detected by
the improved YOLOv7-DSE algorithm is 93.72%.

Fig.12. Comparison of Recall Experiment

From the experimental results in Fig.12. With the
increase of the confidence threshold, the recall rate of
YOLOv7 algorithm continues to decrease on the whole.
That is, with the stricter the identification requirements for
workers' work safety equipment, the more difficult it is to
detect whether there is workers' work safety equipment in
the area. When the confidence threshold is set to 0.5, the
recall rates of both are 90.38% and 93.72%, respectively. It
means that when the algorithm judges that there is 50%
probability of workers' operating safety equipment in the
area of the image. It will judge that there is operating safety
equipment in the area. The improved YOLOv7-DSE
algorithm in this paper can recognize 3.34 times more than
the baseline model per 100 frames on average.

(4) Comparison with mAP

(a) YOLOv7 algorithm

(b) YOLOv7-DSE algorithm
Fig. 13. PR Curve of Comparison

Compare the improved YOLOV7-DSE algorithm with
YOLOv7 algorithm on mAP. It can be seen from fig.11.
and fig.12. As confidence grows, so does accuracy, and at
the same time, the corresponding recall rate decreases. The
PR curve in Fig.13. shows the correspondence between
recall rate and accuracy. Connect each corresponding value
with a curve. The area of the curve surrounded by the
horizontal and vertical positive coordinate axes is used as a
comprehensive evaluation index, that is, all kinds of mAP.
In Fig.13(a). indicates that the mAP of all categories of
workers' work safety equipment detected by YOLOv7
algorithm is 79.75%. In Fig.13(b). indicates that the mAP
of all categories of workers' work safety equipment
detected by the YOLOv7-DSE algorithm proposed in this
study is 82.39%.
The improved YOLOv7-DSE was compared with

YOLOv4 algorithm and YOLOv5 algorithm on mAP.
Longitudinal comparison with CEAM-YOLOv7 and
YOLOv7-RAR on mAP. In this chapter, four other
algorithms were tested using the same method. The
experimental results are shown in Fig.14. The experimental
results show that the mAP of the baseline network model
YOLOv7 algorithm is 79.75%. The mAP of YOLOv4 is
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72.94%. The mAP of YOLOv5 is 75.75%. The mAP of
CEAM-YOLOv7 is 80.44%. The mAP of YOLOv7-RAR
is 79.86%. The mAP of the proposed YOLOv7-DSE is
82.39%. Compared with other network models, the
improvement is 2.64% compared with the baseline model.
(5) Training loss comparisons
The improved YOLOV7-DSE algorithm is compared

with YOLOv7 algorithm in terms of training loss. The
changes in training loss of YOLOv7 and YOLOv7-DSE are
shown in Fig.15. As can be seen from Fig.15. The training
loss of the optimized object detection model YOLOv7-DSE
decreases more. The loss reduction during training is also
very stable.
(6) Ablation experiments
Table II shows the results of the ablation experiments.

This study proposes three optimization modules:
MCN-SPD, FN-DSC and MCN-DSC. A checkmark in the
table indicates that this module was used in the experiment,
while the frozen part was frozen during the experiment. In
terms of evaluation indicators. The evaluation indicators
with upward arrows indicate that the higher the value of
this indicator, the better the algorithm performs. Conversely,
evaluation indicators with downward arrows indicate that
the lower the value of this indicator, the better the
algorithm performs. According to the data in the table. It
can be seen that the optimized parts have a specific impact
on mAP and model size. When the optimized depthwise
separable convolution is frozen. The number of model
parameters increases by 22.5%. When the spatial-to-depth
non-strided convolution is frozen, mAP decreases by 1.85%,
which demonstrates that each improved module is
effective.

Fig. 14 mAP of Comparison Experiment

D. Model visualization
The baseline network model YOLOv7 algorithm and the

improved and optimized YOLOV7-DSE algorithm were
used to predict the same group of images respectively. Feel
the visual representation ability of the test model. The test
results are shown in Fig.16. and 17. To the left of the

picture is the original. In the middle is the test result output
by YOLOv7. On the right is the test result output by
YOLOv7-DSE.

Fig.15. Comparison of training losses

It can be intuitively seen from the figure that the
original baseline network model YOLOv7 has poor
performance in detecting workers' operating safety
equipment. There are a large number of error detection and
leakage detection cases, and the accuracy is very low. The
improved and optimized YOLOv7-DSE can detect the
safety equipment of workers. It not only greatly reduces the
probability of error detection in complex scenes. The
detection ability of small targets has also been improved.

VI. CONCLUSION
Through the analysis of the above experimental results. It

can be clearly seen that the optimized YOLOv7-DSE
algorithm is compared with the original baseline network
model YOLOv7. A significant lightweight effect was
achieved in the model size, with a reduction of 22.4%. At
the same time, under the condition that the confidence
threshold is 0.5. The YOLOv7-DSE algorithm achieved
90.41% accuracy in detecting all categories. Compared
with 86.23% of YOLOv7, it is significantly improved. On
average, every 100 frames of images were correctly
identified 4.18 times more than the baseline model. In
addition, the recall rate of YOLOv7-DSE algorithm also
increased to 93.72%. Compared with 90.38% of YOLOv7,
the average recognition rate is 3.34 times per 100 frames.
The comparison of training losses also shows that the
training losses of YOLOv7-DSE decreased more and more
steadily. The three optimization modules proposed in this
paper, MCN-SPD, FN-DSC and MCN-DSC, have been
proved effective by ablation experiments. In summary, the
experimental results fully prove the effectiveness of the
model improvement. It shows the excellent generalization
ability of the model. Compared with the baseline network
model, the error detection rate and missing detection rate
are significantly reduced.

TABLE II
ABLATION EXPERIMENT RESULTS

Baseline
YOLOv7

FN-DSC MCN-DSC MCN-SPD EPOCH BATCHSIZE MAP↑
MODEL

SIZE↓
√ 100 16 79.75% 94.1MB

√ 100 16 80.22% 81.9MB
√ √ 100 16 80.54% 70.5MB
√ √ √ 100 16 82.39% 72.9MB
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Fig. 16. Model Test Effect Comparison One（person, badge, wrongglove, operatingbar）

Fig. 17. Model Test Comparison Two(person, wrongglove)
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